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Abstract

If G = (V,E) is a molecular graph, and d(u) is the degree of its vertex u , then the atom–

bond connectivity index of G is ABC =
∑

uv∈E
√

[d(u) + d(v)− 2]/[d(u) d(v)] . This molecular

structure descriptor, introduced by Estrada et al. in the late 1990s, found recently interesting

applications in the study of the thermodynamic stability of acyclic saturated hydrocarbons, and

the strain energy of their cyclic congeners. In connection with this, one needs to know which

trees have extremal ABC-values. Whereas it is easy to demonstrate that the star has maximal

ABC, characterizing the trees with minimal ABC appears to be a much more difficult task. In

this paper we determine a few structural features of the trees with minimal ABC, which brings

us a step closer to the complete solution of the problem.

1. Introduction

Until few years ago, the “atom–bond connectivity index” (ABC) [1] was just one among

the countless molecular–graph based structure descriptors put forward in the chemical lit-

erature [2–4]. Initially [1], the ABC-index was shown to be well correlated with the heats

of formation of alkanes, and that it thus can serve for predicting their thermodynamic

properties. In addition to this, Estrada [5] recently elaborated a novel quantum–theory–

like justification for this topological index, showing that it provides a model for taking

into account 1,2– , 1,3– , and 1,4-interactions in the carbon–atom skeleton of saturated
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hydrocarbons, and that it can be used for rationalizing steric effects in such compounds.

These results triggered a number of mathematical investigations of the ABC-index [6–14].

When examining a topological index, one of the first questions that needs to be an-

swered is for which graphs this index assumes minimal and maximal values, and what

are these extremal values. Usually, one first tries to resolve this problem for trees with

a fixed number (n) of vertices. In the case of the ABC-index, finding the tree for which

this index is maximal was relatively easy [6]: this is the star. Eventually, also the trees

with second–maximal, third–maximal, etc. ABC-index were determined [13].

On the other hand, the problem of characterizing the n-vertex tree(s) for which ABC

is minimal, turned out to be much more difficult, and this task has not been completely

solved until now.

It was recently shown [14] that by deleting an edge from any graph, the ABC-index

decreases. This result implies that among all n-vertex graphs, the complete graph has

maximal ABC-value. Further, among all connected n-vertex graphs, minimal ABC is

achieved by some tree. Thus the n-vertex tree(s) with minimal ABC-index are also the

n-vertex connected graphs with minimal ABC-index.

In what follows, we present the results of our computer–aided quest for trees with

minimal ABC, as well as a few mathematical results determining some (but far not all)

structural features that such trees must possess.

2. Definitions and notation

The (molecular) graph considered will be denoted by G, and its vertex and edge sets

by V and E, respectively. The number of vertices and edges of G are denoted by n and

m, respectively. In the case of trees, m = n− 1.

If u and v are two adjacent vertices of G, then the edge connecting them will be

denoted by uv.

For u ∈ V, the degree of the vertex u, denoted by d(u) = d(u|G), is the number of

first neighbors of u in the graph G. A vertex of degree one is said to be a pendent. We

will distinguish between path-type and of star-type pendent vertices. A path-type (or,

shorter: p-type) pendent vertex is adjacent to a vertex of degree two. A star-type (or,

shorter: s-type) pendent vertex is adjacent to a vertex of degree three or greater.

The edge whose one end-vertex is of degree one is said to be a pendent edge.
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With the above specified notation, the atom–bond connectivity index of the graph G

is defined as [1]:

ABC = ABC(G) =
∑
uv∈E

√
d(u) + d(v)− 2

d(u) d(v)
. (1)

Let 1 ≤ k ≤ n− 1 and let u0, u1, . . . , uk−1, uk be some of the vertices of the graph G.

We say that these vertices form a path in G if

(a) ui−1 is adjacent to ui , for i = 1, 2, . . . , k, and

(b) d(ui) = 2 for 1 ≤ i ≤ k − 1, and

(c) d(u0) ≥ 3 and d(uk) �= 2.

