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Abstract
The average eccentricity has been used as a molecular descriptor since 1988. In this paper, we give 
lower and upper bounds for the average eccentricity in terms of the numbers of vertices and edges, 
give lower and upper bounds for average eccentricity of trees with fixed diameter, fixed number of 
pendent vertices and fixed matching number, respectively, and determine the n-vertex trees with the 

first four smallest and the first / 2 th-largestn  average eccentricities for 6.n

1. Introduction

We consider simple graphs. Let G  be a connected simple graph with vertex set ( )V G  and 

edge set ( ).E G  The distance between vertices u  and v  in ,G denoted by ( , ),Gd u v  is 

the length (number of edges) of a shortest path connecting u  and v  in .G  The eccentricity 

of vertex u  in ,G denoted by ( ),Ge u  is the distance from u  to a vertex farthest away 

from it in .G  The average eccentricity of G  is 

1( ) ( ),G
u V G

avec G e u
n

where | ( ) | .n V G  This concept was introduced by Skorobogatov and Dobryninin [1] in 
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mathematical chemistry used as a molecular descriptor, see also [2]. It is named the eccentric 

mean by Buckley and Harray [3]. Dankelmann, Goddard and Swart [4] established an upper 

bound for the average eccentricity in terms of number of vertices and minimum degree, 

obtained Nordhaus-Gaddum results, and examined the change in the average eccentricity 

when a graph is replaced by a spanning subgraph. Several packages, such as Dragan and 

Cerius2, include the average eccentricity (AECC) among their molecular descriptors, thus 

making it available for various structure-property models. A recent application may be found 

in [5]. 

In this paper, we give lower and upper bounds for the average eccentricity in terms of 

the numbers of vertices and edges, give lower and upper bounds for average eccentricity of 

trees with fixed diameter, fixed number of pendent vertices and fixed matching number, 

respectively, and determine the n-vertex trees with the first four smallest and the first 

/ 2 th-largestn  average eccentricities for 6.n

2.  Preliminaries 

For a connected graph ,G  the radius ( )r G  and the diameter ( )D G  are, respectively, the 

minimum and maximum eccentricity among the vertices of G  [1]. For ),(GVu  let 

)(udG  be the degree of u  in .G  A connected graph is called a self-centered graph if all of 

its vertices have the same eccentricity. Evidently, a connected graph G  is self-centered if 

and only if ( ) ( ).r G D G

Let nK  be the complete graph with n  vertices. Let ,r sK  be the complete bipartite 

graph with r  and s  vertices in its bipartite sets, respectively. Let nS  and nP  be, 

respectively, the star and the path with n  vertices. By direct calculation, the following 

formulae hold: ( ) 1,navec K ,( ) 2,r savec K 1( ) 2 ,navec S
n

( ) ,
2n
navec C and 

3 2( ) .
4n

navec P
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For a graph G  and a subset E  of its edge set ( *E  of the edge set of its 

complement, respectively), G E  ( *,G E  respectively) denotes the graph formed from 

G  by deleting (adding, respectively) edges from E  ( *,E  respectively). For ( ),u V G

G u  denotes the graph formed from G  by deleting the vertex u  (and its incident edges).  

We will use techniques developed in [7]. 

3.  Average eccentricity of connected graphs 
In this section, we give various lower and upper bounds for average eccentricity of connected 

graphs in terms of other graph invariants. 

If G  is a connected graph, then ( ) ( ) ( )r G avec G D G  with either equality if and 

only if G is a self-centered graph. 

Proposition 3.1. Let G  be an n-vertex connected graph, and k  the number of vertices of 

degree 1n  in ,G  where 0 .k n  Then  

( ) 2 kavec G
n

with equality if and only if all the vertices of degree less than 1n  have eccentricity two. 

Proof. Note that there are k  vertices with eccentricity one and n k  vertices with 

eccentricity two. Then the result follows easily.   

