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ecc(x) is minimum then x is called a central vertex. K1,n−1 is the star of order n , consist-

ing of one vertex of degree n− 1 and n− 1 pendant vertices, K1,n−1 + e is obtained from

K1,n−1 by joining two vertices of degree one by an edge and the bistar BS(p, q) of order

n = p + q + 2 consist of two vertex disjoint stars K1, p and K1, q plus one edge joining the

central vertices of K1, p and K1, q , respectively.

Topological indices based on distances between vertices of a graph are widely used in

mathematical chemistry [3, 4] because of their correlations with physical, chemical and

thermodynamic parameters of chemical compounds.

By denoting D(x) =
∑

y∈V (G)

d(x, y) and D(G) =
∑

x∈V (G)

D(x) , we have W (G) = D(G)
2

,

where W (G) is the Wiener index, a well−known topological index in mathematical chem-

istry.

The new parameter D′(G) , called the degree distance of G , was introduced by Dobrynin

and Kochetova [5] and Gutman [6] as a weighted version of the Wiener index. The degree

distance D′(x) of a vertex x is defined as D′(x) = d(x)D(x) , where d(x) is the degree of

x and the degree distance of G , denoted by D′(G) is

D′(G) =
∑

x∈V (G)

D′(x) =
∑

x∈V (G)

d(x)D(x) = 1
2

∑
x,y∈V (G)

d(x, y)(d(x) + d(y)) .

This parameter was intensively studied in the literature. In [10] it was shown that

for n ≥ 2 in the class of connected graphs of order n , the minimum of D′(G) equals

3n2 − 7n + 4 and the unique extremal graph is K1, n−1 and a conjecture raised in [5] was

disproved. In [14] the next graphs of order n ≥ 4 having smallest degree distances were

found: they are BS(n − 3, 1) and K1, n−1 + e , having D′(BS(n − 3, 1)) = 3n2 − 3n − 8

and D′(K1, n−1 + e) = 3n2 − 3n− 6 , where BS(n− 3, 1) denotes the bistar consisting of

vertex disjoint stars K1, n−3 and K1,1 with central vertices joined by an edge. In [1] and

[13] the authors reported several properties of connected graphs of fixed order and size.

In [11, 12] the minimum degree distance of unicyclic and bicyclic graphs was obtained; in

the case of unicyclic graphs the unique extremal graph is K1, n−1 + e . In [2] an asymp-

totically sharp upper bound of degree distance of graphs with given order and diameter

was presented and in [8] the degree distance of partial Hamming graphs was obtained. In

[7] the maximum degree distance among unicyclic graphs on n vertices was deduced and

in [9] the unicyclic graphs of order n and girth k , having minimal and maximal degree

distances respectively, were characterized. In this paper the list of three graphs having

smallest degree distances deduced in [14] is completed up with six new members. In order

-426-



to prove this ordering, which holds for the number of vertices greater than or equal to 15,

we need some preliminary results which are included in the next section.

2. PRELIMINARY RESULTS

The technical results which follow will be useful in the main section. As in [14] , for pa-

rameters m , n , p , t ∈ N, t , m , n ≥ 2 and n+ t−1 ≤ p ≤ nt , denote by Sp , m, t(x1, ..., xn) ,

the symmetric function

Sp, m, t(x1, ..., xn) =
n∑

i=1

xi(m − xi) .

This function is defined for (x1, ..., xn) ∈ D1 , where D1 is the set of all vectors (x1, ..., xn)

with positive integer coordinates such that 1 ≤ xi ≤ t for 1 ≤ i ≤ n, x1 ≥ x2 ≥ ... ≥ xn

and
n∑

i=1

xi = p . Note that Sp, m, t is strictly increasing in each variable on D1 if m ≥
2n − 2 and t ≤ n − 2 . Consider the following transformation denoted by T1 of vectors

in D1 : If 1 ≤ i < j ≤ n and xi ≤ t − 1 and xj ≥ 2 then (x1, ..., xn) is replaced by

