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Abstract

In chemical graph theory, many graph parameters, or topological indices, were proposed as

estimators of molecular structural properties. Often several variants of an index are considered.

The aim is to extend the original concept to larger families of graphs than initially considered,

or to make it more precise and discriminant, or yet to make its range of values similar to that of

another index, thus facilitating their comparison. In this paper, we introduce a new variant of

the Szeged index. It is named normalized revised Szeged index, and is obtained by taking the

square root of the revised Szeged index divided by the number of edges in the considered graph.

The spread of its values is the same as for the Randić index. We also study the correlations

between the Szeged indices, as well as the Randić index, and the boiling point of chemical graphs

with up to eight vertices.

1. INTRODUCTION

Mathematical descriptors of molecular structure and properties, such as various topolog-

ical indices [17], have been widely used in chemical studies. Many topological indices

related to the graph representation of molecular structures were proposed. Among the

earliest and most important descriptors, one can find the Wiener index [22] introduced

in 1947, the Hosoya topological index [10] introduced in 1971, the Randić index [19] in-

troduced in 1975 and the Szeged index [9] inroduced in 1994 and modified to the revised

Wiener index (also called the revised Szeged index) by Randić [16] in 2002. For the use

of the Szeged and the revised Szeged indices see, for example, [14, 15] and the references
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therein. For other topological indices proposed in the litterature see e.g. [5], [18] and [21].

In this paper, we introduce a modification on the revised Szeged index to get a new topo-

logical index called the normalized revised Szeged index. The new index, computed from

the revised Szeged index, takes into account the number of edges (bonds) of a given graph.

It also fits in the same value range as the Randić index. As will be shown in this paper,

the normalized revised Szeged index correlates with the boiling point of both cyclic and

acyclic molecular graphs, better than both Szeged and revised Szeged indices. First, let

us recall some needed definitions.

Let G = (V,E) be a connected graph with vertex set V and edge set E.. For u, v ∈ V ,

d(u, v) denotes the distance between u and v in G. Let e = uv ∈ E and define the

partition {Nu(e), Nv(e), N0(e)} of the vertices of G with respect to e as follows

Nu(e) = {w ∈ V : d(u, w) < d(v, w)},

Nv(e) = {w ∈ V : d(v, w) < d(u, w)},

N0(e) = {w ∈ V : d(u, w) = d(v, w)}.
Let nu(e), nv(e) and n0(e) denote the number of vertices in Nu(e), Nv(e) and N0(e)

respectively. In 1994, Gutman [9] introduced the Szeged index of a graph G as a molecular

descriptor. It is defined by

Sz = Sz(G) =
∑

e=uv∈E
nu(e) · nv(e).

It is well known that the Szeged index generalizes the Wiener index to cyclic graphs. In

2002, Randić [16] “critically examined the Sezged index and found it deficient as a molec-

ular descriptor . . . despite it’s elegant and attractive mathematical definition”. Indeed, as

pointed out by Randić [16], the Szeged index does not take into account the contributions

of the vertices at equal distance from the endpoints of an edge. The problem occurs when

the graph contains odd cycles. Thus, Randić [16] proposed the revised Szeged index that

he called the revised Wiener index and defined it by

Sz∗ = Sz∗(G) =
∑

e=uv∈E

(
nu(e) +

n0(e)

2

)
·
(
nv(e) +

n0(e)

2

)
.

In the same paper, Randić showed that the revised Szeged (Wiener) index has a better

correlation, that the Szeged index, with the boiling point of 45 cycloalkanes.

The best known parameter to be well correlated with the boiling point of chemical com-

pounds is the Randić index. It is called so after Milam Randić who introduced it under
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the name connectivity index [19] in 1975. It is defined by

Ra(G) =
∑
uv∈E

1√
d(u)d(v)

where d(u) denotes the degree (number of neighbors) of u in G.