The length of this path is k.

If d(uk) ≥ 3, then u0, u1, . . . , nk−1uk form an internal path in the graph G. If, in turn,

d(uk) = 1, then u0, u1, . . . , uk−1, uk form a pendent path in the graph G. In addition, if

k = 2 and d(uk) = 1, we will say that the vertices u1, u2 form a 2-branch of the graph G.

3. Trees with up to 30 vertices with minimal ABC-index

In this section we outline the results obtained by an extensive computer quest for trees

possessing minimal ABC index. Namely, we determined these trees among all trees up

to 30 vertices. Table 1 shows the number of n-vertex trees considered in this in-silico

experiment.

n number of trees n number of trees

7 11 19 317955
8 23 20 823065
9 47 21 2144505
10 106 22 5623756
11 235 23 14828074
12 551 24 39299897
13 1301 25 104636890
14 3159 26 279793450
15 7741 27 751065460
16 19320 28 2023443032
17 48629 29 5469566585
18 123867 30 14830871802

Table 1

In Table 2 are depicted the trees having minimal ABC-index among trees with given

number n of vertices, n ∈ [7, 30] . For n ∈ [4, 6] , the unique n-vertex tree with minimal

ABC-index is the path Pn .
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# vertices Trees with minimal ABC index

7

8

9

10

11

Table 2 continues on the next page

-470-



# vertices Trees with minimal ABC index

12

13

14

15

Table 2 continues on the next page
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# vertices Trees with minimal ABC index

16

17

18

19

Table 2 continues on the next page
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# vertices Trees with minimal ABC index

20

21

22

23

Table 2 continues on the next page
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# vertices Trees with minimal ABC index

24

25

26

27

Table 2 continues on the next page
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# vertices Trees with minimal ABC index

28

29

30

Table 2

Based on the data shown in Table 2, the following observations could be deduced:

Observation 1. The n-vertex tree with minimal ABC-index needs not be unique.

Observation 2. For n ≤ 9 the n-vertex tree (or one of the n-vertex trees) with minimal

ABC is the path Pn. For n ≥ 10 this cannot happen, because it is always possible to

construct trees T with ABC(T ) < ABC(Pn).
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4. Some structural features of trees with minimal ABC-index

The main result of our paper, in addition to the findings of the computer search shown

in Table 2, are the following three claims. These shed some light on the structure of the

minimal trees, but do not fully characterize their structure. However, the general validity

of the below claims could be verified by means of the proofs, given in Section 6.

Proposition 3. If n ≥ 10, then the n-vertex tree with minimal ABC-index does not

contain internal paths of length k ≥ 2.

Proposition 4. If n ≥ 10, then the n-vertex tree with minimal ABC-index does not

contain pendent paths of length k ≥ 4.

Proposition 5. If n ≥ 10, then the n-vertex tree with minimal ABC-index contains at

most one pendent path of length k = 3.

In order to demonstrate the validity of the above claims, we need some preparation.

5. Preparations: Properties of [d(u) + d(v)− 2]/[d(u)d(v)]

As seen from Eq. (1), the ABC index is equal to the sum over all pairs of adjacent

vertices u and v of the increment

Q = Q(u, v) = Q(u, v|G) =

√
d(u) + d(v)− 2

d(u) d(v)
.

Thus, Q is the contribution to the ABC-value, coming from the edge uv. It is therefore

purposeful to establish some properties of this increment.

In what follows, without loss of generality we assume that d(u) ≤ d(v). For the sake

of simplicity, we write d(u) = d and d(v) = d+ h

By elementary calculation we establish the following [6]:

Lemma 6.

(a) If d(u) = 1, then Q(u, v) =
√
h/(h+ 1). Thus, Q(u, v) is a monotonically increasing

function of h. Its limit value, for h → ∞, is equal to unity. This means that the

value of the increment of a pendent edge belongs to the interval [
√

1/2, 1), and its

minimal value is when u is of p-type (i. e., if d(v) = 2).

