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Abstract: For a graph G = (V,E) we denote by dG(u, v) the dis-
tance between vertices u and v in G, and the Hosoya polynomial of
G is defined as H(G)=

∑
{u,v}⊆V (G) x

dG(u,v). In this paper, we compute
formulae for Hosoya polynomials of general polyphenyl chains.

1 Introduction

Suppose that G = (V,E) is a connected graph, and let dG(u, v) be the distance between

u and v in G. Then H(G) =
∑

{u,v}⊆V (G)

xdG(u,v) is called Hosoya polynomial, introduced

by Hosoya in 1988 [1]. E. Estrada et al [2] studied the chemical applications of Hosoya

polynomial. The main property of H(G), which makes it interesting in chemistry, follows

directly from its definition: its first derivative at x = 1 is equal to a well-known Wiener

indexW (G) ofG, the sum of distances of all vertex pairs of G, namelyW (G) = dH(G,x)
dx

|x=1.

Hosoya polynomial contains more information about distance in a graph than any of

the hitherto proposed distance-based topological indices; cf. [3]. Abundant literature

appeared on this topic for the theoretical consideration and computation. I. Gutman

et al [3] had computed some exact formulae for the Hosoya polynomials of benzenoid

graphs. Recently, S. Xu and H. Zhang gave explicit analytical expressions for Hosoya

polynomials of catacondensed benzenoid graph [4], hexagonal chains [5], armchair open-

ended nanotubes [6] and TUC4C8(S) nanotubes [7]. E. Mehdi and T. Bijan [8] gave a

formula to compute Hosoya polynomial of zigzag polyhex nanotorus. A lot of results on
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Hosoya polynomial can also be found in [9].

The polyphenyls are widely used in industry and their detailed chemical application

and physical properties can be found in [10-14].The molecular graph (or more precisely,

the graph representing the carbon-atom) of polyphenyl is called polyphenyl system. A

polyphenyl system is tree-like if each one of its vertices lies in a hexagon and the graph

obtained by contracting every hexagon into a vertex in original molecular graphs is a tree.

If a hexagon Y in a tree-like polyphenyl system has only one neighboring hexagon, then

it is said to be terminal. If Y has three or more neighboring hexagons, then it is said to

be branched. A tree-like polyphenyl system without branched hexagons is a polyphenyl

chain.

In this paper, we first compute exact formulae for the Hosoya polynomials of three

special polyphenyl chains, and then, by virtue of them, we further obtain the formula to

compute Hosoya polynomials of general polyphenyl chains.

2 Main results

The number of hexagons in a polyphenyl chain is called its length. Denote by G(h) the set
of all polyphenyl chains of length h. Let G ∈ G(h). If h � 3 then all but the two terminal

hexagons of G are called the internal hexagons. The two vertices u and v of degree 3 on

an internal hexagon Y are on ortho-position if they are adjacent, on meta-position if they

are separated by a path of length 2 and on para-position if they are separated by a path of

length 3; and correspondingly, Y is called ortho-hexagon, meta-hexagon and para-hexagon,

respectively. G is an ortho-polyphenyl chain if all its internal hexagons are ortho-hexagons.

The meta-polyphenyl chain and para-polyphenyl chain can also be analogously defined.

In what follows, we will denote by Oh, Mh and Lh the ortho-polyphenyl chain, meta-

polyphenyl chain and para-polyphenyl chain of length h, respectively.

If G ∈ G(h) then we also find the following two notations convenient. Firstly, let w

be a vertex of G with dG(w) = m, where dG(w) denotes the degree of w in G, and Y

be a subgraph of G. Then we set Vn(Y ) = {y ∈ V (Y )|dY (y) = n}, Hmn(w, Vn(Y )) :=∑
y∈Vn(Y ) x

dG(w,y) and Hnn(Vn(Y )) :=
∑

{y,z}⊆Vn(Y ) x
dG(y,z). Secondly, if we set Hmn(G) =∑

{u,v}⊆V (G),
dG(u)=m,dG(v)=n

xdG(u,v), then clearly H(G) = H22(G) +H23(G) +H33(G).