The rest of this paper is organized as follows. In the next section, we introduce a new

graph parameter called the normalized revised Szeged index and computed from the revised

Szeged index. We propose it as an estimator of the boiling point of chemical compounds.

In Section 3, we prove lower and upper bounds on the normalized revised Szeged index

of several classes of graphs: trees with a given number of vertices n, connected unicyclic

graphs with a given number of vertices n, connected graphs with a given number of vertices

n and a given number of edges m, and connected triangle–free graphs with a given number

of vertices. Section 4 is a study of different correlations between the boiling point, of all

alkanes and cycloalkanes on up to 8 vertices, on the one hand, and the simple, revised

and normalized revised Szeged indices as well as the Randić index on the other hand.

2. Introducing Szs∗

Both Randić and revised Szeged indices are well correlated with the boiling point of

chemical compounds. However, the Randić index Ra has a better correlation than the

revised Szeged index Sz∗. So, it is natural to look for similarities between Ra and Sz∗ in

order to improve the correlation between a possible new version of the Szeged index and

the boiling point or any other chemical property.

If we consider Ra and Sz∗ on the class of all connected graphs on a given number n of

vertices, the star Sn is the only graph that minimizes both parameters. Also, the complete

graph Kn, among others, maximizes both Ra and Sz∗. Considering the two parameters

on the class of all connected graphs with given numbers n of vertices and m of edges, it

is proved in [2] that

(n− 1) ·m ≤ Sz∗(G) ≤ n2 ·m
4

.

Equality for the lower bound holds if and only if G is the star Sn. The upper bound is

reached if and only if G is a transmission regular graph, i.e., a graph in which the sum of

the distances from each vertex to all others, also called transmission, is a constant.
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The above double–inequality can be written as follows

n− 1 ≤ Sz∗

m
≤ n2

4
,

or equivalently
√
n− 1 ≤

√
Sz∗

m
≤ n

2
.

Let us define the normalized revised Szeged index by dividing Sz∗ by m and then taking

the square root, i.e.,

Szs∗ =

√
Sz∗

m
.

Thus, we have
√
n− 1 ≤ Szs∗(G) ≤ n

2
.

These bounds are exactly the well known bounds on the Randić index, but the extremal

graphs for the upper bound are not exactly the same. However, there are many common

extremal graphs. Recall that the bounds on Ra are

√
n− 1 ≤ Ra(G) ≤ n

2

with equality for the lower bound if and only if G is the star Sn, and for the upper bound

if and only if G is a (degree) regular graph.

In addition to the similarity in the bounds, Ra and Szs∗ have the same value for several

families of graphs.

• As already mentioned, Ra(Sn) = Szs∗(Sn) =
√
n− 1. The star is also the complete

bipartite graph Kn−1,1, and this equality can be extended to all complete bipartite graphs.

Indeed, consider the complete bipartite graph Kp,q. We have

Ra(Kp,q) = Szs∗(Kp,q) =
√
p · q.

• We have also noted that Ra is maximum for regular graphs and Szs∗ is maximum for

transmission regular graphs. So, for any regular and transmission regular graph G

Ra(G) = Szs∗(G) =
n

2
.

Examples of regular and transmission regular graphs are the complete graph Kn, the cycle

Cn the hypercube Qk on n = 2k vertices, K2k \ M , where M is a perfect matching on

n = 2k vertices, Kn \ Cn for n ≥ 5, and any regular graph of diameter D = 2.

Note that there exist graphs which are transmission regular but not (degree) regular [3],

for instance the graph of Figure 1.
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Figure 1: A transmission regular but not regular graph on 12 vertices

3. Bounds on Szs∗

In this section, we prove lower and upper bounds on the normalized revised Szeged index

Szs∗ of some classes of graphs, and characterize the relevant extremal grphs. Note that the

results proved here were first obtained as conjectures using the AutoGraphiX system [1,7].

We first prove upper and lower bounds on Szs∗ considered on the set of trees with a given

number of vertices n. We also characterize the extremal trees which turn out to be the

same as for the Randić index.