(x1, ..., xi + 1, ..., xj − 1, ..., xn) . By reordering the components of this vector we get the

vector (x∗
1, ..., x

∗
n) ∈ D1 , which will be denoted by z . Since i < j implies xi ≥ xj we

deduce as in [14] that Sp, m, t(x1, ..., xn) − Sp, m, t(z) = 2 + 2(xi − xj) > 0 . Eventually

applying several times T1 we deduce:

Lemma 2.1.(a) Sp, m, t(x1, ..., xn) is minimum over D1 if and only if

there is an index k, 1 ≤ k ≤ n such that x1 = ... = xk = t , 1 ≤ xk+1 ≤ t − 1 and xi = 1

for every k + 2 ≤ i ≤ n .

(b) Let D∗
1 = D1 \ (t, ..., t, xk+1, 1, ..., 1) , where (t, ..., t, xk+1, 1, ..., 1) is the unique point

of minimum of Sp, m, t(x1, ..., xn) over D1 . Then Sp, m, t(x1, ..., xn) is minimum over D∗
1 if

and only if

(x1, ..., xn) = (t, ..., t, t − 2, 2, 1, ..., 1) if xk+1 = t − 1 ;

(x1, ..., xn) = (t, ..., t, t − 1, xk+1 + 1, 1, ..., 1) if xk+1 ∈ {1, 2} ;

(x1, ..., xn) ∈ {(t, ..., t, t−1, xk+1+1, 1, ..., 1), (t, ..., t, xk+1−1, 2, 1, ..., 1)} if 3 ≤ xk+1 ≤ t−2 .

Note that the index k may be precisely determined; since kt + n − k ≤ p ≤ kt + n −
k + t − 2 it follows that k(t − 1) ≤ p − n ≤ k(t − 1) + t − 2 , which implies k = 	p−n

t−1

 .

We shall use the function F (x1, ..., xr, y1, ..., yn−r) (defined in [14]) for n, r ∈ N , n ≥ 4 ,
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5 ≤ r ≤ n − 2 , α , β ∈ R such that β ≥ α + 1 ≥ 2n − 1 by

F (x1, ..., xr, y1, ..., yn−r) =
r∑

i=1

xi(α − xi) +
n−r∑
j=1

yj(β − yj).

It is symmetric in the first r variables and in the last n−r variables. This time F is defined

on an extended domain D2 , consisting of all vectors (x1, ..., xr, y1, ..., yn−r) having positive

integer coordinates such that x1 ≥ x2 ≥ ... ≥ xr ; y1 ≥ y2 ≥ ... ≥ yn−r ; 2 ≤ xi ≤ γ for

1 ≤ i ≤ r ; 1 ≤ yj ≤ γ for 1 ≤ j ≤ n− r and
r∑

i=1

xi +
n−r∑
j=1

yj = δ , where γ ∈ {n− 2, n− 3} ,

δ ∈ {2n− 2, 2n} . For α = 2n− 2 and β = 2n− 1 , F is strictly increasing in each variable

on D2 . Consider now the transformation T2 of vectors in D2 defined by :

If y1 ≥ 2 then (x1, ..., xr, y1, ..., yn−r) is replaced by (x1, ..., xr + y1 − 1, 1, y2, ..., yn−r) ;

reorder separately the first r components and the last n − r components and we get

z = (x∗
1, ..., x

∗
r, y

∗
1, ..., y

∗
n−r) ∈ D2 . From given conditions it follows that xr + y1 − 1 ≤

2n − 1 −
r−1∑
i=1

xi −
n−r∑
j=2

yj ≤ n − r + 2 ≤ n − 3 ≤ γ for any r ≥ 5 . As in [14] we get

F (x1, ..., xr, y1, ..., yn−r) − F (z) = (y1 − 1)(β − α − 2 + 2xr) > 0 .

Lemma 2.2. If F (x1, ..., xr, y1, ..., yn−r) is minimum over D2 then

(x1, ..., xr) = (δ − n − r + 2, 2, ..., 2) and (y1, ..., yn−r) = (1, ..., 1) .

