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Abstract. Given a tree T = (V,E), the second Zagreb index of T is denoted by

M2(T ) =
∑

uv∈E d(u)d(v) and the Wiener polarity index of T is equal to WP (T ) =∑
uv∈E(d(u)−1)(d(v)−1). Let π = (d1, d2, ..., dn) and π′ = (d′1, d

′
2, ..., d

′
n) be two different

non-increasing tree degree sequences. We write π � π′, if and only if
∑n

i=1 di =
∑n

i=1 d
′
i,

and
∑j

i=1 di ≤
∑j

i=1 d
′
i for all j = 1, 2, ..., n. Let Γ(π) be the class of connected graphs

with degree sequence π. In this paper, we characterize one of many trees that achieve

the maximum second Zagreb index and maximum Wiener polarity index in the class of

trees with given degree sequence, respectively. Moreover, we prove that if π � π′, T ∗

and T ∗∗ have the maximum second Zagreb indices in Γ(π) and Γ(π′), respectively, then

M2(T
∗) < M2(T

∗∗).

1 Introduction

Throughout the paper, G = (V,E) is a connected undirected simple graph. The symbol

N(v) denotes the neighbor set of vertex v, then d(v) = |N(v)| is called the degree of v.
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As usually, let Sn and Pn be the star and path of order n, respectively.

The distance dist(u, v) between the vertices u and v of G is equal to the length of

(number of edges in) the shortest path that connects u and v. The Wiener polarity index

of a graph G, denoted by WP (G), is equal to the number of unordered vertex pairs of

distance 3 of G, and the Wiener index W (G) is equal to the sum of all pairwise distances

of vertices of G. The “Wiener polarity index” and “Wiener index” were introduced by

Harold Wiener [1] in 1947. In [1], Wiener used a linear formula of W (G) and WP (G) to

calculate the boiling points tB of the paraffins, i.e.,

tB = aW (G) + bWP (G) + c

where a, b, and c are constants for a given isomeric group.

This simple numerical representation of a molecule has shown to be a very useful

quantity to use in the quantitative structure-property relationships (QSPR) [2, 3]. Thus,

the research of Wiener polarity index have drawn much attention recently. For instance,

Hosoya [3] found a physico-chemical interpretation of WP (G), and Lukovits et al. [4] used

Wiener polarity index to demonstrate quantitative structure-property relationships in a

series of acyclic and cycle-containing hydrocarbons. And the extremal Wiener polarity

indices of all trees, chemical trees and unicyclic graphs of order n were determined in

[5, 6, 7], respectively. Very recently, if T = (V,E) is a tree, Du et al. [8] proposed the

following equivalent algorithm for WP (T ):

WP (T ) =
∑
uv∈E

(d(u)− 1)(d(v)− 1). (1)

The first Zagreb index M1(G) and the second Zagreb index M2(G) are also two famous

important topological indices. The first Zagreb index and the second Zagreb index were

defined as [9]:

M1(G) =
∑
v∈V

d(v)2 , M2(G) =
∑
uv∈E

d(u)d(v) . (2)

Recent research showed that they have been closely correlated with many chemical and

mathematical properties [10, 11, 12, 13, 14].

The sequence π = (d1, d2, ..., dn) is called the degree sequence of G if di = d(v) holds

for some v ∈ V (G). Throughout this paper, we enumerate the degrees in non-increasing
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order, i.e., d1 ≥ d2 ≥ · · · ≥ dn. A non-increasing sequence π = (d1, d2, ..., dn) is call

graphic if there exists a graph having π as its degree sequence. Specially, if there exists a

tree with π as its degree sequence, then π is called a tree degree sequence.

Suppose π = (d1, d2, ..., dn) and π′ = (d′1, d
′
2, ..., d

′
n) are two different non-increasing

graphic degree sequences, we write π�π′ if and only if
∑n

i=1 di =
∑n

i=1 d
′
i, and

∑j
i=1 di ≤∑j

i=1 d
′
i for all j = 1, 2, ..., n. Such an ordering is sometimes called majorization (see [15]).

We use Γ(π) to denote the class of connected graphs with degree sequence π. If

G ∈ Γ(π) and M2(G) ≥ M2(G
′) for any other G′ ∈ Γ(π), then we say that G has

maximum second Zagreb index in Γ(π). Similarly, if G ∈ Γ(π) and WP (G) ≥ WP (G
′) for

any other G′ ∈ Γ(π), then we say that G has maximum Wiener polarity index in Γ(π).