(b) If d(u) = 2, then independently of the value of d(v), Q(u, v) =
√
1/2.
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(c) If d(u) ≥ 3, then

Q(u, v) =

√
2d+ h− 2

d(d+ h)
. (2)

Considered as a function of the variable h , the expression on the right–hand side of

(2) monotonically decreases. Thus its maximal value is
√
4/9, attained in the case

d = 3 , h = 0 , i. e., d(u) = d(v) = 3. Considered as a function of the variable d ,

the expression on the right–hand side of (2) is also monotonically decreasing. It is

important to note that if d(u), d(v) ≥ 3, then Q is always less than
√

1/2.

From Lemma 6(b) we get the following noteworthy:

Lemma 7. If an end-vertex of any edge of a graph G is of degree two, then irrespective

of any other structural detail, ABC(G) = m/
√
2. If an end-vertex of any edge of a tree T

is of degree two, then irrespective of any other structural detail, ABC(T ) = (n− 1)/
√
2.

From Lemma 6(a) and (c) we see that a tree withminimal value of ABC should possess

(α) as few as possible pendent vertices of s-type, (β) asmany as possiblemutually adjacent

vertices of degree greater than two, and (γ) the latter vertices should have degrees as large

as possible. The problem of determining the structure of such extremal trees is that the

requirements (α), (β), and (γ) contradict to each other, i. e., cannot all three be fully

satisfied in the same time.

In the subsequent section, we use Lemma 6 to establish some structural features of

the trees with minimal ABC-index.

6. Proofs

In what follows all trees considered are supposed to possess n vertices, and n ≥ 10.

Recall that trees necessarily possess at least two pendent vertices.

Proof of Proposition 3. Suppose that T is a tree, possessing an internal path u0, u1, . . . , uk

of length k ≥ 2. Thus, u0 and uk are the terminal vertices of this internal path, which

means that d(u0), d(uk) ≥ 3. Further, let r be a pendent vertex of T , adjacent to the

vertex s.

Construct the tree T ′ by moving the vertex uk−1 on the edge rs, and connecting uk−2

with uk. Then T ′ has an internal path of length k − 1.

Consider first the case k > 2. Then d(uk−2|T ) = 2 and the transformation T → T ′
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causes the following change of the ABC-index.

ABC(T )− ABC(T ′) = [Q(uk−2, uk−1|T ) +Q(uk−1, uk|T ) +Q(r, s|T )]

− [Q(uk−2, uk|T ′) +Q(r, uk−1|T ′) +Q(s, uk−1|T ′)]

=

[√
1

2
+

√
1

2
+

√
d(s|T )− 1

d(s|T )

]
−
[√

1

2
+

√
1

2
+

√
1

2

]
.

We see that if r is a pendent vertex of s-type, then
√
[d(s|T )− 1]/d(s|T ) >√1/2 and

therefore ABC(T ) > ABC(T ′). If r is of p-type, then
√
[d(s|T )− 1]/d(s|T ) =√1/2 and

ABC(T ) = ABC(T ′). In both cases, the transformation T → T ′ either diminishes ABC

or leaves it same.

Remains the case k = 2. Repeating the above described transformation of the tree T

sufficient number of times, we arrive at the tree T1 in which the vertices u0, u1, uk form

an internal path of length 2. Let r∗ be a pendent vertex of T1, adjacent to the vertex s∗.

Construct the tree T ′
1 by moving the vertex u1 on the edge r∗s∗, and connecting u0

with uk. By this the entire internal path of T has been eliminated. The transformation

T1 → T ′
1 causes the following change of the ABC-index:

ABC(T1)− ABC(T ′
1) = [Q(u0, u1|T1) +Q(u1, uk|T1) +Q(r∗, s∗|T1)]

− [Q(u0, uk|T ′
1) +Q(r∗, u1|T ′

1) +Q(s∗, x1|T ′
1)]

=

[√
1

2
+

√
1

2
+

√
d(s∗)− 1

d(s∗)

]

−
[√

d(u0|T ) + d(uk|T )− 2

d(u0|T ) d(uk|T ) +

√
1

2
+

√
1

2

]
.