Let G H  be the graph formed from vertex-disjoint graphs G  and H  by adding 

edges between each vertex in G  and each vertex in .H  Denote by ( , )G n m  the set of 

graphs aK H with n vertices and m  edges, where 
2

( , )
2 1 (2 1) 8

.
2n m

n n m
a a

Obviously, each vertex of H  has eccentricity two in .aK H
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Proposition 3.2. Let G  be an n-vertex connected graph with m  edges, where 

21 .nn m  Let 
22 1 (2 1) 8

.
2

n n m
a  Then 

( ) 2 aavec G
n

with equality if and only if ( , ).G G n m

Proof. Let k  be the number of vertices of degree 1n  in ,G  where 0 1.k n  By 

Propisition 3.1, ( ) 2 kavec G
n

 with equality if and only if all the vertices of degree less 

than 1n  have eccentricity two. If 0,k  then ( ) 2 2 .aavec G
n

 Suppose that 1.k

Since  2 ( 1) ( )m k n k n k  and a  is the largest integer satisfying 

2 ( 1) ( ),m a n a n a  we have ( ) 2 2k aavec G
n n

 with equalities if and only if all 

the n k  vertices of degree less than 1n  have eccentricity two and ,k a  i.e., 

( , ).G G n m

Note that for 5,n  if G  is an n-vertex unicyclic or bicyclic graph, then 1,a

and that ( , )G n n  contains exactly one (unicyclic) graph, formed by adding an edge to the 

n-vertex star, ( , 1)G n n  contains exactly two (bicyclic) graphs, formed by adding two edges 

to the n-vertex star. Thus, by Proposition 3.2, we have 

Corollary 3.3. Let G  be a unicyclic (bicyclic, respectively) graph with 5n  vertices. 

Then
1( ) 2avec G
n

with equality if and only if G  is formed by adding one edge (two edges, respectively) to the 

n-vertex star.
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Define nK ke  as a graph formed by deleting k  independent edges from the 

complete graph ,nK  where 1, 2,..., / 2 .k n

Proposition 3.4. Let G  be a connected graph with 2n  vertices and m  edges. Then 
2( ) mavec G n
n

with equality if and only if nG K ke  for 0,1,..., / 2 ,k n  or 4.G P

Proof. Let ( ; )d u i  be the number of vertices that are of distance i  from vertex u  in ,G

where 1,2,..., ( ).Gi e u  For ,u V G  it is easily seen that  

( ) ( )

2 2
1 ( ) ( ; ) ( ) 1 ( ) ( ) 1,

G Ge u e u

G G G G
i i

n d u d u i d u d u e u

and thus ( ) ( ) ,G Gd u e u n  with equality if and only if ( ) 1,Ge u  i.e. ( ) 1Gd u n  or 

( ) 2Ge u  with ( ;2) ( ;3) ; ( ) 1.Gd u d u d u e u  Then       

1 1 1 2( ) ( ) ( ) ( ) .G G G
u V G u V G u V G

mavec G e u n d u n d u n
n n n n

Suppose that equality holds in the above inequality. Then ( ) 1,Ge u  i.e., 

( ) 1Gd u n  or ( ) 2Ge u  with ( ;2) ( ;3) ; ( ) 1Gd u d u d u e u  for every 

( ).u V G  Suppose first that ( ) 1Ge u  for some ( ).u V G  Then ( ) 1Gd u n  and 

( ) 1Ge v  or 2  for all .v u  If ( ) 1Ge v  for all ,v u  then .nG K  Suppose that there 

exists some vertex v  with ( ) 2.Ge v  Then there exists a vertex ( )w V G  such that 

( , ) 2.d v w  Since ( ;2) ( ;2) 1,d v d w  the vertex w  is unique for fixed .v  Thus 

( ) ( ) 2,G Gd v d w n  implying that nG K ke  for 1,..., ( 1) / 2 .k n  Now suppose 

that ( ) 2Ge u  with ( ;2) ( ;3) ; ( ) 1Gd u d u d u e u  for every ( ).u V G  If 

( ) 2Ge u  for every ( ),u V G  then ( ) 2Gd u n  for every ( ),u V G  and thus n  is 
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even and .
2n
nG K e  If ( ) 3Ge u  for some ( ),u V G  then ( ) 3,D G  otherwise, for a 

center x  of a diametrical path, ( ;2) 2,d x  a contradiction, and thus 4.G P

Conversely, it is easily checked that 2( ) mavec G n
n

 for nG K ke  with 

0,1,..., / 2 ,k n  or 4.G P

4.  Average eccentricity of trees 
In this section, we give lower and upper bounds for average eccentricity of n-vertex trees with 

fixed diameter, fixed number of pendent vertices and fixed matching number, respectively. 