In [16], Wang characterized trees that achieve the maximum and minimum Wiener

indices in the class of trees with given degree sequence. Vukičević et al. determined the

trees with maximal second Zagreb index and prescribed number of vertices of the given

degree in [17], while Deng et al. consider the maximum Wiener polarity index of trees

with k pendents in [18]. Motivated by the results of [16, 17, 18], we shall consider the

following problem:

Problem 1.1 Given a tree degree sequence π, which trees have the maximum second

Zagreb index and which trees have the maximum Wiener polarity index in Γ(π).

To solve Problem 1.1, we need the following definitions, which one can refer to [19]

for their detail description.

We use the method of [19] to define a special tree T ∗ with a given non-increasing

tree degree sequence π = (d0, d1, ..., dn−1) as follows: Select a vertex v0 in layer 0 and

create a sorted list of vertices beginning with v0; choose d0 new vertices in layer 1, says

v11, v12, ..., v1d0 , such that v11, v12, ..., v1d0 are adjacent to v0, then d(v0) = d0; choose

d1+d2+· · ·+dd0−d0 new vertices in layer 2 such that d1−1 vertices, says v21, v22, ..., v2,d1−1,

are adjacent to v11, d2 − 1 vertices are adjacent to v12, ..., dd0 − 1 vertices are adjacent to

v1d0 , then d(v11) = d1, dv12 = d2, ..., dv1d0 = dd0 ; now choose dd0+1−1 new vertices in layer

3 such that they are adjacent to v21 and hence d(v21) = dd0+1, · · · continue recursively

with v22, v23, · · · until all vertices of layer 3 are processed. We repeat the above process

until all vertices are processed. In this way, a tree T ∗ of order n and degree sequence π is

obtained.
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It is easy to see that T ∗ has layers where each vertex v in layer i has distance i from

root v0, which we call its height h(v) = dist(v, v0). Moreover, v (v �= v0) is adjacent to

a unique vertex w in layer i − 1. We call w the parent of v, and v a child of w. By the

definition, if uv ∈ E(T ∗), then either u is the parent or the child of v. For example, v0 is

the unique parent of v11, and v21, ..., v2,d1−1 are all the children of v11.

For example, for a given tree degree sequence π1 = (4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1), T ∗
1 is the tree of order 19 (see Fig. 1). To construct T ∗

1 , we first choose v0 in layer

0; and choose four vertices, says v11, v12, v13, v14, in layer 1 such that they are adjacent

to v0; choose nine new vertices, says v21, v22,..., v29 in layer 2 such that v21, v22, v23 are

adjacent to v11, v24 and v25 are adjacent to v12, v26 and v27 are adjacent to v13, and v28

and v29 are adjacent to v14; now choose five new vertices, says v31, v32,..., v35 in layer 3

such that v31 and v32 are adjacent to v21, v33 is adjacent to v22, v34 is adjacent to v23,

and v35 is adjacent to v24. Then, v0 is the parent of v11, while v21, v22, v23 are all the

children of v11. If π2 = (4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1), with the similar method, we

can construct the tree T ∗
2 with degree sequence π2, see Fig. 2.
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Fig. 1. The BFS-tree with degree sequence π1.
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Fig. 2. The BFS-tree with degree sequence π2.

Definition 1.1 [19] Let T = (V,E) be a tree with root v0. A well-ordering ≺ of the

vertices is called breath-first search ordering with non-increasing degrees (BFS-ordering

for short ) if the following holds for all vertices u, v ∈ V :

(B1) u ≺ v implies h(u) ≤ h(v);

(B2) u ≺ v implies d(u) ≥ d(v);
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(B3) if there are two edges uu1 ∈ E(T ) and vv1 ∈ E(T ) such that u ≺ v, h(u) =

h(u1) + 1 and h(v) = h(v1) + 1, then u1 ≺ v1.

We call tree that has a BFS-ordering of its vertices a BFS−tree.

For a given tree degree sequence, it is easy to see that

Proposition 1.1 [19] For a given tree degree sequence π, there exists a unique BFS-tree

T ∗ in Γ(π), i.e., T ∗ is uniquely determined up to isomorphism.