Proof. Suppose that z0 = (x0
1, x

0
2, ..., x

0
r, y

0
1, ..., y

0
n−r) is a point of minimum for F in D2 .

Applying T1 on the first r components and the last n − r components and T2 we deduce

that x0
3 = ... = x0

r = 2 and y0
1 = ... = y0

n−r = 1 . x0
1 takes the greatest possible value,

which is less than or equal to γ . Also x0
1 = δ − n − r + 4 − x0

2 ≤ δ − n − r + 2 , which

implies x0
1 = min(δ − n − r + 2, γ) and x0

2 = δ − n − r + 4 − x0
1 .

If r ≥ 5 then δ − n − r + 2 ≤ δ − n − 3 ≤ n − 3 ≤ γ , thus implying x0
1 = δ − n − r + 2

and x0
2 = 2 . �

Lemma 2.3. [14] Let G be a connected graph of order n and x be a vertex of G having

eccentricity equal to e . Then D′(x) = (n− 1)2 for e = 1, D′(x) = d(x)(2n− 2− d(x)) for

e = 2 and D′(x) ≥ d(x)(2n − d(x) + e2−3e
2

− 1) for e ≥ 3 .

Six graphs G1−G6 of order n are represented in Figure 1 . G1 is the bistar BS(n−4, 2) .

We will show that they are the next members completing the sequence K1, n−1 , BS(n −
3, 1) , K1, n−1 + e of graphs having smallest degree distances, provided n ≥ 15 .
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G4
G5

G3

G6

G2

Figure 1: Six graphs of order n

By direct computations we deduce:

Lemma 2.4. For every n ≥ 5 we have

D′(G1) = 3n2+n−28 ; D′(G2) = 3n2+n−22 ; D′(G3) = 3n2+n−20 ; D′(G4) = 3n2+n−18

and D′(G5) = D′(G6) = 3n2 + n − 16 .

3. MAIN RESULTS

We shall prove that unique graphs G of order n having D′(G) ≤ 3n2 + n− 16 are graphs

K1, n−1, BS(n − 3, 1) , K1, n−1 + e and graphs G1 − G6 from Figure 1 for n ≥ 15 .

This will be done by considering the cases when diam(G) = 2, 3, 4 or diam(G) ≥ 5 .

Lemma 3.1. All graphs G of order n ≥ 11 and diameter 2 having D′(G) ≤ 3n2 + n− 16

are K1, n−1 , K1, n−1 + e , G4 and G5 .

Proof. Let G be a graph of diameter 2 with D′(G) ≤ 3n2 + n− 16 . It follows that every

vertex x of G has ecc(x) = 1(or equivalently, d(x) = n − 1) or ecc(x) = 2 . If r denotes
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the number of vertices having eccentricity 1 , by Lemma 2.3 we get

D′(G) = r(n − 1)2 +
∑

x∈V (G);ecc(x)=2

d(x)(2n − 2 − d(x)) ,

where the sum has n−r terms. Suppose r = 0 . If x ∈ V (G) has d(x) = 1 then the unique

vertex y which is adjacent to x has ecc(y) = 1 , which contradicts the hypothesis. It follows

that 2 ≤ d(x) ≤ n − 2 for every x ∈ V (G) , which implies that d(x)(2n − 2 − d(x)) ≥
2(2n − 4) . In this case D′(G) ≥ 2n(2n − 4) > 3n2 + n − 16 for every n ≥ 7 , which

contradicts the hypothesis.

Hence G has r ≥ 1 vertices of degree n − 1 . The function d(x)(2n − 2 − d(x)) is strictly

increasing for d(x) = 1, ..., n − 1 having a maximum equal to (n − 1)2 .

If r ≥ 2 it follows that all vertices x have d(x) ≥ 2 , which implies

D′(G) ≥ 2(n − 1)2 + 2(n − 2)(2n − 4) > 3n2 + n − 16 for every n ≥ 5 , a contradiction.