Now, as explained in the preceding section,√
d(s∗)− 1

d(s∗)
≥
√

1

2
and

√
d(u0|T ) + d(uk|T )− 2

d(u0|T ) d(uk|T ) ≤
√

4

9
<

√
1

2
.

Therefore ABC(T ′
1) is strictly smaller than ABC(T1) and therefore strictly smaller than

ABC(T ).

In the step–by–step transformation T → T ′
1 the vertices of an internal path were

moved into pendent paths, by which the value of ABC strictly diminished. If the tree T

has several internal paths, we continue the transformation, until a tree without internal

paths is obtained, whose ABC-index is smaller than ABC(T ).

-478-



Therefore a tree with internal paths of length k ≥ 2 cannot have minimal ABC index.

This completes the proof of Proposition 3. �

Corollary 8. If T is a tree with minimal ABC-index, then the subgraph induced by the

vertices of degree greater than two, is connected (and thus is a tree itself).

In order to deduce Proposition 4, we first need two auxiliary results.

Lemma 9. If T is a tree with star-type pendent vertices and a pendent path of length ≥ 3,

then there is either a tree T ′ without star-type pendent vertices, such that ABC(T ′) <

ABC(T ) or there is a tree T ′′ without pendent paths of length ≥ 3, such that ABC(T ′′) <

ABC(T ).

Proof. Suppose that T has a pendent path u0, u1, u2, . . . , uk−1, uk , k ≥ 3, and a pendent

vertex x of s-type, connected to the vertex y. Construct the tree T1 by inserting uk−1 on

the edge xy and by connecting uk−2 and uk. By this the ABC index is changed as:

ABC(T )− ABC(T1) = [Q(uk−2, uk−1|T ) +Q(uk−1, uk|T ) +Qx, y|T ]

− [Q(uk−2, uk|T1) +Q(x, uk−1|T1) +Q(uk−1, y|T1)]

=

[√
1

2
+

√
1

2
+

√
d(y|T )− 1

d(y|T )

]
−
[√

1

2
+

√
1

2
+

√
1

2

]

which by Lemma 6(a) is evidently positive–valued. Thus, ABC(T1) < ABC(T ).

By continuing the above described transformation, we shall either eliminate all s-type

pendent vertices, arriving at the tree T ′, or will eliminate all pendent paths of length

greater than two, arriving at the tree T ′′. �

Lemma 10. If T is a tree without star-type pendent vertices, then there is a tree T ′

without star-type pendent vertices and without pendent paths of length ≥ 4, such that

ABC(T ′) < ABC(T ).

Proof. Suppose that T has a pendent path u0, u1, u2, . . . , uk−2, uk−1, uk of length k ≥ 4 .

Let r be a vertex of T (not necessarily different from u0) with maximal degree. Construct

the tree T1 by attaching the vertices uk−2 and uk−1 to the vertex r, to form a 2-branch,

and by connecting the vertices uk−3 and uk. Then,
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ABC(T )− ABC(T1)

=

[
Q(uk−3, uk−2|T ) +Q(uk−2, uk−1|T ) +Q(uk−1, uk|T ) +

∑
r′

Q(r, r′|T )
]

−
[
Q(uk−3, uk|T1) +Q(r, uk−2|T1) +Q(uk−2, uk−1|T1) +

∑
r′

Q(r, r′|T1)

]

=

[√
1

2
+

√
1

2
+

√
1

2
+
∑
r′

Q(r, r′|T )
]
−
[√

1

2
+

√
1

2
+

√
1

2
+
∑
r′

Q(r, r′|T1)

]

=
∑
r′

[Q(r, r′|T )−Q(r, r′|T1)]

where
∑
r′

indicates summation over the edges of T whose one end-vertex is r. Since r was

chosen to be a vertex with maximal degree, d(r′|T ) ≤ d(r|T ) holds for all vertices r′. Since
d(r|T1) = d(r|T )+1, by Lemma 6(c), the condition Q(r, r′|T ) > Q(r, r′|T1) is satisfied for

all r′. Consequently,
∑
r′
[Q(r, r′|T )−Q(r, r′|T1)] > 0 and therefore ABC(T ′) < ABC(T ).