Proposition 1. Let T be a tree on n vertices then

Szs∗(Sn) =
√
n− 1 ≤ Szs∗(T ) ≤ Szs∗(Pn) =

√
n(n+ 1)

6

with equality if and only if G is the star Sn for the lower bound and the path Pn for the

upper bound.

Proof : The result follows from the facts that Sz(T ) = Sz∗(T ) = W (T ) and W (Sn) ≤
W (T ) ≤ W (Pn) for any tree T , where W (T ) denotes the Wiener index (sum of all

distances) of the tree T . �
The results about the Randić index that are similar to the above proposition are due to

Bollobas and Erdös [6] for the lower bound and to Yu [23] for the upper bound. These

two bounds are gathered in the following theorem.

Theorem 2. Let T be a tree on n vertices then

Ra(Sn) =
√
n− 1 ≤ Ra(T ) ≤ Ra(Pn) =

n− 3 + 2
√
2

2

with equality if and only if G is Sn for the lower bound and Pn for the upper bound.

The upper bound on Szs∗ on the set of trees is reached only for the path Pn as proved

above. If we except Pn, what is the tree that would maximize Szs∗? The next proposition
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answers this question. Recall that a comet Con,Δ the tree a btained from a star SΔ and

a path Pn−Δ by joinning an endpoint of the path to the central vertex of the star.

Proposition 3. Let T be a tree with maximum degree Δ ≥ 3. Then

Szs∗(T ) ≤
√

n(n+ 1)

6
+

2

n− 1
− 1

with equality if and only if T is the comet Con,3. Moreover the second largest value of

Szs∗ on the set of trees on n vertices is Szs∗(Con,3).

Proof : It is known that on the set of all trees on n vertices with maximum degree

Δ ≥ 3, the Wiener index is maximum for and only for the comet Con,3 [4]. As the

Szeged index and the Wiener index are equal for a tree, the bound follows as well as the

characterization of the corresponding extremal graphs. As proved above, the largest value

of Szs∗ on the set of all trees on n vertices is attained for and only for the path Pn. So

if T is not the path then the maximum degree Δ ≥ 3. Thus the second largest value of

Szs∗ is attained for and only for the comet Con,3. �
Note that the second largest value of the Randić index over all trees on n ≥ 7 vertices is

not attained for the comet Con,3 but for a tree containing exactly one vertex of degree 3

adjacent to 3 vertices of degree 2 [11].

We now turn to bounding the normalized revised Szeged index Szs∗ on the set of unicyclic

graphs. In order to characterize the extremal unicyclic graphs related to the lower bound

on Szs∗, we need the following definition.

A graph G on n ≥ 4 vertices is a turnip Trn,g if it is composed of a cycle Cg with n − g

pending edges all incident to the same vertex from the cycle.

Proposition 4. Let G be a unicyclic graph on n vertices then√
(5n2 − 4n− 6)/(4n) if n ≤ 12,

√
n+ 3− 12/n if n ≥ 13

⎫⎬
⎭ ≤ Szs∗(G) ≤ Szs∗(Cn) =

n

2

with equality if and only if G is Trn,3 if n ≤ 12 and Trn,4 if n ≥ 13 for the lower bound

and Cn for the upper bound.

Proof : The lower bound follows from the similar bound on Sz∗ proved in [2], namely

Sz∗(G) ≥

⎧⎨
⎩

5n2/4− n− 3/2 if n ≤ 12,

n2 + 3n− 12 if n ≥ 13
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with equality if and only if G is the turnip Trn,3 if n ≤ 12 and G is the turnip Trn,4 if

n ≥ 13.

The upper bound follows from the upper bound on Szs∗ on general connected graphs and

the fact that the cycle Cn is the only unicyclic graph that is transmission regular. �
Up to now, we proved bounds as functions of the number of vertices n only. We next

prove bounds which are functions of both the numbers of vertices n and of edges m of

connected graphs.