Now we give the main result of this paper, which is the answer to Problem 1.1.

Theorem 1.1 Given a tree degree sequence π, the BFS−tree T ∗ has the maximum second

Zagreb index, and the maximum Wiener polarity index in Γ(π), respectively.

For a given tree degree sequence π, by Proposition 1.1 and Theorem 1.1, we can

conclude that there is a unique BFS-tree, which has the maximum second Zagreb index,

and the maximum Wiener polarity index in Γ(π), respectively. But it cannot deduce that

the BFS-tree is the unique tree with the maximum second Zagreb index or the maximum

Wiener polarity index in Γ(π) because we have the following example.

Example 1.1 Let π = (4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1). Let H1 and H2 be two trees as

shown in Fig. 3. It is easy to see that H1 is the unique BFS-tree in Γ(π), H2 is not a

BFS-tree in Γ(π), but M2(H1) = M2(H2) and WP (H1) = WP (H2).
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Fig. 3. The trees H1 and H2.

Moreover, we shall prove the following interesting result.

Theorem 1.2 Let π and π′ be two different non-increasing tree degree sequences with

π � π′. Let T ∗ and T ∗∗ be the trees with maximum second Zagreb indices in Γ(π) and

Γ(π′), respectively. Then, M2(T
∗) < M2(T

∗∗).
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It is natural to consider the problem: Whether Theorem 1.2 also holds for the maxi-

mum Wiener polarity indices between two different non-increasing tree degree sequences?

Unfortunately, the answer is negative because we have the following example.

Example 1.2 Let π3 = (3, 1, 1, 1) and π4 = (2, 2, 1, 1). Then, π4 � π3. It is easy to

see that S4 and P4 are the unique trees in Γ(π3), and Γ(π4), respectively. But we have

WP (S4) = 0 < 1 = WP (P4) by Eq. (1).

Suppose T �= Sn, and T has π = (a1, a2, ..., an) as its degree sequence. Then, π � (n−
1, 1, ..., 1). By Theorem 1.2, it immediately follows that

Corollary 1.1 [12] Let T be a tree of order n, then M2(T ) ≤ M2(Sn), where the equality

holds if and only if T ∼= Sn.

Paths Pl1 , ..., Plk are said to have almost equal lengths if l1, ..., lk satisfy |li − lj| ≤ 1

for 1 ≤ i ≤ j ≤ k. By Theorem 1.2, we can also easily deduce the following known result.

Corollary 1.2 If T is a tree of order n with k pendent vertices, then M2(T ) ≤ M2(Fn(k)),

where Fn(k) is the tree on n vertices obtained by attaching k paths of almost equal lengths

to one common vertex.

2 Proofs of Theorems 1.1 and 1.2

The girth g(G) of a connected graph G, is the length of a shortest cycle in G. For the

relation between WP (G), M1(G) and M2(G), it has been shown that

Lemma 2.1 [7] Let G be a connected graph with n vertices and m edges. Then, WP (G) ≤
M2(G)−M1(G) +m, where equality holds if and only if G is a tree or g(G) ≥ 7.

Given a tree degree sequence π, if T ∈ Γ(π), then M1(T ) and m are const. By Lemma

2.1, it immediately follows that

Proposition 2.1 Given a tree degree sequence π, T has the maximum second Zagreb

index in Γ(π) if and only if T has the maximum Wiener polarity index in Γ(π).

Suppose uv ∈ E, the notion G − uv denotes the graph obtained from G by deleting

the edge uv. Similarly, if uv �∈ E, then G + uv denotes the graph obtained from G by

adding the edge uv.
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Lemma 2.2 Let G = (V,E) be a connected graph with v1u1 ∈ E, v2u2 ∈ E, v1v2 �∈ E

and u1u2 �∈ E. Let G′ = G−u1v1−u2v2+v1v2+u1u2. If d(v1) ≥ d(u2) and d(v2) ≥ d(u1),

then M2(G
′) ≥ M2(G), where M2(G

′) > M2(G) if and only if both two inequalities are

strict.

Proof. By Eq. (2), we have

M2(G
′)−M2(G) = (d(v1)− d(u2))(d(v2)− d(u1)) ≥ 0.