This implies that r = 1 and G has a unique vertex z of degree n− 1 , hence G is deduced

from K1, n−1 eventually adding some new edges. If we add at most two edges we get

K1, n−1 , K1, n−1 + e , G4 and G5 from Figure 1.

We shall prove that if we add at least three edges then the resulting graph G will have

D′(G) > 3n2 + n − 16 for n ≥ 11 . Suppose that G is obtained from K1, n−1 by adding

exactly three edges, hence G has size m = n + 2 . If x1, ..., xn−1 denote the degrees of the

vertices adjacent to z , we obtain xi ≥ 1 for 1 ≤ i ≤ n − 1 ,
n−1∑
i=1

xi = n + 5 and

D′(G) = (n − 1)2 +
n−1∑
i=1

xi(2n − 2 − xi).

By Lemma 2.1 the minimum of the sum Sn+5,2n−2,n−2 in D1 is reached for x1 = 7, x2 =

... = xn−1 = 1 , which implies D′(G) ≥ (n − 1)2 + 7(2n − 9) + (n − 2)(2n − 3) =

= 3n2 + 5n − 56 > 3n2 + n − 16 for n ≥ 11 . Since Sp,2n−2,n−2 is strictly increasing in

p ≥ n + 5 the proof is done . �

Lemma 3.2. The set of graphs G of order n ≥ 15, diameter 3 and D′(G) ≤ 3n2 + n− 16

contains only four members: BS(n − 3, 1), G1, G2 and G6 .

Proof. Let G be a connected graph of order n ≥ 15 , size m ≥ n − 1 , diameter 3 and

D′(G) ≤ 3n2+n−16 . Since diam(G) = 3 it follows that d(x) ≤ n−2 for every x ∈ V (G) .

We shall divide the proof in three cases: A. m = n − 1 ; B. m = n and C. m ≥ n + 1 .

A. Consider first the case when m = n − 1 , i.e., G is a tree. Since G has diameter 3
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it follows that G is a bistar BS(r, n − 2 − r) , where 1 ≤ r ≤ (n − 3)/2 . By direct

computation we obtain

D′(G) = 3n2 − 7n + 4 − 4(r2 − rn + 2r).

It results that D′(G) is strictly increasing in r ≤ (n − 3)/2 ; for r = 3 we get D′(G) =

3n2 + 5n − 56 > 3n2 + n − 16 for every n ≥ 11 .

For r = 1 , the resulting graph is BS(n− 3, 1) and for r = 2 we get G1 from Figure 1 . It

remains to consider the case when m ≥ n .

B. Suppose that m = n and there is a vertex x such that d(x) = n − 2 . There exist a

vertex w which is not adjacent to x and two edges which are not incident to x . Since

diam(G) = 3 we have only three possibilities to build such a graph, getting graphs G2 , G6

and a graph, say F , deduced by making w adjacent to two vertices which are adjacent

to x . By Lemma 2.4 we have D′(G2), D
′(G6) ≤ 3n2 + n − 16 and by direct computation

D′(F ) = 3n2 + 2n − 24 > 3n2 + n − 16 for every n ≥ 9 .

Suppose that m = n and d(x) ≤ n − 3 for every vertex x ∈ V (G) . In this case we shall

prove that D′(G) > 3n2 + n − 16 . Let p ≥ 0 denote as above the number of vertices x

of G having ecc(x) = 2 ; it results n ≥ p + 2 . We consider first the case when p ≥ 5 . By

Lemma 2.3 we deduce that

D′(G) ≥
p∑

i=1

xi(2n − 2 − xi) +

n−p∑
j=1

yj(2n − 1 − yj),

where x1, ..., xp and y1, ..., yn−p are the degrees of vertices of eccentricity 2 and 3, respec-

tively. Since m = n we have
p∑

i=1

xi +
p∑

j=1

yj = 2n . From the hypothesis it follows that

xi ≤ n−3 for 1 ≤ i ≤ p and yj ≤ n−3 for 1 ≤ j ≤ n−p . If u is a vertex of eccentricity 2

and d(u) = 1 , then the vertex v adjacent to u must have d(v) = n− 1 , which contradicts

the property that diam(G) = 3 . It follows that xi ≥ 2 for every i = 1, ..., p . Using

Lemma 2.2 for F (x1, ..., xp, y1, ..., yn−p) , where α = 2n − 2 and β = 2n − 1 , we find that

F is minimum for x1 = n−p+2, x2 = ... = xp = 2 and y1 = ... = yn−p = 1 , which implies

that

D′(G) ≥ (n− p+2)(n+ p−4)+2(p−1)(2n−4)+ (n−p)(2n− 2) = 3n2 +2np− 8n−p2 .

