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Abstract
Let G = (V, E) be a simple connected graph with vertex set /(G) and edge set £(G) .
The second GA and (Sz), indices a graph G are defined as

AW ©m©) o Gyose, = Y n@n @l

b @) (e)+n,(e)

GA,(G) =Y,

where ny(e) is the number of vertices closer to u than v and n,(e) is the number of
vertices closer to v than u. In this paper, some relations between the second GA index,
(Sz).1 and (Sz).1/» of G are studied.

1. Introduction
Let G = (V, E) be a simple molecular graph. The vertex and edge-sets of G are

represented by V(G) and E(G), respectively. In such a graph, vertices represent atoms
and edges represent bonds, see [1]. The graph G is said to be connected if for every
two vertices x and y in V(G) there exists a path connecting them. We denote
complete, star, wheel, path and cycle graphs on » vertices by K, Sy, Wy, P,, and C,,
respectively. The distance d(u,v) between vertices u and v of a connected graph G is
the number of edges in a minimum path from u to v.

A topological index is a real number related to a molecular graph, which is a
graph invariant and which has some chemical application. There are several

topological indices already defined. The Wiener index (W) is the first topological
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index that was introduced in 1947 by Harold Wiener, see for details [2]. It is defined
as the sum of distances between all pairs of vertices in the graph under consideration.
The Szeged index (Sz) is another topological index which was introduced by
Ivan Gutman. In order to define the Szeged index of a graph G, we assume that e =
uv is an edge connecting the vertices v and v. Suppose 7,(e) is the number of vertices

of G lying closer to u and n,(e) is the number of vertices of G lying closer to v. Then

the Szeged index of the graph G is defined as Sz (G) = ze=ung(m[”u (e)n, (e)], see [3-

13] for details. Notice that vertices equidistance from u and v are not taken into
account.

The second type of geometric-arithmetic and vertex P/ indices of the graph G
are denoted by G4, and PI,, respectively. These are defined as

2yn,(e)n,(e)

=weE©) p () +n,(e)

G4,(G) =), and PL(G)=), . .1 (e)+n,(e)],

see [14-17] for more details.

Gutman and his co-authors introduced the “modified Szeged index”, Sz, (G),

8z,(G)=8z, = Zezwd(m[nu (e)n, (e)]ﬂ .
If 2=1 then (Sz),= Sz(G) [18-20].
In this paper, some relations between the indices GA; , (Sz).; , and (Sz)., are
distinguished.
At first, we present a classic a theorem that will be used in the next section.
Theorem A. [Pdlya-Szegd Inequality] Suppose a; and b; for i=1, 2,...,n are

positive sequences of real numbers. Then

2 2
zaiZZbiZ Sl M+ Jmmy [zaib‘j ,
i=l i=1 4 m1mz Mle i=l
where M;, M, and m;, m; are maximum and minimum a;’s and b;’s, respectively [21].

1. Main Results

In this section, at first we compute, Sz.;, for some well-known graphs,
including complete graphs, stars, wheels, paths and cycles. Then some upper and
lower bound for Sz.;,, are presented. Finally some relationships between G4, Sz.i.,

PI,, and Szeged index of any graph are proved.



-497-

Examples.
1. SZ_1/2 (K,,):I’l(n—])/2,

2. SZ_1/2 (S,,) = \/}’l—l N

n—1
+2 if nisodd
_|+n-=-3 ’
352 ey :
+ if niseven
n-3 n-2
4. Sz. 12 (P ) Z
./l(n—z
2 if niseven
5. Szip(C)=4 2 if n isodd
n—1

6. Sz.12 (0 =n,

7. Sz.1p (Kpn) =~mn .

In graph theory, an edge contraction is an operation which removes an edge from
a graph while simultaneously merging together the two vertices it previously
connected. Edge contraction is a fundamental operation in the theory of graph minors.
Vertex identification is a less restrictive form of this operation. This operation for
graph G by removing the edge e, is denoted by G/e. We use this concept for proving

the following lemma.