Moreover, M2(G
′) > M2(G) if and only if both two inequalities are strict. �

Lemma 2.3 Suppose G ∈ Γ(π), and there exist three vertices u, v, w of a connected

graph G such that uv ∈ E(G), uw �∈ E(G), d(v) < d(w) ≤ d(u), and d(u) > d(x)

for all x ∈ N(w). Then, there exists another connected graph G′ ∈ Γ(π) such that

M2(G) < M2(G
′).

Proof. We will complete the proof by proving the following two claims.

Claim 1. There exists a vertex y ∈ N(w) such that yv �∈ E(G) and y �= v.

Otherwise, suppose that for each neighbor x �= v of w, if xv ∈ E(G), then N(w)\{v} ⊆
N(v) \ {w}, which implies that d(w) ≤ d(v), a contradiction. So Claim 1 follows.

Claim 2. There exists another connected graphG′ ∈ Γ(π) such thatM2(G) < M2(G
′).

Since G is connected, there exists a path Puw = (u, ..., s, w) from u to w.

Case 1. uv �∈ Puw and vs �∈ E(G).

Let G′ = G+ vs+uw− sw− uv. Clearly, G′ is also connected. Note that d(u) > d(s)

and d(w) > d(v). By Lemma 2.2, we have M2(G) < M2(G
′).

We can prove the other cases with a similar method as Case 1. �

Proof of Theorem 1.1. By Proposition 2.1, we only need to prove that the BFS-tree

has the maximum second Zagreb index in Γ(π).

Assume that T is a tree in Γ(π) with the maximum second Zagreb index, where

π = (d0, d1, ..., dn−1) and d0 ≥ d1 ≥ · · · ≥ dn−1. Now we create an ordering ≺ by breadth-

first search as follows: Choose the vertex of T with maximum degree as root v0; append

all neighbors v1, ..., vd0 of v0 to the ordered list; these neighbors are ordered such that

u ≺ v whenever d(u) > d(v) (in the remaining case the ordering can be arbitrary). Then,

with the same method we can append the vertices N(v1) \ {v0} in the ordered list, and
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then to the vertices N(v2) \ {v0}. Continue recursively with all vertices v1, v2, ..., until

all vertices of T are processed. Then, (B1) holds for this ordering. Moreover, if u is the

parent of v, then u ≺ v by the construction of ≺.

Next we shall construct a tree T ′ from T such that both (B1) and (B2) hold for T ′,

and M2(T
′) ≥ M2(T ). Assume that (B2) does not hold for T , i.e., there exist two vertices

u and v of T with u ≺ v but d(u) < d(v). Let vi be the first vertex in the ordering of ≺
with the property vi ≺ u and d(vi) < d(u) for some u. Clearly, vi cannot be the root v0,

and if x ≺ vi, then d(x) ≥ d(y) for each y with x ≺ y. Suppose vj is the first vertex in

the ordering ≺ such that vi ≺ vj and d(vj) = max{d(vt) : i + 1 ≤ t ≤ n − 1}. By the

choice of vi, we can conclude that vi ≺ vj, but d(vi) < d(vj).

Let wi and wj be the parents of vi and vj, respectively. Note that d(vi) < d(vj). Then,

wi �= wj by the construction of the ordering ≺. Moreover, by the construction of the

ordering ≺ we have wi ≺ wj. Clearly, wivj �∈ E(T ), otherwise T is not a tree because

wi ≺ wj ≺ vj. We consider the following two cases.

Case 1. wivi is in the unique path that connected wj and v0.

By the choice of vi, we can conclude that wi ≺ vi ≺ wj ≺ vj because wi is the parent

of vi and wi ≺ wj. By the choice of vj, we have d(wj) < d(vj). Now we shall prove the

following Claim.

Claim 1. There exists some y ∈ N(vj)\{wj} such that d(wi) ≤ d(y) and viy �∈ E(T ).

Note that T is a tree. Then, viy �∈ E(T ) holds for every y ∈ N(vj)\{wj}. Now assume

that d(wi) > d(y) holds for every y ∈ N(vj)\{wj}. Note that d(wi) ≥ d(vj) > d(wj)

because wi ≺ vi ≺ vj. Then, d(wi) > d(y) holds for all y ∈ N(vj). Recall that d(wi) ≥
d(vj) > d(vi) and wivj �∈ E(T ). By Lemma 2.3, there exists another tree T ′ ∈ Γ(π) such

that M2(T ) < M2(T
′), a contradiction. Thus, Claim 1 follows.