We also determine the n-vertex trees with the first four smallest and the first 

/ 2 th-largestn  average eccentricities for 6.n

Lemma 4.1. Let u  be a vertex of a tree Q  with at least two vertices. For integer 1,a

let 1G  be the tree obtained by attaching a star 1aS  at its center v  to u  of ,Q  and 2G

the tree obtained by attaching 1a  pendent vertices to u  of .Q  Then 

2 1( ) ( ).avec G avec G

Proof. Let w  be a pendent neighbor of v  in 1G  and a pendent neighbor of u  in 2G

outside .Q  Note that 
2 1
( ) ( )G Ge x e x  for any ( ),x V Q

1 1 1
( ) ( ) ( ),G G Ge u e v e w  and 

2 1
( ) ( ).G Ge w e v  Then 

2 1 2 1 1

1 1 1

1 1

2 1
( )

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( ) ( ) 0,

G G G G G
x V Q

G G G

G G

n avec G avec G e x e x a e w a e w e v

a e v a e w e v

a e v e w

and thus 2 1( ) ( ).avec G avec G
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For 2 1,d n let ( , )n dT be the set of n-vertex trees with diameter ,d ,n dT

be the set of n-vertex trees obtained from the path 1 0 1d dP v v v  by attaching 1n d

pendent vertices to / 2dv  and/or /2 ,dv  and let ( , )
, :1 ( 1 ) / 2 ,n d a

n dT T a n d

where ,
a

n dT is the n-vertex tree obtained by attaching a  and 1n a d  pendent vertices 

respectively to the two end vertices of the path 1.dP  In particular, ( ,2)
( ,2) { }n
n nT T S  and 

( , 1)
( , 1) { }.n n
n n nT T P

For 4 3,d n  let 1
( , )n dT  be the set of trees obtained from a tree in ( 1, )n dT  by 

attaching a pendent vertex to a pendent vertex different from 0v  and .dv  For 4 2,d n

let 2
( , )n dT  be the set of trees obtained from a tree in ( 1, )n dT  by attaching a pendent vertex to 

/2 1dv  or /2 1.dv

Proposition 4.2. Let ( , ),G n dT  where 2 1.d n  Then 

2 21 3( 1) 2( 1) 1 3( 1) 2( 1)( 1) 1 ( ) ( 1)
4 2 4

d d d d dn d avec G n d d
n n

with left equality if and only if ( , ) ,n dG T  and right equality if and only if ( , ) .n dG T

Proof. The cases 2d  and 1n  are trivial. Suppose that 3 2.d n

Suppose first that G  is a tree in ( , )n dT  with the minimum average eccentricity. 

Let 0 1( ) dP G v v v  be a diametrical path of .G  By Lemma 4.1, all vertices outside ( )P G

are pendent. Suppose that there exists some kv  with / 2 , / 2 ,k d d  such that 

( ) 3.G kd v  Let 1 2, , , tu u u  be all the pendent neighbors of kv  outside ( ).P G  Let 

1 1/ 2 / 2{ ,..., } ,..., .k k t td dG G v u v u v u v u Then ( , ).G n dT  Since /2( ) ( ),G k G de v e v

we have 
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/2

/2

1( ) ( ) ( ) 1 ( ) 1

                              ( ) ( ) 0,

G k G d

G k G d

avec G avec G t e v t e v
n
t e v e v
n

and then ( ) ( ),avec G avec G  a contradiction. Thus ( , ) .n dG T

Conversely, it is easily seen that 

21 3( 1) 2( 1)( ) ( 1) 1
4 2

d d davec G n d
n

  for ( , )T .n dG

Now suppose that G  is a tree in ( , )n dT  with the maximum average eccentricity. 