Proposition 5. Let G be a connected graph on n ≥ 5 vertices and m edges, then

Szs∗(G) ≤ √
m+

n

2
−√

n

with equality if and only if G is the cycle Cn.

Proof :

If G is a tree, using Proposition 1, we have

Szs∗(G)−√
m ≤

√
n(n+ 1)

6
−
√
n− 1 <

n

2
−√

n

for all n ≥ 5. Thus the bound is true and strict.

If G is not a tree, i.e., m ≥ n, we have

Szs∗(G) ≤ √
m+

n

2
−√

n

with equality if and only if Szs∗(G) = n/2 and m = n, i.e., if and only if G a transmission

regular and unicyclic graph. The cycle Cn is the only unicyclic graph to be transmission

regular. �

Theorem 6. Let G be a connected triangle-free graph on n ≥ 5 vertices and m edges,

then

Szs∗(G) ≥ √
m

with equality if and only if G is a complete bipartite graph Kp,q.

Proof : Since G is a triangle-free graph, for any edge e = uv ∈ E

(nu(e) + n0(e)) · (nv(e) + n0(e)) ≥ d(u) · d(v)

with equality if and only if d(u) + d(v) = n. Thus

Sz∗(G) ≥
∑
uv∈E

d(u) · d(v)

-375-



with equality if and only if d(u) + d(v) = n for every edge uv in G. Assume that G

minimizes Sz∗ and let v1v2 be an edge in G. Then denote by V1 (resp. V2) the set of

neighbors of v1 (resp. v2). Since G is triangle-free, there is no edge between any pair of

vertices in Vi, for i = 1, 2. Also, d(u) + d(v) = n for any edge in G, thus G is a complete

bipartite graph.

Conversely, as seen above, for any complete bipartite graph Szs∗ =
√
m. �

¿From this theorem and the fact that a complete bipartite graph Kp,q contains m = pq

edges, it is easy to derive the following corollary.

Corollary 7. Let G be a connected triangle-free graph on n ≥ 3 vertices with minimum

degree δ, then

Szs∗(G) ≥
√
δ(n− δ)

with equality if and only if G is the complete bipartite graph Kn−δ,δ.

Note the similarity between the above corollary and the corresponding result about the

Randić index proved in [8] and stated as follows.

Theorem 8 ( [8, 12]). Let G = (V,E) be a triangle-free graph of order n with minimum

degree δ ≥ 1, then

Ra(G) ≥
√
δ(n− δ)

with equality if and only if G is the complete bipartite graph Kn−δ,δ.

Liu, Lu and Tian [13] showed that there was a mistake in the proof of the above theorem

given by Delorme, Favaron and Rautenbach [8]. A correct proof was recently given by Li

and Liu [12].

4. Linear regression

In this section, we report on the correlations between Szs∗ and some selected graph

invariants. Two types of regression are studied: linear and logarithmic. Each type was

studied for different sets of alkanes. First, the two regressions were tested for all alkanes

on up to 8 vertices. Among these, the acyclic alkanes were tested alone, and then all

cycloalkanes were considered. Finally, the correlations were tested for each of the sets

of unicyclic and bicyclic alkanes. The data is given in Table 1 and Table 2, and the

graphs corresponding to the chemical compounds considered are given in Figure 2 and
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Figure 2: All alkanes on up to 7 vertices

Figure 3: All alkanes on 8 vertices

Figure 3. Note that the graphs with the corresponding name (in chemistry) and boiling

points are taken from [20]. The values of Ra, Sz, Sz∗ and Szs∗ are computed using the

AutoGraphiX system [1,7]. The results are summarized in Table 3.