Note H(L1) = H(M1) = H(O1) = 6+ 6x+6x2 +3x3. Next we only give the formulae

for calculating the Hosoya polynomials of Oh, Lh and Mh when h � 2.
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Theorem 2.1. If h � 2 then we have

H(Oh) = 6h+ (2 + 3h)x+ 2(2 + h)x2 + (2 + h)x3 + x2h−1

−x(2h− 3 + 2(h− 2)(x+ 1)2 + (h− 1)x2(x+ 1)3 − 2(x2 + 2x+ 2)(x2(h−1) − 1))

x− 1

+
x2((x2h−3 − 1) + x(x+ 1)(2(x2(h−2) − 1) + (x3 + x2 + 2x− 2)(x2(h−1) − 1)))

(x− 1)2
.

Proof. We first prove by induction on h that following three results are true.

H33(Oh) = 2(h− 1)− (2h− 3)x

x− 1
+

x2(x2h−3 − 1)

(x− 1)2
.

H22(Oh) = 2 + 4h+ (2 + 3h)x+ 2(2 + h)x2 + (2 + h)x3 + x2h−1 − (h− 1)x3(x+ 1)3

x− 1

+
x3(x+ 1)(x3 + x2 + 2x− 2)(x2(h−1) − 1)

(x− 1)2
.

H23(Oh) =
2x((2− h)(x+ 1)2 + (x2 + 2x+ 2)(x2(h−1) − 1))

x− 1
+

2x3(x+ 1)(x2(h−2) − 1)

(x− 1)2
.

The base step h = 2 can be easily fulfilled. So suppose h � 3. Let h = k + 1. Then

Ok+1 can be obtained from Ok by attaching to it a new hexagon Yk+1 through an edge uv

as in Fig. 1(a). Thus we have

H33(Ok+1) = H33(Ok) +H33(u, V3(Ok+1)) +H33(v, V3(Ok+1) \ {u})

= H33(Ok) + (x+ x2 + · · ·+ x2(k−1)) + (1 + x) + (1 + x2 + · · ·+ x2k−1)

= H33(Ok) +
x(x+ 1)(x2(k−1) − 1)

x− 1
+ (2 + x) ,

H22(Ok+1) = H22(Ok)−H32(u, V2(Ok)) +H22(V2(Yk+1)\{v}) +H22(p, V2(Ok)\{u})

+ H22(q, V2(Ok)\{u}) +H22(r, V2(Ok)\{u}) +H22(s, V2(Ok)\{u})

+ H22(t, V2(Ok)\{u}) = H22(Ok)

+ (−1 + 2x2 + 2x3 + x4)H22(V2(Ok) \ {u}) +H22(V2(Yk+1)\{v})− 1 ,
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H23(Ok+1) = H23(Ok)−H33(u, V3(Ok+1) \ {u, v}) +H32(u, V2(Ok) \ {u})

+ H32(v, V2(Ok) \ {u}) +H23(p, V3(Ok+1)) +H23(q, V3(Ok+1))

+ H23(r, V3(Ok+1)) +H23(s, V3(Ok+1)) +H23(t, V3(Ok+1))

= H23(Ok)−H33(u, V3(Ok+1) \ {u, v}) + (x+ 1)H32(u, V2(Ok) \ {u})

+ (2 + 2x+ x2)H23(p, V3(Ok+1)) .

Fig. 1

To give more accurate expression of H22(Ok+1) and H23(Ok+1) draw an vertical line li

through the center of the hexagon Yi of Ok+1 for each i, as in Fig. 1 (a). Let Vm(Yi, li(l))

and Vm(Yi, li(r)) denote sets of vertices of degree m lying on the left and the right sides

of li in Yi, respectively (i = 1, 2, . . . , k + 1). Then we further have

H22(Ok+1) = H22(Ok) +
(
−1 + 2x2 + 2x3 + x4

)(
H32

(
u,

k⋃
i=1

V2(Yi, li(l))\{w}
))

+ H32

(
u,

k⋃
i=1

V2(Yi, li(r))\{u}) + xd(u,w)

)
+H22(V2(Yk+1)\{v})− 1

= H22(Ok) +
(
−1 + 2x2 + 2x3 + x4

)( k∑
j=1

(x2j + x2j+1)