Suppose that ( , ) .n dG T  Let 0 1( ) dP G v v v  be a diametrical path of .G  Let y  be a 

pendent vertex outside ( ),P G  and x  the neighbor of ,y  where 1 1, .dx v v  Obviously, 

( ) .Ge y d  Form a tree 1 1{ } { } ( , ).G G xy v y n dT  Note that 
1
( ) .Ge y d  It is easily 

seen that 

11
1 1( ) ( ) ( ) ( ) ( ) 0G Gavec G avec G e y e y d d
n n

with equality if and only if ( ) .Ge y d  If ( ) ,Ge y d  then 1( ) ( ),avec G avec G  a 

contradiction. Then ( ) ,Ge y d  and thus x  lies outside ( ).P G  Repeating the above 

procedure to all pendent neighbors of ,x  we may finally obtain a tree 2G with diametrical 

path ( )P G  such that x  is a pendent vertex in 2G  and 
2
( )Ge x d  and 

2( ) ( ).avec G avec G  Obviously, x  is not a neighbor of 1v  or 1.dv Repeating the above 

procedure to x  of 2 ,G  we have a tree in ( , )n dT  with larger average eccentricity, a contradiction. 

Thus ( , ).n dG T

Conversely, it is easily seen that 
21 3( 1) 2( 1)( ) ( 1)
4

d davec G n d d
n

for ( , ).n dG T

By previous proposition, we may determine trees with the first a few smallest and 
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largest average eccentricities as follows. 

Proposition 4.3. Among the n-vertex trees with 6,n ,nS  n-vertex double-stars (trees in 

( ,3)nT ), the tree in ( ,4) ,nT  and the trees in 1 2
( ,4) ( ,4)n nT T ( 1

(6,4)T ) are respectively the 

unique trees with the smallest, second-smallest, third-smallest and fourth-smallest average 

eccentricity, which are equal to 12 ,
n

23 ,
n

13 ,
n

 and 23 ,
n

 respectively.

Proof. Let ( )f d  be the expression of the lower bound in Proposition 4.2, where 

2 1.d n  Suppose that 2.d n  If d  is even, then 
2

2

3( 2) 2( 2) 2( 1) ( ) ( 2) 1
4 2

3 2 1  ( 1) 1
4 2

1 0,

d d dn f d f d n d

d d dn d

n

and if d  is odd, then 
2

2

3( 2) 2( 2) 1 1( 1) ( ) ( 2) 1
4 2

3( 1) 2( 1) 1  ( 1) 1
4 2

0.

d d dn f d f d n d

d d dn d

d

It follows that ( )f d  is increasing for 2 1.d n  Thus, for any ( , )T n dT  with 5,d

we have by Proposition 4.2 that ( ) (5) (4) (3) (2).avec T f f f f  Note that 

( ,2) { },n nT S ( ,3)nT  contains exactly all the / 2 1n  double-stars and ( ,4)nT  contains the 

unique tree formed by attaching 5n  pendent vertices to the center of the path with five 

vertices. Now by Proposition 4.2, we have: Among the n-vertex trees with 6,n  ,nS

n-vertex double-stars, and the tree in ( ,4)nT  are respectively the unique trees with the smallest, 

second-smallest, and third-smallest average eccentricity, which are equal to 12 ,
n

23 ,
n

and 13 ,
n

 respectively. 
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Let T  be an n-vertex tree different from ,nS n-vertex double-stars, or the tree in 

( ,4).nT  If 5,d  then by Proposition 4.2, 2( ) ( ) (5) 4 3 .avec T f d f
n

 Suppose that 

4.d  Then there is exactly one vertex of eccentricity 2 in T  and at least three vertices of 

eccentricity 4. Thus 1 2( ) [2 3 4 3( 4)] 3avec T n
n n

 with equality if and only if 

1 2
( ,4) ( ,4).n nT T T It follows that among the n-vertex trees with 6,n  the trees in 