The first observation is that the Randić index is the descriptor having the best correlation,

in both linear and logarithmic models, with the boiling point. For the linear model, the

BP–Ra correlation ranges between R2 = 0.9601 for the cycloalkanes and R2 = 0.9768 for

trees. For the logarithmic model, the BP–Ra correlation ranges between R2 = 0.9520 for

all the cycloalkanes, and also for the bicycloalkanes, and R2 = 0.9895 for the trees. Thus,

when going from the linear to logarithmic model, the correlation increases slightly within
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Name BP Randic Sz Szs Szs* Name BP Randic Sz Szs Szs*
n1 -161,5 0 0 0 0 23mn5 89,8 3,180739 46 46 2,768875
n2 -88,6 1 1 1 1 22mn5 79,2 3,06066 46 46 2,768875
n3 -42,1 1,414214 4 4 1,414214 33mn5 86,1 3,12132 44 44 2,708013
c3 -32,8 1,5 3 6,25 1,5 223mn4 80,9 2,943376 42 42 2,645751
n4 -0,5 1,914214 10 10 1,825742 1bc3 98 3,431852 51 68,75 3,133916
2mn3 -11,7 1,732051 9 9 1,732051 1sbc3 90,3 3,342535 45 62,75 2,994042
1mc3 0,7 1,893847 8 14,5 1,903943 1m2pc3 93 3,342535 48 62,25 3,099539
c4 12,6 2 16 16 2 12ec3 90 3,38054 47 66,75 3,087995
bc110b 8 1,966321 9 19 1,949359 1m1pc3 84,9 3,267767 45 62,75 2,994042
n5 36 2,414214 20 20 2,236068 1m2ipc3 81,1 3,215214 44 63,25 3,005946
2mn4 27,8 2,270056 18 18 2,12132 1tbc3 80,5 3,105172 41 58,75 2,897043
22mn3 9,5 2 16 16 2 11ec3 88,6 3,328427 43 60,75 2,945942
1ec3 35,9 2,431852 17 26,75 2,313007 1e23mc3 91 3,270056 44 64,25 3,029616
12mc3 32,6 2,30453 16 26,25 2,291288 1m1ipc3 81,5 3,150482 41 58,75 2,897043
11mc3 20,6 2,207107 15 24,75 2,22486 11m2ec3 79,1 3,165832 43 62,75 2,994042
1mc4 36,3 2,393847 28 28 2,366432 12m1ec3 85,2 3,188487 42 61,25 2,95804
c5 49,3 2,5 20 31,25 2,5 1123mc3 78 3,065384 40 60,25 2,933793
bc111p 36 2,44949 36 36 2,44949 1122mc3 76 2,957107 39 58,75 2,897043
bc210p 46 2,466326 24 36,5 2,466441 1pc4 100,7 3,431852 68 68 3,116775
s22p 39 2,414214 14 33,5 2,362908 1ipc4 92,7 3,30453 64 64 3,023716
mbc110b 33,5 2,312278 16 32,5 2,327373 1e3mc4 89,5 3,325699 70 70 3,162278