We have 3n2 + 2np − 8n − p2 > 3n2 + n − 16 if and only if n(2p − 9) > p2 − 16 . This

inequality is satisfied for p = 5 and n ≥ 10 . If p ≥ 6 we can use inequality n ≥ p + 2 ;

we get n(2p − 9) ≥ (p + 2)(2p − 9) = 2p2 − 5p − 18 and 2p2 − 5p − 18 > p2 − 16 for

any p ≥ 6 . Consequently, for p ≥ 5 we have deduced that D′(G) > 3n2 + n − 16 . It
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remains to prove this inequality for 0 ≤ p ≤ 4 . If p = 0 , D′(G) ≥
n∑

j=1

yj(2n − 1 − yj) ,

where 1 ≤ yj ≤ n − 3 for 1 ≤ j ≤ n and
n∑

j=1

yj = 2n . Using Lemma 2.1 the mini-

mum of S2n,2n−1,n−3 is reached for y1 = n − 3, y2 = 5, y3 = ... = yn = 1 and is equal to

(n − 3)(n + 2) + 5(2n − 6) + (n − 2)(2n − 2) = 3n2 + 3n − 32 > 3n2 + n − 16 for every

n ≥ 9 . If 1 ≤ p ≤ 4 we can write
p∑

i=1

xi(2n − 2 − xi) +
n−p∑
j=1

yj(2n − 1 − yj)

=
p∑

i=1

xi(2n − 2 − xi) +
n−p∑
j=1

yj(2n − 2 − yj) +
n−p∑
j=1

yj

≥
p∑

i=1

xi(2n − 2 − xi) +
n−p∑
j=1

yj(2n − 2 − yj) + n − p .

By redenoting y1 = xp+1, ..., yn−p = xn , we get D′(G) ≥
n∑

i=1

xi(2n− 2−xi)+n− p , where

1 ≤ xi ≤ n−3 for 1 ≤ i ≤ n and
n∑

i=1

xi = 2n . By Lemma 2.1 we obtain that the minimum

of S2n,2n−2,n−3 is reached for (n− 3, 5, 1, ..., 1) . But this sequence of degrees is not graph-

ical. From Lemma 2.1(b) it follows that the next minimum of this function is reached

for (n − 4, 6, 1, ..., 1) or for (n − 3, 4, 2, 1, ..., 1) . We have S2n,2n−2,n−3(n − 4, 6, 1, ..., 1) =

3n2 + 3n − 50 > S2n,2n−2,n−3(n − 3, 4, 2, 1, ..., 1) = 3n2 + n − 26 for every n ≥ 13 . Conse-

quently, since n−p ≥ n−4 , D′(G) ≥ 3n2 +n−26+n−4 = 3n2 +2n−30 > 3n2 +n−16

for every n ≥ 15 .

C. If m = n + 1 and there is a vertex x such that d(x) = n− 2 , it follows that ecc(x) = 2

and D′(x) = n(n − 2) by Lemma 2.3 . By denoting by p ≥ 1 the number of vertices of

eccentricity 2 of G, the number of vertices of eccentricity 3 will be n− p . Let x2, ..., xp be

the degrees of the vertices of eccentricity 2 of G which are different from x and y1, ..., yn−p

be the degrees of the vertices of eccentricity 3 of G , arranged in a decreasing order. One

has D′(G) ≥ n(n − 2) +
p∑

i=2

xi(2n − 2 − xi) +
n−p∑
j=1

yj(2n − 1 − yj) =

= n(n − 2) +
p∑

i=2

xi(2n − 2 − xi) +
n−p∑
j=1

yj(2n − 2 − yj) +
n−p∑
j=1

yj

≥ n(n − 2) +
n∑

i=2

xi(2n − 2 − xi) + n − p , by redenoting y1 = xp+1, ..., yn−p = xn .