1 2
( ,4) ( ,4)n nT T  are the unique trees with the fourth-smallest average eccentricity, which is equal 

to 23 .
n

For 4,n  let i
nT  be the tree formed by attaching a pendent vertex 1nv  to vertex 

iv  of the path 1 0 1 2 ,n nP v v v  where 21 .
2

ni  Since 

1
1

1 1
1 1 1( ) ( ) ( ) ( ) ( 1 1) ( 1 ) 0,i i

n n

i i
n n n nT T

avec T avec T e v e v n i n i
n n n

 we 

have 1( ) ( ),i i
n navec T avec T  where 1 / 2 2 .i n

Proposition 4.4. Among the n-vertex trees, nP  with 3n  is the unique graph with the 

largest average eccentricity, and i
nT  for 1 / 2 1i n  is the unique graph with the 

(i+1)th-largest average eccentricity, where 

2

3 2                  
4( )

3 2 1        ,
4

n

n if n is even
avec P

n n if n is odd
n

2

2

3( 1) 2 3 4        
4( )   

3( 1) 2 2 4       .
4

i
n

n n i if n is even
navec T

n n i if n is odd
n
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Proof. Let ( )g d  be the expression of the upper bound in Proposition 4.2, where 

2 1.d n  Suppose that 2.d n If d  is even, then 

2

2

3( 2) 2( 2)( 1) ( ) ( 2)( 1)
4

3( 1) 2( 1)  ( 1)
4

0,
2

d dn g d g d n d d

d d n d d

dn

and if d  is odd, then 
2

2

3( 2) 2( 2) 1( 1) ( ) ( 2)( 1)
4

3( 1) 2( 1) 1  ( 1)
4

1 0.
2

d dn g d g d n d d

d d n d d

dn

It follows that ( )g d  is increasing for .12 nd  Thus, for any ( , )T n dT  with 

3,d n  we have by Proposition 4.2 that ( ) ( ) ( 3) ( 2) ( 1).avec T g d g n g n g n

Note that ( , 1) { }n n
nT P  and ( , 2) 1{ }.n n

nT T  Then nP  for 3n  and 1
nT  for 4n  are 

respectively the unique trees with the largest and the second-largest average eccentricity. 

Suppose that 2 / 2 1 .i n  Among the n-vertex trees, the (i+1)th-largest average 

eccentricity is achieved by the trees in 
1

1
( , 2) \

i
j

n
j

n n TT  or in ( , 3)n nT  with maximum 

average eccentricity, and let 
1

1
1

( , 2) \ .
i

j
n

j
T n n TT  Since 1( ) ( )i i

n navec T avec T for

2 / 2 1 ,i n  we have 1( ) ( )i
navec T avec T  with equality if and only if 1 .i

nT T  By 

direct calculation, we have 

2

2

3( 1) 2 3 4    if  is even
4( )   

3( 1) 2 2 4    if  is odd,
4

i
n

n n i n
navec T

n n i n
n

and for ( , 3)
2 ,n nT T
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2

2 2

2 2

   ( ) ( )

3( 1) 2 3 4 3( 2) 2( 2) 8( 3)          if  is even
4 4

3( 1) 2 2 4 3( 2) 2( 2) 1 8( 3)    if  is odd
4 4

2 4 8       if  is even
4

2 4 10      if  is
4

i
navec T avec T

n n i n n n n
n n

n n i n n n n
n n

n i n
n

n i n
n

 odd

3       if  is even

7      if  is odd
2

0.

n
n

n
n

Thus i
nT T  is the unique n-vertex tree with the (i+1)th-largest average eccentricity. The 

result follows.   