n6 68,7 2,914214 35 35 2,645751 1e2mc4 94 3,342535 66 66 3,070598
2mn5 60,3 2,770056 32 32 2,529822 1ec5 103,5 3,431852 52 73,25 3,234855
3mn5 63,3 2,80806 31 31 2,48998 13mc5 91,3 3,287694 51 72,75 3,223795
23mn4 58 2,642734 29 29 2,408319 12mc5 95,6 3,30453 49 70,75 3,179173
22mn4 49,7 2,56066 28 28 2,366432 11mc5 87,9 3,207107 48 69,25 3,145291
1pc3 69 2,931852 31 44,5 2,723356 1mc6 101 3,393847 78 78 3,338092
1ipc3 58,3 2,80453 28 41,5 2,629956 c7 118,4 3,5 63 85,75 3,5
1e2mc3 63 2,842535 29 43,5 2,692582 dcprm 102 3,44949 46 81,5 3,191786
1e1mc3 57 2,767767 27 40,5 2,598076 bc221h 105,5 3,44949 62 93,5 3,418699
123mc3 63 2,732051 27 42 2,645751 bc311h 110 3,44949 96 96 3,464102
112mc3 52,6 2,627827 26 40,5 2,598076 bc320h 110,5 3,466326 66 91 3,372684
1ec4 70,7 2,931852 45 45 2,738613 bc410h 116 3,466326 72 95 3,446012
13mc4 59 2,787694 46 46 2,768875 s33h 96,5 3,414214 80 80 3,162278
12mc4 62 2,80453 44 44 2,708013 s24h 98,5 3,414214 47 86 3,278719
11mc4 53,6 2,707107 42 42 2,645751 2mbc310hx 100 3,37701 51 87 3,297726
1mc5 51,8 2,893847 33 49 2,857738 6mbc310hx 103 3,393847 54 87,25 3,302461
c6 80,7 3 54 54 3 mbc211hx 81,5 3,285405 60 88,25 3,321333
bc211hx 71 2,94949 40 61 2,964071 mbc310hx 92 3,312278 49 85 3,259601
bcpr 76 2,966326 27 54 2,77746 13mbc111p 71,5 3,12132 84 84 3,24037
bc220hx 83 2,966326 59 59 2,9032 14mbc210p 74 3,164214 56 79 3,142451
bc310hx 81 2,966326 34 60 2,9277 11ms22p 78 3,164214 38 75,5 3,072051
s23hx 69,5 2,914214 41 54,5 2,790289 122mbcb 84 3,089152 44 72,5 3,010399
mbc210p 60,5 2,812278 38 55,25 2,809423 tc410024h 105 3,44949 53 103,25 3,387067
13mbcb 55 2,664214 26 51 2,699206 tc311024h 107 3,44949 62 101,75 3,362374
n7 98,5 3,414214 56 56 3,05505 tc221026h 106 3,44949 48 108,75 3,476109
2mn6 90 3,270056 52 52 2,94392 tc410027h 110 3,483163 85 109,25 3,484091
3mn6 92 3,30806 50 50 2,886751 tc410013h 107,5 3,41745 51 101,25 3,354102
3en5 93,5 3,346065 48 48 2,828427 tec320h 108,5 3,483163 54 122 3,49285
24mn5 80,5 3,125898 48 48 2,288427 tec410h 104 3,483163 55 117 3,420526