We have
n∑

i=2

xi = n + 4 . By Lemma 2.1 the minimum of Sn+4,2n−2,n−2(x1, ..., xn−1) is

reached for (6, 1, ..., 1) and it is equal to 6(2n−8)+(n−2)(2n−3) = 2n2+5n−42 . The ex-

tremities of a diametral path in G have eccentricities equal to 3, which implies n ≥ p+2 , or

n−p ≥ 2 . It follows that D′(G) ≥ n(n−2)+2n2+5n−42+2 = 3n2+3n−40 > 3n2+n−16

for any n ≥ 13 . Because Sq,2n−2,n−2(x1, ..., xn−1) is increasing for q ≥ n + 4 , we deduce

that D′(G) > 3n2 + n − 16 for any m ≥ n + 1 and n ≥ 13 if there is a vertex x of degree
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n − 2 .

Note that for m = n + 1 and d(x) ≤ n − 3 for every vertex x ∈ V (G) , the minimum of

S2n+2,2n−2,n−3 over D1 is reached for (n − 3, 7, 1, ..., 1) and is equal to 3n2 + 5n − 60 . In

this case D′(G) ≥ 3n2 + 6n− 64 since n− p ≥ n− 4 and 3n2 + 6n− 64 > 3n2 + n− 16 for

every n ≥ 10 . Since Sq,2n−2,n−3 is increasing for q ≥ 2n + 2 , it follows that for m ≥ n + 2

and d(x) ≤ n−3 for every vertex x ∈ V (G) , D′(G) > 3n2 +n−16 holds, which concludes

the proof. �

Lemma 3.3. There exists a unique graph G of order n ≥ 13 having diam(G) = 4 and

D′(G) ≤ 3n2 + n − 16 , namely G3 .

Proof. Suppose G is a graph of diameter 4 , order n ≥ 13 and D′(G) ≤ 3n2 + n− 16 . It

follows that d(x) ≤ n− 3 for every x ∈ V (G) . We shall prove that if m = n− 1 , i.e, G is

a tree, then G = G3 . In this case the center of G consists of a single vertex w since the

diameter is even. Denote by p ≥ 2 the number of vertices x having ecc(x) = 4 ; it follows

that n−p−1 vertices y have eccentricity ecc(y) = 3 , only w having eccentricity ecc(w) =

2 . All vertices x with ecc(x) = 4 have d(x) = 1 . It results that
∑

ecc(y)=3

d(y) = n− 1 since

d(w) = n − p − 1 . Since d(w) ≥ 2 it follows that n ≥ p + 3 . If p = 2 we deduce that

G = G3 . Suppose that p ≥ 3 . Let Ni(u) = {v ∈ V (G) : d(u, v) = i} . If there is a vertex

z of eccentricity 4 such that |N2(z)| = p , by denoting by y the vertex of eccentricity 3

adjacent to z we obtain d(y) = p + 1 . It results that y is adjacent to all vertices of G of

eccentricity 4 which would imply that diam(G) = 3 , a contradiction. Suppose that there

exists a vertex z such that ecc(z) = 4 and |N2(z)| = p − 1 .

In this case there is a unique tree H illustrated in Figure 2 having these properties, where

d(w) = n − p − 1 and d(y) = p . By direct computation we get D′(H) = 3n2 − 7n +

4np − 4p2 − 4 . We have D′(H) > 3n2 + n − 16 if and only if n(4p − 8) > 4p2 − 12 .