Lemma 4.5. Let w  be a vertex of a connected graph .G  For integers ,p 1,q  let 

),( qpG  be the graph obtained from G  by attaching pendent paths 1 2 pP wu u u  and 

1 2 qQ wv v v  to vertex .w  If ,qp  then ( ( , )) ( ( 1, 1)).avec G p q avec G p q

Proof. Obviously, ( 1, 1)G p q  is obtained from ( , )G p q  by deleting the edge 1q qv v  and 

adding the edge .p qu v

Case 1. ( ) .Ge w p  Then ( , ) ( 1, 1)( ) ( )G p q G p qe x e x  for ,qx v  and 

( , ) ( 1, 1) ( 1, 1)( ) ( ) 1 ( ).G p q q G p q q G p q qe v e v p q e v

Case 2.  ( ) .Gq e w p  Then ( , ) ( 1, 1) ( 1, 1)( ) ( ) 1 ( )G p q G p q G p qe x e x e x  for 

( ) ( ) \{ },qx V G V Q v ( , ) ( 1, 1)( ) ( )G p q G p qe x e x  for ( ) \{ },x V P w  and 

( , ) ( 1, 1)( ) ( ).G p q q G p q qe v e v
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Case 3.  ( ) .Ge w q  Then ( 1, 1) ( 1, 1)
( ) ( )

( ) ( )G p q G p q
x V P Q x V P Q

e x e x  and 

( , ) ( 1, 1) ( 1, 1)( ) ( ) 1 ( )G p q G p q G p qe x e x e x  for ( ) \{ }.x V G w

Combing Cases 1-3, we have ( ( , )) ( ( 1, 1)).avec G p q avec G p q

Lemma 4.6. Let G  and G  be the trees shown in Fig. 1, where vertices x  and y  are 

connected by a path of length at least one (vertices in this path except x  and y  are of 

degree two),  and x  has a unique neighbor in .N  In ,G  vertex x  has at least one 

neighbor in ,M  and all of such neighbors are switched to be neighbors of y  in .G

Suppose that max{ ( , ) : ( )} max{ ( , ) : ( )}.G Gd x u u V M d x u u V N  Then

(i) If ( ) ( ),G Ge x e y  then ( ) ( );avec G avec G

(ii) If ( ) ( ),G Ge x e y  then ( ) ( ).avec G avec G

G                                      G

Fig. 1. Graphs G  and G  in Lemma 4.6. 

Proof.  Let s  be the number of neighbors of x  of G  in .M  We know .1s

Suppose that ( ) ( ).G Ge x e y  Then max{ ( , ) : ( )}Gd x u u V N

max{ ( , ) : ( )}.Gd y u u V Q  Note that max{ ( , ) : ( )}Gd x u u V M

max{ ( , ) : ( )}.Gd x u u V N  Then ( ) ( )G Ge v e v  for ( ) \ ( ),v V G V M  and 

( ) ( ) 1G Ge v e v  for ( ).v V M  It is easily seen that 

x y
Q

M

N
x y

Q

M

N
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( )

1( ) ( ) [ ( ) ( )] 0,G G
x V M

savec G avec G e v e v
n n

and thus ( ) ( ).avec G avec G

Suppose that ( ) ( ).G Ge x e y  Then max{ ( , ) : ( )}Gd x u u V N

max{ ( , ) : ( )}.Gd y u u V Q  Note that max{ ( , ) : ( )}Gd x u u V M

max{ ( , ) : ( )}.Gd x u u V N  Then ( ) ( )G Ge v e v  for ( ),v V G  and thus   

( ) ( ).avec G avec G

Let ,n pT  be the set of n-vertex trees with p  pendent vertices, where 2 1.p n

A tree is starlike if it has exactly one vertex of degree at least 3. For integers n and p  with 

3 1,p n  let ( 1) /k n p  and 1 ,r n kp  let ( , )
1

n pT  be the tree obtained by 

attaching p r  paths on k  vertices and r  paths on 1k  vertices to a common vertex, 

and if | ( 2),p n  then let ( , )
2 ( )n pT s  be the tree obtained by attaching respectively s  paths 

and p s paths on ( 2) /n p  vertices to the two end vertices of an edge, where 

1 / 2 .s p  So we can obtain  

Proposition 4.7. Let , ,n pG T  where 2 2,p n  let ( 1) /k n p  and 

1 .r n kp  Let 

(3 1) 1     0,  
2

(3 1)( 1)( , )         1,
2

(3 1)( 1)        2.
2

                                                          

n k n if r
n

n kf n p if r
n

n k if r
n

Then
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21 3( 2) 2( 2)( , ) ( ) ( 2)( 1)
4

n p n pf n p avec G p n p
n

with right equality if and only if ( , 1 )n n pG T  and left equality if and only if ,
1

n pG T  or 

( , )
2 ( )n pG T s  with 2 / 2s p  if | ( 2),p n  and ( , )

1
n pG T  otherwise. 