Table 1: Data for alkanes on up to 7 vertices
Name BP Randic Sz Szs Szs* Name BP Randic Sz Szs Szs*
n8 125,7 3,914214 84 84 3,464102 124mc5 115 3,698377 72 100,5 3,544362
2mn7 117,6 3,770056 79 79 3,359422 1e1mc5 121,5 3,767767 70 97 3,482097
3mn7 118,9 3,80806 76 76 3,295018 123mc5 117 3,715214 70 98,5 3,508917
4mn7 117,7 3,80806 75 75 3,273268 113mc5 104,5 3,600954 71 99 3,517812
25mn6 109,1 3,625898 74 74 3,251373 112mc5 114 3,627827 67 95 3,446012
3en6 118,5 3,846065 72 72 3,207135 1ec6 131,8 3,931852 109 109 3,691206
24mn6 109,4 3,663902 71 71 3,184785 14mc6 121,8 3,787694 110 110 3,708099
23mn6 115,6 3,680739 70 70 3,162278 13mc6 122,3 3,787694 108 108 3,674235
34mn6 117,7 3,718744 68 68 3,116775 12mc6 126,6 3,80453 106 106 3,640055
22mn6 106,8 3,56066 71 71 3,184785 11mc6 119,5 3,707107 104 104 3,605551
3e2mn5 115,6 3,718744 67 67 3,093773 1mc7 134 3,893847 88 117,5 3,832427
234mn5 113,5 3,553418 65 65 3,047247 c8 149 4 128 128 4
33mn6 112 3,62132 67 67 3,093773 bcprm 129 3,94949 72 117 3,605551
224mn5 99,2 3,416502 66 66 3,070598 bcp330o 137 3,966326 81 131 3,815174
3e3mn5 118,2 3,681981 64 64 3,023716 bcb 136 3,966326 112 112 3,527668
223mn5 109,8 3,48138 63 63 3 bc420o 133 3,966326 132 132 3,829708
233mn5 114,8 3,504036 62 62 2,976095 bc510o 141 3,966326 89 138 3,91578
2233mn4 106,5 3,25 58 58 2,878492 2mbc221h 125 3,860173 89 128,25 3,774917
1pec3 128 3,931852 78 100,5 3,544362 s34o 128 3,914214 92 119 3,636237
1spec3 117,7 3,842535 69 91,5 3,381937 7mbc221h 128 3,87701 83 126 3,741657
b2mc3 124 3,842535 74 98,5 3,508917 2mbc320h 130,5 3,87701 92 124,25 3,715583
1nepec3 106 3,578298 65 87,5 3,307189 s25o 125 3,914214 103 125,5 3,734226
5msbc3 115,5 3,715214 64 86,5 3,288237 1mbc221h 117 3,785405 84 127 3,756476
1e2pc3 108 3,88054 72 97,5 3,49106 7mbc410h 138 3,893847 97 130,5 3,807887
ib2mc3 110 3,698377 69 93,5 3,418699 1mbc410h 125 3,812278 98 127,25 3,760171
11m2pc3 105,9 3,665832 67 92,5 3,400368 33mbc310hx 115 3,673433 76 117 3,605551
1m12ec3 108,9 3,726492 64 89,5 3,344772 14mbc211hx 91 3,62132 87 123 3,696846
11m2ipc3 94,4 3,538511 62 87,5 3,307189 66mbc310hx 126,1 3,72718 76 117 3,605551
112m2ec3 104,5 3,517767 59 84,5 3,25 2244mbcb 104 3,488034 77 107 3,448027
11223mc3 100,5 3,404701 56 82,5 3,211308 1223mbcb 105 3,457107 60 100 3,333333
libc4 120,1 3,787694 93 93 3,409545 tc510035o 142 3,932653 98 151 3,885872
p3mc4 117,4 3,825699 101 101 3,553168 tc510024o 149 3,94949 94 152,5 3,905125
1sbc4 123 3,842535 90 90 3,354102 tc3210o 136 3,94949 86 148,5 3,85357
12ec4 119 3,88054 94 94 3,427827 tc3300o 125 3,966326 84 151 3,885872
1234mc4 114,5 3,642734 92 92 3,391165 3mtc2210h 120,5 3,87701 69 148 3,847077
1133mc4 86 3,414214 92 92 3,391165 ds2121o 103 3,828427 90 135 3,674235
1pc5 131 3,931852 78 105 3,622844 1mtc2210h 111 3,805478 68 147 3,834058
1ipc5 126,4 3,80453 73 100 3,535534 ds2022o 115 3,87132 82 127 3,563706
1e3mc5 121 3,825699 76 104 3,605551 tec330o 137,5 3,966326 99 174 3,977208
1e2mc5 124,7 3,842535 72 100 3,535534