For p = 3 this inequality holds for every ≥ 7 . Let p ≥ 4 . Since n ≥ p + 3 we deduce

n(4p − 8) ≥ 4p2 + 4p − 24 > 4p2 − 12 for any p ≥ 4 . The remaining situation is that

when for every vertex z of eccentricity 4 we have |N2(z)| ≤ p−2 . We need a more careful

evaluation of the lower bound for D′(z) . Since d(z) = 1 and |N3(z)| = n − p − 2 we

get |N2(z)| = n − 1 − (1 + n − p − 2) − |N4(z)| = p − |N4(z)| . Since |N2(z)| ≤ p − 2

it follows that |N4(z)| ≥ 2 . We can write D′(G) = 1 + 2|N2(z)| + 3(n − p − 2) +

4|N4(z)| = 1 + 2p + 3(n − p − 2) + 2|N4(z)| ≥ 3n − p − 1 since |N4(z)| ≥ 2 . Finally,
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w

y

z

Figure 2: Tree H

D′(G) ≥ (n−p−1)(n+p− 1)+
∑

ecc(y)=3

d(y)(2n− 1−d(y))+3np−p2 −p . The minimum

value of
∑

ecc(y)=3

d(y)(2n− 1− d(y)) is realized, by Lemma 2.1 for (p + 1, 1, ..., 1︸ ︷︷ ︸
n−p−2

) . But this

sequence of degrees of vertices of eccentricity 3 cannot be realized by a tree of diameter

4 since a unique vertex has its degree greater than 1 . By Lemma 2.1 the next minimum

value of S2n−2,2n−1,n−3 is realized for (p, 2, 1, ..., 1︸ ︷︷ ︸
n−p−3

) . It follows that

D′(G) ≥ (n−p−1)(n+p−1)+p(2n−1−p)+2(2n−3)+(n−p−3)(2n−2)+3np−p2−p =

3n2 + 3np − 6n − 3p2 + 1.

D′(G) > 3n2 +n−16 holds if n(3p−7) > 3p2 −17 . If p ≥ 3 and n ≥ p+3 the expression

n(3p− 7) is greater than or equal to 3p2 + 2p− 21 and this polynomial is strictly greater

than 3p2 − 17 for every p ≥ 3 .

Let now m = n . By Lemma 2.3 we deduce

D′(G) ≥ ∑
ecc(x)=2

d(x)(2n−2−d(x))+
∑

ecc(y)=3

d(y)(2n−1−d(y))+
∑

ecc(z)=4

d(z)(2n+1−d(z)) .

Let u, a, t, b, v be a shortest path of length 4 between two vertices of eccentricity 4. It

follows that ecc(a), ecc(b) ≥ 3 and d(a), d(b) ≥ 2 . Since d(y)(2n − 1 − d(y)) = d(y)(2n −
2 − d(y)) + d(y) and d(z)(2n + 1 − d(z)) = d(z)(2n − 2 − d(z)) + 3d(z) , it results that

D′(G) ≥ ∑
x∈V (G)

d(x)(2n− 2− d(x)) + 10 , where
∑

x∈V (G)

d(x) = 2n . Since diam(G) = 4 we

get d(x) ≤ n− 3 for any x ∈ V (G) . For p = 2n, m = 2n− 2 and t = n− 3 , the minimum

of S2n,2n−2,n−3(x1, ..., xn) in D1 is realized for x1 = n − 3, x2 = 5, x3 = ... = xn = 1 .

But the sequence (n− 3, 5, 1, ..., 1) is not graphical. By Lemma 2.1 the next minimum of

S2n,2n−2,n−3 is realized for z1 = (n − 4, 6, 1, ..., 1) or z2 = (n − 3, 4, 2, 1, ..., 1) .

In the first case we get D′(G) ≥ 3n2 + 3n − 40 > 3n2 + n − 16 for every n ≥ 13 and

in the second case D′(G) = 3n2 + n − 16 . Equality is reached only for z2 , which has a
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unique graphical realization, having diameter 3 , which contradicts the hypothesis. We

can conclude that for m = n for all graphs G of order n, size m and diameter 4 D′(G) is

strictly greater than 3n2 + n − 16 .