On the other hand, by wi ≺ vi ≺ wj ≺ vj ≺ y and the choice of vj, we have d(wi) ≥
d(vj) ≥ d(y), and hence d(wi) = d(vj) = d(y) > d(vi). Let T1 = T+wivj+viy−wivi−vjy.

Then, T1 is also a tree, and T1 ∈ Γ(π). By Lemma 2.2, we can conclude that M2(T1) ≥
M2(T ).

Case 2. wivi is not in the unique path that connected wj and v0.

Then, viwj �∈ E(T ). Otherwise, T is not a tree. Let T1 = T +wivj+wjvi−wivi−wjvj.

Then, T1 is also a tree, and T1 ∈ Γ(π). Note that wi ≺ vi and wi ≺ wj. Then, d(wi) ≥
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d(wj). Moreover, since d(vj) > d(vi), we can conclude that M2(T1) ≥ M2(T ) by Lemma

2.2.

In the above two cases, we can construct a new tree T1 such that T1 ∈ Γ(π) and

M2(T1) ≥ M2(T ). Now we create a new ordering ≺′ to V (T1) as follows: Let v0 ≺′

v1 ≺′ · · · ≺′ vi−1 ≺′ vj be the first i components of ≺′. Then, append the vertices

V (T1) \ {v0, v1, ..., vi−1, vj} by the same method as used in the construction of ≺ of V (T ).

In the new ordering ≺′, it is easy to see that if x ≺′ vj, then x ≺ vi and hence d(x) ≥ d(y)

holds for each x ≺′ y. By the choice of vj, it follows that d(vj) ≥ d(y) for each vj ≺′ y.

Moreover, by the construction of ≺′, we can conclude that h(u) ≤ h(v) if u ≺′ v.

If (B2) does not hold for T1, then we can construct a new tree T2 from T1 with the same

method as used in the construction of T1 from T such that M2(T2) ≥ M2(T1). Repeat the

above process, we can construct the tree T ∗ from T such that both (B1) and (B2) hold

for the ordering ≺ of V (T ∗) and M2(T
∗) ≥ M2(T ).

In T ∗, if h(u) = h(u1)+1 and h(v) = h(v1)+1, then u1 is the parent of u and v1 is the

parent of v. By the ordering ≺ of V (T ∗), if u ≺ v, then u1 ≺ v1. Thus, (B3) also holds

for T ∗. Therefore, the BFS−tree T ∗ has the maximum second Zagreb index in Γ(π). �
Our proof of Theorem 1.2 needs more lemmas as follows.

Lemma 2.4 [15, 19] Let π and π′ be two different non-increasing graphic degree se-

quences. If π � π′, then there exists a series non-increasing graphic degree sequences

π1, ..., πk such that (π =) π0 � π1 � · · ·� πk � πk+1(= π′), and πi and πi+1 differ only in

two positions, where the differences are 1 for 0 ≤ i ≤ k.

Lemma 2.5 Let u, v be two vertices of a connected graph G, and w1, w2, ..., wk (1 ≤ k ≤
d(v)) be some vertices of N(v)\{N(u)∪u}. Let G′ = G+w1u+w2u+ · · ·+wku−w1v−
w2v−· · ·−wkv. If d(u) ≥ d(v) and

∑
y∈N(u) d(y) ≥

∑
x∈N(v) d(x), then M2(G

′) > M2(G).

Proof. We consider the following two cases.

Case 1. uv �∈ E(G).
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By Eq. (2), it follows that

M2(G
′)−M2(G)

= (d(v)− k)

⎛
⎝ ∑

x∈N(v)

d(x)−
k∑

i=1

d(wi)

⎞
⎠+ (d(u) + k)

⎛
⎝ ∑

y∈N(u)

d(y) +
k∑

i=1

d(wi)

⎞
⎠

−
⎛
⎝d(v)

∑
x∈N(v)

d(x) + d(u)
∑

y∈N(u)

d(y)

⎞
⎠

= k

⎛
⎝ ∑

y∈N(u)

d(y)−
∑

x∈N(v)

d(x)

⎞
⎠+ 2k

k∑
i=1

d(wi) + (d(u)− d(v))
k∑

i=1

d(wi) > 0 .

