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 Abstract 
Let G = (V, E) be a simple connected graph with vertex set V(G) and  edge set E(G) .

The second GA and (Sz)  indices a graph G are defined as 
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where nu(e) is the number of vertices closer to u than v and nv(e) is the number of 
vertices closer to v than u. In this paper, some relations between the second GA index, 
(Sz)-1 and (Sz)-1/2 of G are studied.

1. Introduction 
Let G = (V, E) be a simple molecular graph. The vertex and edge-sets of G are 

represented by V(G) and E(G), respectively. In such a graph, vertices represent atoms 

and edges represent bonds, see [1]. The graph G is said to be connected if for every 

two vertices  x and y in V(G) there exists a path connecting them. We denote 

complete, star, wheel, path and cycle graphs on n vertices by Kn , Sn , Wn , Pn , and Cn ,

respectively. The distance d(u,v) between vertices u and v of a connected graph G is 

the number of edges in a minimum path from u to v.

A topological index is a real number related to a molecular graph, which is a 

graph invariant and which has some chemical application. There are several 

topological indices already defined. The Wiener index (W) is the first topological 
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index that was introduced in 1947 by Harold Wiener, see for details [2]. It is defined 

as the sum of distances between all pairs of vertices in the graph under consideration.

The Szeged index (Sz) is another topological index which was introduced by 

Ivan Gutman. In  order to define the Szeged index of a graph G, we assume that e = 

uv is an edge connecting the vertices u and v. Suppose nu(e) is the number of vertices 

of G lying closer to u and nv(e) is the number of vertices of G lying closer to v. Then 

the Szeged index of the graph G is defined as Sz (G) = 
)(

)]()([
GEuve vu enen , see [3-

13] for details. Notice that vertices equidistance from u and v are not taken into 

account.  

The second type of geometric-arithmetic and vertex PI indices of the graph G

are denoted  by GA2 and PIv , respectively. These are defined as
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see [14-17] for more details. 

Gutman and his co-authors introduced the “modified Szeged index”, )(GSz ,

:
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If =1 then (Sz) = Sz(G) [18-20]. 

In this paper, some relations between the indices GA2 , (Sz)-1 , and (Sz)-1/2 are

distinguished.

At first, we present a classic a theorem that will be used in the next section.  

Theorem A. [Pólya-Szeg  Inequality] Suppose ai and bi for i=1, 2,…,n are 

positive sequences of real numbers. Then 
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where M1, M2 and m1, m2 are maximum and minimum ai’s and bi’s, respectively [21]. 

1. Main Results 
In this section, at first we compute, Sz-1/2 for some well-known graphs, 

including complete graphs, stars, wheels, paths and cycles. Then some upper and 

lower bound for Sz-1/2 are presented. Finally some relationships between GA2 , Sz-1/2 ,

PIv , and Szeged index of any graph are proved. 
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Examples.
1. Sz-1/2 (Kn)=n(n-1)/2,

2. Sz-1/2 (Sn) = 1n ,

3. Sz-1/2 (Wn) = ,

2
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4. Sz-1/2 (Pn )=
1

1 )(
1n

i ini
,

5. Sz-1/2 (Cn)=
oddisnif

n

evenisnif

1
2

2
,

6. Sz-1/2 (Qn) =n,

7. Sz-1/2 (Km,n) = mn .

In graph theory, an edge contraction is an operation which removes an edge from 

a graph while simultaneously merging together the two vertices it previously 

connected. Edge contraction is a fundamental operation in the theory of graph minors. 

Vertex identification is a less restrictive form of this operation. This operation for 

graph G by removing the edge e, is denoted by eG / . We use this concept for proving 

the following lemma.  

Lemma 1. Let T be a tree on n  vertices and li  be the number of edges e=uv, such that 
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 for 21 nki . Then, illl i 221  for 

11 ki  and 121 nlll k .

Proof. By induction on the number of edges. Suppose the statement holds for all trees 

with n-1 edges and T is a tree with n edges. Let k1 be the largest positive integer such 

that

kk11 , 0
1kl  and 0

21 1 kkk lll . Now we choose an edge e=uv such 

that
)1(

1
)()(

1

11 knkenen vu

 and  set eTT /' . It is clear that 'T  is a tree with 

1n  edges. Let jl  be the number of edges )'(''' TEvue , such that 
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 for 11 kj . Obviously, jj ll  for 11 1kj  and 

1
1 kk ll . Now by the inductive hypothesis, illl i 2''' 21  for 11 1ki

and 1'''
121 nlll k . Hence illllll ii 2''' 2121

for 11 1ki  and since 1'''1 2121 1 kk lllllln , so 

nlll k21 .

Theorem 2. Let T be a tree on n vertices. Then )(Sz)(Sz)(Sz 1/2-1/2-1/2- nn STP ,

with left (right) equality if and only if nPT ( nST ).

Proof. We assume that li is the number of edges e=uv of T, such that 
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 for 21 nki . By using Lemma 1, illl i 221

for 11 ki  and 121 nlll k . Let n be even number, then 
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By the similar argument we can prove the left inequality, when n is odd. For right 

inequality, it is easy to see that, for each )( nSEuve , 1)(enu  and 1)( nenv .

Therefore
1

1
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Theorem 3.
)(Sz
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mGGA  with equality if and only if the graph G is 

bipartite.

Proof. By the Cuachy inequality,  
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Lemma 4. Let maaa ,...,, 21  be real numbers, such that  maaa ...1 21 .  Then

2
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Proof. The left side inequality is clear. For right side inequality, we have 
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Proof. By using Lemma 5, the proof is straightforward.                                              � 

Theorem 6. For any connected graph G,  
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Proof. By Lemma 4, we conclude that  
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Theorem 7. 
vPI

mG
2

1/2-
2)(Sz , with equality if and only if G is the complete graph. 

Proof . By the geometric-arithmetic inequality, )()( enen vu 2
)()( enen vu  , 

implying that 
)()(

2
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1
enenenen vuvu

 with equality if and only if )()( enen vu .

By the Cauchy-Schwartz inequality, 
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Theorem 8. )()(Sz
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11/2-1 GmSzGSz
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 with equality in right side if 

and only if G is Kn .

Proof. Suppose auv=1 and buv=
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 then by the Pólya-Szeg  inequality: 
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m . For the right hand of inequality, by 

definition and Cauchy-Schwarz inequality we have: 
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with equality if and only if  )()( enen vu =1. Thus equality holds  if and only if
1)()( enen vu , so G is a complete graph.                                                                 

�

Theorem 9. Suppose G is a connected graph, then 
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with equality if and only if G be Kn.
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Proof . By definition, 
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G be Kn .                                                                                                                                                 � 

Theorem 10. The following inequality is hold for a connected graph G,
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Theorem 11. GA2(G)+Sz-1/2(G)+PIv(G)  3m 3 2 with equality if and only if G=Kn . 

Proof. By an easy calculation, we have  
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with equality if and only if nu(e) = nv(e) = 1. Therefore GA2(G)+Sz-1/2(G)+PIv(G)

3m 3 2 with equality if and only if G=Kn.  �

Theorem 12. If G is a bipartite graph then mGSzGnGA 4)(2)( 2/12 with equality 

if and only if G = K2.

Proof. We have  
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By a similar argument as above m
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equality if and only if nu(e) = nv(e) = 1 . We know that nu(e) + nv(e) =n for bipartite 

graphs. Thus mGSzGnGA 4)(2)( 2/12 with equality if and only if G = K2.                 

�
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