Proof. If ( , 1 ) ,n n pG T  then by direct calculation, we have  

21 3( 2) 2( 2)( ) ( 2)( 1) .
4

n p n pavec G p n p
n

 If ,
1

n pG T  or 

( , )
2 ( )n pG T s  with 2 / 2s p  if | ( 2),p n  and ( , )

1
n pG T  otherwise, then we can 

also easily get (3 1) 1( )
2

n k navec G
n

 0,if r (3 1)( 1)( )  
2

n kavec G
n

  1if r

and (3 1)( 1)( )
2

n kavec G
n

 2.if r

Let d  be the diameter of .G  From the proof of Proposition 4.3, 

21 3( 1) 2( 1)( ) ( 1)
4

d dg d n d d
n

 is increasing on .d  Since 1,d n p

then by Proposition 4.2, ( ) ( ) ( 1)avec G g d g n p  with equality if and only if 

( , 1 ) .n n pG T

Let G  be a tree in ,n pG T  with the minimum average eccentricity. Let  

1( ) { ( ) : ( ) 3}.GV G x V G d x

Case 1. 1( ) 1.V G  Then G  is starlike. By Lemma 4.5, ,
1 .n pG T

Case 2. 1( ) 2. V G

Choose )(, 1 GVyx  such that all the internal vertices (if exist) of the path P

connecting x  and y  have degree two. Suppose that ( ) ( ),G Ge x e y  say  ( ) ( ).G Ge x e y

By Lemma 4.6 (1), we may get a tree in ,n pT  with smaller average eccentricity, a 

contradiction. Thus ( ) ( ).G Ge x e y  Suppose that 1( ) 3. V G Let 1( ) \{ , }z V G x y  such 
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that min{ ( , ), ( , )}G Gd x z d y z  is as small as possible, say min{ ( , ), ( , )} ( , ).G G Gd x z d y z d y z

As above, ( ) ( ).G Ge y e z  Since ( ) ( ),G Ge x e y  and we know that ( ) ( , ) ( ).G G Ge z d y z e y

This implies that ( , ) 0,Gd y z  a contradiction. Thus 1( ) 2. V G Suppose that ( , ) 2,Gd x y

and 1x  is the neighbor of x  in .P  We find that 1( ) ( ).G Ge x e x  By Lemma 4.6 (1), we 

may get a tree in ,n pT  with smaller average eccentricity, a contradiction. Thus ( , ) 1.Gd x y

Note that the longest pendent paths at x  and y  have the same length, say a  If all 

pendent paths have equal lengths, then | 2p n  and ( , )
2 ( )n pG T s  with 1 / 2 .s p

Suppose that | 2p n  and there is a pendent path of length .t a  Making use of 

Lemma 4.6 (2), we may get a tree G  in pnT ,  with }{)(1 yGV  such that 

).()( GavecGavec  Note that there are two pendent paths in G  at y  with lengths 1a

and ,t  respectively. As in Case 1, we have ( , )
1 .n pG T

A matching M  of the graph G  is a subset of ( )E G  such that no two edges in M

share a common vertex. The matching number of G  is the maximum number of edges of a 

matching in .G  If every vertex of G  incidence an edge in M  of ,G  then M  is a 

perfect matching. For integers n  and 1 / 2 ,m n  let ( , )U n m  be the set of the 

n-vertex trees with matching number .m  Obviously, ( ,1) { }.nU n S  For 2 / 2 ,m n

let ( , )n mU  be the tree obtained by attaching 1m  paths on two vertices to the center of the 

star 2 2.n mS

Proposition 4.8. Let (2 , )T U m m  with 3.m  Then 7 1( )
2

avec T
m

 with equality if 

and only if (2 , ) .m mT U
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Proof. Let (2 , )T U m m  with 3.m  Let d  be the diameter of .T