Lemma 1. Let 7 be a tree on #n vertices and /; be the number of edges e=uv, such that
1 B 1
Jn,(e)n () itn—i)

I<i<k-land [, +/,+---+/ =n-1.

for 1<i<k=[2]. Then, [+l +-+1>2i for

Proof. By induction on the number of edges. Suppose the statement holds for all trees
with n-1 edges and T is a tree with » edges. Let k; be the largest positive integer such
that
1<k <k, [, >0and [, =[ =--=1[ =0. Now we choose an edge e=uv such
1 1

that =

Vn@n,(e) k(n+1-k)
n—1 edges. Let [, be the number of edges e'=u'v'e E(T'), such that

and set T'=T/e. Itis clear that T" is a tree with
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1 1
V@) =)

l; =1, —1. Now by the inductive hypothesis, /',+/';+---+1',22i for 1<i<k -1

for 1< j<k,. Obviously, /; =1, for 1< j<k —1 and

and /'\+l',+---+10' =n—1.Hence |, + 1, +---+ 1, =I'\+I',+---+ 1,2 2i
for 1<i<k -1 and since n-1=0I'\+l'y+-+I' =L+, ++[ -1, so

L+l +-+] =n.

Theorem 2. Let T be a tree on n vertices. Then Sz ,(P,)<Sz,,(T)<Sz,,(S,),

with left (right) equality if and only if 7=P, (T =S,).

Proof. We assume that /; is the number of edges e=uv of 7, such that
1 _ 1
Jn(@n,(e)  fitn—i)

for1<i<k-1and/ +/,+---+/, =n—1.Letn be even number, then

for ISiSk:[LZ’]. By using Lemma 1, [, +/, +---+1, 2 2i

1
S Py=> S
2 () yn, (e)n, (e)
1 1 1 1

=2 +2 +o+ 2 +
Ji(n = 1) J2(n-2) JE-Dn-2+1)  Jr(n-1

and

1
Sz, (T) = Jn, (), (e)
z 4, (T) Ze:"“ n,(e)n,(e)
| 1

=] / ..
1\/1(;1—1)Jr 2\/2(;7—2)Jr

1

-+

It is enough to prove that
1 1 1

L,-2 .
mm—n+(2 nmm—a+

(11 72)




-499-

1
A= =)=+ (L - )=t + (- )—=
1Fh7u 2w72) $(n—1%)
1
> (- 2) — "Dt t()—
n—2) Vf“iﬁ 5(n—14)
1 1
=+l ) et (, - 2)——t o+ ([, ~ ) ——
\/72) 3(n—3) H 2(n=1%)
1
2+l -4 et (-2t t ([, - ) —
J“B’ 3( -3) (n-1%)
1 1 1
=L+, +1,-6 -2 I, 1) ———
(bt li=6 2= (n—3) )4(n—4) e )%(n—%)
1 1
22+t —2(5-1) +(, - 1)——m—
: l—l)( -(3-1) 3(n=13)
2+l tl, =24 -1) —+ (-1 !
-%) (n=13)
1
=(h+L+.+l, +1,-n+1)
RN TP
1
=(n-1-n+1)————==0
(n-1)

By the similar argument we can prove the left inequality, when #» is odd. For right

inequality, it is easy to see that, for each e=uv e E(S,), n,(e)=1 and n,(e)=n—1.

Therefore ! _ so Sz,,(T)<Sz,,(S,). 0

\n, (e)n, (e) n—1’

2

Theorem 3. GA4,(G) =

with equality if and only if the graph G is
n Sz,,(G)

bipartite.

Proof. By the Cuachy inequality,

2 2 2
m m 2m 1

D ST @) T T @)

Z ya(@n(e) 2 z v, (en,(e)

O

Lemma 4. Let a,,a,,...,a,, be real numbers, such that 1<a, <a, <...<aq,,. Then

Ma, 2 (0,4 + ot 0, ottt 2y 2 2D,
a a, a 2

m
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Proof. The left side inequality is clear. For right side inequality, we have

1 1 1 1 1 1
(a,+..+a,)(—+.+—)=a,(—+.+—)+..+a,(—+.+—)
1 a, 1 m 1 a,

Zal(i)+a2(—+—)+ Aa,(— +i+...+i)
a a a a

m

1 1 2 1 9 a,
21+2+..4+m= mm+1)
> 5
Theorem 5.
m(m+1) _ %(nu(e)Jrnv(e))GA V< m? L(n, (e)+n,(e)) Y]