Let m = n + 1 . The minimum of S2n+2,2n−2,n−3 is realized for (n − 3, 7, 1, ..., 1) and is

equal to 3n2 + 5n− 60 . We deduce D′(G) ≥ 3n2 + 5n− 50 > 3n2 + n− 16 for n ≥ 9 . For

m ≥ n + 2 , Sp,2n−2,n−3 being increasing in p ≥ 2n + 2 , the same conclusion holds . �

lemma 3.4. Let G be a graph of order n ≥ 8 and diameter diam(G) ≥ 5 . Then

D′(G) > 3n2 + n − 16 .

Proof. If G has diameter at least 5 it follows that for every x ∈ V (G) we have ecc(x) ≥ 3

since otherwise, by triangle inequality, we obtain diam(G) ≤ 4 . The same conclusion

holds if there exists a vertex x having d(x) ≥ n−3 . It follows that d(x) ≤ n−4 for every

x ∈ V (G) . Since ecc(x) ≥ 3 , by Lemma 2.3 we obtain that D′(x) ≥ d(x)(2n− 1− d(x)) ,

which implies that D′(G) ≥ ∑
x∈V (G)

d(x)(2n − 1 − d(x)) . Suppose that G has diameter

5 and it is a tree, hence m = n − 1 . It follows that D′(G) ≥ S2n−2,2n−1,n−4(x1, ..., xn) ,

where x1, ..., xn are the degrees of the vertices of G . By Lemma 2.1 it follows that the

minimum of S2n−2,2n−1,n−4 is reached in D1 for x1 = n − 4, x2 = 4 and x3 = ... = xn = 1

and is equal to (n − 4)(n + 3) + 4(2n − 5) + (n − 2)(2n − 2) = 3n2 + n − 28 . Note

that (n − 4, 4, 1, ..., 1) has a unique graphical realization which has diameter 3 . If G

has diameter 5, let u, v be two diametral vertices of G and u, x, w, t, y, v be a short-

est path between them. It follows that ecc(u) = ecc(v) = 5, ecc(x) ≥ 4, ecc(y) ≥ 4

and d(x), d(y) ≥ 2 . This implies that D′(u) ≥ d(u)(2n + 4 − d(u)) and the differ-

ence d(u)(2n + 4 − d(u)) − d(u)(2n − 1 − d(u)) = 5d(u) ≥ 5 . In a similar way we get

D′(x) ≥ d(x)(2n + 1− d(x)) and d(x)(2n + 1− d(x))− d(x)(2n− 1− d(x)) = 2d(x) ≥ 4 .

It follows that we can write D′(G) ≥ 3n2 +n−28+2(5+4) = 3n2 +n−10 > 3n2 +n−16

for every n .

The inequality D′(G) ≥ min
x1+...+xn=2n−2

S2n−2,2n−1,n−4(x1, ..., xn)+18 also holds if diam(G) >

5 and the constant 18 may be improved by a similar argument. Since Sp,2n−1,n−4 is strictly

increasing in p ≥ 2n − 2 , it follows that D′(G) > 3n2 + n − 16 for any connected graph

G of order n , size m ≥ n − 1 and diameter diam(G) ≥ 5 . �

The main result of the paper can be concluded as follows:
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Theorem 3.5. The connected graphs of order n ≥ 15 having the smallest degree distances

are (in this order): K1,n−1, BS(n − 3, 1), K1,n−1 + e, G1, G2, G3,

G4, G5, G6 , the last two graphs having equal degree distances .

Note that the degree distance and the Wiener index of trees are connected by relation

D′(G) = 4W (G) − n(n − 1) [6], which implies that the ordering of trees on n vertices

with respect to the Wiener index is the same for the degree distance parameter. There

are various transformations on trees and general graphs (see [9]) that decrease degree

distance and/or Wiener index. On this way the first four extremal trees and unicyclic

graphs having small degree distance could be also determined using this method.

Acknowledgement . The authors are indebted to the referee for his/her valuable comments.

This work has been done while the first author was invited at Abdus Salam School of

Mathematical Sciences, GC University, Lahore.

References
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