Suppose first 3.m  Then 4,5.d  From the proof of Proposition 4.3, we know 

that
21 3( 1) 2( 1)( ) ( 1) 1
4 2

d d df d n d
n

 is increasing for 2 1.d n

By Proposition 4.2, 7 1( ) ( ) (4)
2 3

avec T f d f  with equality if and only if (6,4) ,G T  i.e., 

(6,3).G U

Suppose that 4m  and the result holds for trees in (2 2, 1).U m m  Let 

(2 , )T U m m  with a perfect matching .M  Let u  a pendent vertex of a diametrical path of 

.T  Obviously, the unique neighbor v  of u  has degree two. Then uv M  and 

(2 2, 1).T u v U m m  By the induction hypothesis, we have 

( ) 7( 1) 2T u v
x T u v

e x m  with equality if and only if and (2 2, 1).m mT u v U  Let w

be the neighbor of v  different from .u  Note that ( ) 2.Te w  Then 

( ) ( ) 1 ( ) 2 4.T T Te u e v e w  Then 

1 1( ) ( ) ( ) ( ) ( ) 4 3
2 2
1 7 1[7( 1) 2 7]

2 2

T u v T T T u v
x T u v x T u v

avec T e x e u e v e x
m m

m
m m

with equalities if and only if ( ) ( )T u v Te x e x  for all ( ) \{ , },x V T u v  ( ) 4,Te u

( ) 3,Te v  ( ) 2,Te w  and (2 2, 1) ,m mT u v T  i.e., (2 , ) .m mT U

Proposition 4.9. Let ( , )n mT U  with 2 / 2 .m n

(i) If 2,m  then 2( ) 3avec T
n

  with equality if and only if ( ,2) .nT U

(ii) If 3,m  then 2( ) 3 mavec T
n

 with equality if and only if ( , ) .n mT U

(iii) If ,
2
nm  then 3 2( )

4
navec T  with equality if and only if .nT P
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(iv) If ,
2
nm  then 

21 3(2 1) 2(2 1) 1( ) 2( 2 1)
4

m mavec T n m m
n

with equality if and only if ( ,2 ).n mT T

Proof. Let d  be the diameter of .T  Suppose that 2.m  Then 3,4.d  If 3,d  then 

( , 2),T U n  and thus 2( ) 3 .avec T
n

 Suppose that 4.d  Then T  may be obtained by 

attaching pendent vertices at the two end vertices of a path on three vertices.  Thus 
4 2( ) 4 3 .avec T
n n

 Now (i) follows. 

Suppose that 3.m  We prove the result (ii) by induction on n  (for fixed m ). If 

2 ,n m  then by Proposition 4.8, the result holds. Suppose that 2n m  and the result holds 

for trees in ( 1, ).U n m  Let ( , ).T U n m  Then there is a matching M  with | |M m  and 

a pendent vertex u  of T  such that u  is incident with any edge of M  in T  [6]. Thus 

( 1, ).T u U n m  By the induction hypothesis,  

( ) 3( 1) 2T u
x T u

e x n m

with equality if and only if ( 1, ) .n mT u U  Let v  be the unique neighbor of .u  Note that 

( ) ( ) 1 3.T Te u e v  Then 

1 1 2( ) ( ) ( ) 3( 1) 2 3 3T u T
x T u

mavec T e x e u n m
n n n

with equalities if and only if ( ) ( )T u Te x e x  for all ( ) \{ },x V T u ( ) 3,Te u  ( ) 2Te v

and ( 1, ) ,n mT u U  i.e., ( , ) .n mT U  The result (ii) follows.   

Note that the matching number of nP  is / 2 .n  Then (iii) follows from Proposition 

4.4.  

Now we prove (iv). From the proof of Proposition 4.4, 
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21 3( 1) 2( 1)( ) ( 1)
4

d dg d n d d
n

 is increasing for 2 1.d n  Since 

2 ,d m   we have by Proposition 4.2 that ( ) ( ) (2 )avec T g d g m

21 3(2 1) 2(2 1) 1 2( 2 1)
4

m m n m m
n

 with equalities if and only if ( ,2 ).n mT T
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