Case 2. uv ∈ E(G).

By Eq. (2), it can be proved similarly with Case 1.

By Lemma 2.5, it immediately follows that

Corollary 2.1 Let u, v be two vertices of a connected graph G with d(u) ≥ d(v), and

w1, w2, ..., wk (1 ≤ k ≤ d(v)) be some vertices of N(v) \ {N(u) ∪ u}. Let G′ = G+w1u+

w2u + · · · + wku − w1v − w2v − · · · − wkv. If uv �∈ E(G), d(y) ≥ d(x) holds for each

y ∈ N(u) and x ∈ N(v), then M2(G
′) > M2(G).

Given a graphic degree sequence π = (d1, d2, ..., dn), let dn(π) denote the minimum

component of π, i.e., dn(π) = dn.

Lemma 2.6 Let π = (d1, d2, ..., dn) be a non-increasing tree degree sequence, and T ∗ be

the BFS-tree in Γ(π). Suppose π′ = (d′1, d
′
2, ..., d

′
n) (d

′
n = dn(π

′) ≥ 1) is a non-increasing

graphic degree sequence such that π� π′, and π and π′ differ only in two positions, where

the differences are 1, then there exists a tree T ′ ∈ Γ(π′) such that M2(T
∗) < M2(T

′).

Proof. Recall that π and π′ differ only in two positions, where the differences are 1, we

may assume that di = d′i for i �= p, q, and dp + 1 = d′p, dq − 1 = d′q. Since π � π′, it

follows that 1 ≤ p < q ≤ n. Note that T ∗ is a BFS-tree. Then, there exists an ordering

v1 ≺ v2 ≺ · · · ≺ vn of V (T ∗) = {v1, v2, ..., vn} such that d(vi) = di for 1 ≤ i ≤ n, and

d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). Hence, vp ≺ vq and d(vp) ≥ d(vq) because p < q.

Suppose y ∈ N(vp) and x ∈ N(vq). If y is the parent of vp, and x the parent of vq,

then y ≺ x by (B3) and hence d(y) ≥ d(x) by (B2). If y is the child of vp, and x the child

of vq, then y ≺ x. Otherwise, vq ≺ vp by (B3), a contradiction. Thus, d(y) ≥ d(x) also
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holds by (B2). Note that d(vp) ≥ d(vq) and the fact that every neighbor of any vertex

u ∈ V (T ∗) is either the parent or a child of u. Then,
∑

y∈N(vp)
d(y) ≥∑x∈N(vq)

d(x).

Let Pvpvq be the unique path from vp to vq in T ∗. Note that dq = d′q +1 ≥ d′n +1 ≥ 2.

Then, there exists some w ∈ N(vq)\N(vp) such that w �∈ Pvpvq . Let T
′ = T ∗ − vqw+ vpw.

Clearly, T ′ is a tree and T ′ ∈ Γ(π′). Moreover, Lemma 2.5 implies that M2(T
∗) < M2(T

′).

Combining the above arguments, we then complete the proof. �

Proof of Theorem 1.2. Since π� π′, by Lemma 2.4 there exists a series non-increasing

graphic degree sequences π2, ..., πk−1 such that (π =)π1 � π2 � · · ·� πk−1 � πk(= π′), and

πi and πi+1 differ only in two positions, where the differences are 1 for 1 ≤ i ≤ k − 1.

By Theorem 1.1, we may suppose that T ∗ and T ∗∗ are two BFS-trees. Note that T ∗∗ ∈
Γ(π′). Then, dn(πi) ≥ dn(π

′) ≥ 1 for 2 ≤ i ≤ k because (π =)π1�π2�· · ·�πk−1�πk(= π′),

and hence there exists at least one tree in Γ(π2) by Lemma 2.6. Thus, π2 is also a

tree degree sequence. By Theorem 1.1 and Lemma 2.6, πi is a tree degree sequence for

1 ≤ i ≤ k.

Let Ti be the BFS-tree in Γ(πi) for 2 ≤ i ≤ k − 1. By Lemma 2.6, we can conclude

that M2(T
∗) < M2(T2) < · · · < M2(Tk−1) < M2(T

∗∗). Thus, Theorem 1.2 follows. �
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[10] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular

orbitals, Part XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.

[11] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH

Commun. Math. Comput. Chem. 52 (2004) 103–112.
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