2 7c=zw n,(e)n,(e) 2{G)= m et n,(e)n,(e) le=uv<m 2
Proof. By using Lemma 5, the proof is straightforward. O
Theorem 6. For any connected graph G,

m’ () +n,() 1
aX{GAZ(G) 2m-GA,(G)} <Z oty <217(@)152,:(0).
Proof. By Lemma 4, we conclude that
> n,(e)n,(0) Hn+n @) |,
Zim@ @) & Jnene )"
5 OO s im@n©),,,
St +n(@) 5 In,(e)n,(e)
Then
{72 2m— GA (G)1<ZM \V(G)|Sz n(G). 0

GA,(G) o An,(en,(e)

2

2 . . o
Theorem 7. Sz, ,(G) > Pn; , with equality if and only if G is the complete graph.

v

+
Proof . By the geometric-arithmetic inequality,./n,(e)n, (e) SM

1 2
An, (@n,(e) . n,(e)+n, (e)

By the Cauchy-Schwartz inequality,

implying that with equality if and only if n,(e)=n,(e).
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> #PL, >2m’,

O, (€)1, (e)

with equality if and only if #,(e) = n,(e) =1. Thus

z 2 >2m

O, (e) 4y (e) P

2

with equality if and only if #,(e) =n,(e) =1. This proves the theorem.

2 m(n—1
Theorem 8. 2V "=D 6= C s, (G)<mS=,(G) with equality in right side if
n
and only if Gis K, .

1

Proof. Suppose a,,=1 and b,,~ —————then by the Pdlya-Szegd inequality:
/n, (e)n,(e)

, 1 L1 [ix(a-1) Ix1 ) 1 ’
21 ;W(\/nu(e)me)) S4(\/ Ix1 +\/1X(n—l>J[gllx(\/nu@)m(e)))

Therefore
2
S T
Sn@ne) 4V 1x1 \ix@-1)
2m

Vn—-1+

By calculation, I Sz, £8z,,(G) . For the right hand of inequality, by

Nn—-1
definition and Cauchy-Schwarz inequality we have:
Sz ,,(G)= ) ———m—
" ; n,(e)n,(e)

1

IX ————
Z n,(en,(e)

m
< - -
2 n,(e)n,(e)
=mSz_ (G),
with equality if and only if n,(e)n,(e) =1. Thus equality holds if and only if
n,(e)=n,(e) =1, so G is a complete graph.
0

Theorem 9. Suppose G is a connected graph, then

2
sz, <| " P s )
2 2
with equality if and only if G be K,,.
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Proof . By definition,

. 1 1 I
[Sz,,(G)] _,;Eginu(e)n © +2”§:‘, \/n o .\/nx(e)ny(e)

<8z 1(G)+2‘> —lSZ 12(G).

(SZM(G)—[ '”T_ID S[MT_IW +52 ,(G).

2
Therefore Sz,,(G) < [’"T_lw + [’”T_W +5z_,(G) and equality holds if and only if

Thus

Gbek,. 0

Theorem 10. The following inequality is hold for a connected graph G,

Sz.,,(G) > |8z, (G)+M.
n

Proof. By Theorem 8, [Sz_,,(G)]’ = Z‘Zm N 22) \/nu(el)nv(e) .\/nx(:) =
- 52,(6) + 2D
- 52,(G)+ dmm D)

Therefore Sz,,(G) > /SZ,I(G)+MZ_D. O
n

Theorem 11. GA,(G)+Sz.12(G)+PI(G) > 3m 3\/5 with equality if and only if G=K,, .

Proof. By an easy calculation, we have

2\n,(e)n,(e)

Hmnwﬂn@ Z@Irmwhn@)

2",

Thus,
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y Anon©, 1
< (e)+n,e)  \n,(en, ()

with equality if and only if ny(e) = ny(e) = 1. Therefore GAx(G)+Sz.;2(G)+PI(G)>

+(n,(e)+n,(e)= 3nR2m

3mA/2 with equality if and only if G=K,. 0

Theorem 12. If G is a bipartite graph then nG4,(G)+2Sz_,,,(G) = 4m with equality
if and only if G = K>.

Proof. We have

T Am@mn @ ———— =1.
n, (@), (@)

By a similar argument as above zg:mr,/nu (e)n,(e) + ﬁ >2m with
n, (e)n, (e

equality if and only if n,(e) = n,(e) = 1 . We know that n,(e) + n,(e) =n for bipartite
graphs. Thus nGA4,(G)+25z_,,,(G) = 4m with equality if and only if G = K>
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