Table 2: Data for alkanes on 8 vertices
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the class of trees, while it slightly decreases within the set of cyclic graphs. However, the

difference does not appear to be significant.

The study confirms that the modified Szeged Szs index correlates better that the Szeged

index Sz in the case of a linear model for all the graph classes considered, except of course

for the class of trees for which Szs = Sz. In the case of the logarithmic model, when

we considered all the graphs together, the correlation was slightly better for Sz than for

Szs, R2 = 0.8967 against R2 = 0.8804. But, when we considered the class of unicyclic

graphs and that of bicyclic graphs, each alone, the correlation was better for Szs. It was

R2 = 0.8880 and R2 = 0.7912 for Sz against R2 = 0.9469 and R2 = 0.9044 for Szs in

the case of unicyclic and bicyclic graphs respectively. In the case of the class of all cyclic

graphs the correlation was R2 = 0.8462 for Sz and R2 = 0.8986 for Szs.

In almost all cases, the boiling point correlates with Szs∗ better than with Sz or Szs. In

fact the only case where Sz and Szs correlate with BP better than Szs∗ is when the class

of graphs contains only trees and the model is logarithmic. In that case, the correlation is

R2 = 0.9686 for Sz and Szs and R2 = 0.9634 for Szs∗. Globally, the correlation between

BP and Szs∗ ranges from R2 = 0.9058, for the class of all graphs and the linear model,

to R2 = 0.9634, for the class of trees and the logarithmic model.

Comparing the spread of the correlation coefficients for different parameters among the

two models gathered, we find that the Randić index has the smallest spread with 0.0375.

The second smallest spread corresponds to the normalized revised Szeged index with

0.0576, while the spreads corresponding to Sz and Szs, 0.2794 and 0.3075 respectively,

are very large compared to those of Ra and Szs∗.

The spreads of the parameters are the same if we consider only the linear model while

their values decrease. Actually the values are 0.0167, 0.0517, 0.179 and 0.2475 for Ra,

Szs∗, Sz and Szs respectively. The order changes in the case of a logarithmic model,

where the values are 0.0375, 0.055, 0.0882 and 0.1774 for Ra, Szs∗, Szs and Sz.

If we compare the linear and logarithmic models, the logarithmic formula seems to fit

better than the linear one for both Szeged and modified Szeged indices. Indeed, for all

graph classes considered in the present study, the correlation between BP and Sz, and

between BP and Szs is better in the logarithmic model than in the linear model. Also,

in the case of trees, the logarithmic model appears to be better than the linear model.
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Bp = a ·X + b Bp = a · ln(X) + b
X Ra Sz Szs Szs∗ Ra Sz Szs Szs∗

Linear and logarithmic regressions for all listed graphs
a 65.7605 1.2979 0.9560 68.2475 173.5428 52.1224 51.2689 176.4932
b -125.7588 14.1150 17.2091 -120.9368 -112.3499 -112.7021 -122.7882 -105.5079
R2 0.9681 0.6892 0.6610 0.9058 0.9649 0.8967 0.8804 0..9124

Linear and logarithmic regressions for all listed trees
a 67.4928 1.9754 1.9754 85.6040 163.9879 53.3731 53.3731 188.8712
b -130.4607 -18.4448 -18.4448 -154.7737 -100.8456 -116.7670 -116.7670 -105.6717
R2 0.9768 0.8682 0.8682 0.9513 0.9895 0.9686 0.9686 0..9634

Linear and logarithmic regressions for all listed cyclic graphs
a 61.7626 1.0503 0.8561 65.7610 182.2491 51.4306 58.9833 190.7204
b -112.2505 30.4603 22.8883 -116.4228 -123.0777 -110.0835 -160.0415 -125.3119
R2 0.9601 0.7404 0.8006 0.9280 0.9520 0.8462 0.8986 0.9315

Linear and logarithmic regressions for all listed unicyclic graphs
a 61.8049 1.1007 1.1673 70.2910 177.0823 51.0513 61.9144 194.5201
b -113.4510 26.3344 6.1250 -128.1330 -118.1771 -109.7664 -168.0507 -127.7233
R2 0.9728 0.7615 0.9085 0.9575 0.9648 0.8880 0.9469 0.9561

Linear and logarithmic regressions for all listed bicyclic graphs
a 62.1103 0.9832 0.9220 65.6919 190.3087 50.5152 67.4292 196.8301
b -111.7343 33.4759 12.9827 -118.1816 -131.2320 -106.9898 -201.3849 -134.2765
R2 0.9618 0.7341 0.8889 0.9151 0.9520 0.7912 0.9044 0.9084

Table 3: Linear and logarithmic regressions
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[18] M. Randić, Generalized molecular descriptors, J. Math. Chem. 7 (1991) 155–168.
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