By repeated application of the above construction we may diminish the lengths of all

pendent paths to 2 or 3, introducing a number of new 2-branches. �

Proof of Proposition 4. Combine Lemmas 9 and 10. �

Proof of Proposition 5. Suppose that the tree T has no s-type pendent vertices and has

two pendent paths of length 3, namely u0, u1, u2, u3 and v0, v1, v2, v3. Then by Lemma

6(b), the tree T1 possessing pendent paths u0, u1, u3 and v0, v1, v2, u2, v3 has same ABC

index as T . But then Lemma 10 is applicable to T1, resulting in a tree T ′ in which the

pendent path v0, v1, v2, u2, v3 is replaced by two 2-branches. Then ABC(T ′) < ABC(T ).

�

7. Discussion and concluding remarks

Propositions 3-5 provide only a minor step towards the elucidation of the general

form of trees with minimal ABC-index. From the structure of such trees with n ≤ 30,

established by a computer–aided search and depicted in a previous section, it is difficult to

guess how this general structure might look. However, one detail is evident: all pendent

vertices are of path-type.
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All our efforts to prove that trees with minimal ABC-index cannot possess star-type

pendent vertices were not successful, and this remains a task for the future. Anyway, we

believe that the following hypothesis is generally valid:

Conjecture 11. If n ≥ 10, then each pendent vertex of the n-vertex tree with minimal

ABC-index belongs to a pendent path of length k , 2 ≤ k ≤ 3.

Concluding this article, we mention one more result that pertains to star-type pendent

vertices.

Proposition 12. If a tree T with minimal ABC-index possesses a star-type pendent

vertex attached to the vertex r, then pendent paths of length k , 2 ≤ k ≤ 3, cannot exist

on any vertex of T , whose degree is smaller than the degree of r.

Proof. Let the s-type pendent vertex of T be s. Suppose that contrary to the claim of

Proposition 12, T has a 2-path y, u, x, such that d(x) = 1, d(u) = 2 and d(r) > d(y) ≥ 3.

Then we can construct a tree T ′ by inserting the vertex u on the edge rs, and by connecting

the vertices x and y. The tree T ′ has smaller ABC-index than T . Indeed,

ABC(T )− ABC(T ′) = [Q(x, u|T ) +Q(u, y|T ) +Q(r, s|T )]

− [Q(x, y|T ′) +Q(r, u|T ′) +Q(u, s|T ′)]

=

[√
1

2
+

√
1

2
+

√
d(r)− 1

d(r)

]
−
[√

d(y)− 1

d(y)
+

√
1

2
+

√
1

2

]

=

√
d(r)− 1

d(r)
−
√

d(y)− 1

d(y)

which is positive–valued sice d(r) > d(y). Therefore, ABC(T ′) < ABC(T ). Therefore, T

cannot be the tree with smallest ABC-index.

By this, Proposition 12 is proven for the case k = 2. The proof for k = 3 is fully

analogous. �

We end the article with one more conjecture, whose validity seems to be less certain

than that of Conjecture 11.

Conjecture 13. If n ≥ 17, then the n-vertex tree with minimal ABC-index is unique.
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[6] B. Furtula, A. Graovac, D. Vukičević, Atom–bond connectivity index of trees, Discr.
Appl. Math. 157 (2009) 2828–2835.

[7] R. Xing, B. Zhou, Z. Du, Further results on atom–bond connectivity index of trees,
Discr. Appl. Math. 157 (2010) 1536–1545.

[8] K. C. Das, Atom–bond connectivity index of graphs, Discr. Appl. Math. 158 (2010)
1181–1188.
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