+
k∑

j=1

(x2j−1 + x2j) + x2k−1

)
+
(
5 + 4x+ 4x2 + 2x3

)
− 1

= H22(Ok) +
x(x+ 1)2(x3 + x2 + x− 1)(x2k − 1)

x− 1

+ (x+ 1)(x3 + x2 + x− 1)x2k−1 + (4 + 4x+ 4x2 + 2x3) ,
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H23(Ok+1) = H23(Ok)−H33(u, V3(Ok+1) \ {u, v})

+ (x+ 1)

(
H32

(
u,

k⋃
i=1

V2(Yi, li(r)) \ {u}
))

+ xd(u,w)

+ H32

(
u,

k⋃
i=1

V2(Yi, li(l)) \ {u, w}
)

+ (2 + 2x+ x2)H23(p, V3(Ok+1))

= H23(Ok)−
2k−1∑
j=1

xj + (x+ 1)

(
2k∑
j=1

xj + x2k−1 +
2k+1∑
j=2

xj

)

+ (2 + 2x+ x2)
2k∑
j=1

xj = H23(Ok)

− x((x2k−1 − 1)− (2x2 + 4x+ 3)(x2k − 1))

x− 1
+ (x+ 1)x2k−1 .

By the inductive hypothesis and direct calculation, H33(Oh), H22(Oh) and H23(Oh)

are fulfilled for h = k + 1. Hence they are fulfilled for all h. Finally, combining them, we

obtain the last assertion of H(Oh). �

Theorem 2.2. If h � 2 then we have

H(Lh) = 6h+ 3(1 + h)x+ 2(2 + h)x2 + 2hx3 + x4h−1

− x((x+ 1)(5(h− 1)x2 + 4(h− 2))− 2(2x4 + x2 + 2x+ 2)(x4(h−1) − 1))

(x− 1)(x2 + 1)

+
x3((4x4 + 1)(x4(h−1) − 1) + 4x2(x4(h−2) − 1))

(x− 1)2(x2 + 1)2
.

Proof. We first prove by induction on h that following three results are true.

H33(Lh) = (h− 1)(2 + x)− (h− 1)x3(x+ 1)

(x− 1)(x2 + 1)
+

x3(x4(h−1) − 1)

(x− 1)2(x2 + 1)2
.

H22(Lh) = 2(1 + 2h+ (h+ 2)x+ (h+ 2)x2 + hx3) + x4h−1

+
4x3(x2(x4(h−1) − 1)− (h− 1)(x+ 1))

(x− 1)(x2 + 1)
+

4x7(x4(h−1) − 1)

(x− 1)2(x2 + 1)2
.

H23(Lh) =
2x((x2 + 2x+ 2)(x4(h−1) − 1)− 2(h− 2)(x+ 1))

(x− 1)(x2 + 1)
+

4x5(x4(h−2) − 1)

(x− 1)2(x2 + 1)2
.
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The base step h = 2 can be easily fulfilled. So suppose h � 3. Let h = k + 1. Then

Lk+1 can be obtained from Lk by attaching to it a new hexagon Yk+1 through an edge uv

as in Fig. 1(b). Thus we have

H33(Lk+1) = H33(Lk) +H33(u, V3(Lk)) +H33(v, V3(Lk)) + (2 + x)

= H33(Lk) + (1 + x)H33(u, V3(Lk)) + (2 + x)

= H33(Lk) + (1 + x)
∑

k−2
j=0(x

3+4j + x4+4j) + (2 + x)

= H33(Lk) +
x3(x+ 1)(x4(k−1) − 1)

(x− 1)(x2 + 1)
+ (2 + x) ,

H22(Lk+1) = H22(Lk)−H22(u, V2(Lk)) +H22(V2(Yk+1)\{v}) +H22(p, V2(Lk) \ {u})

+ H22(q, V2(Lk) \ {u}) +H22(r, V2(Lk) \ {u}) +H22(s, V2(Lk) \ {u})

+ H22(t, V2(Lk) \ {u}) = H22(Lk)

+ (−1 + 2x2 + 2x3 + x4)H22(u, V2(Lk) \ {u}) +H22(V2(Yk+1)\{v})− 1,

H23(Lk+1) = H23(Lk)−H33(u, V3(Lk)) +H32(u, V2(Lk) \ {u}) +H32(u, V2(Yk+1) \ {v})

+ H32(v, V2(Lk) \ {u}) +H32(v, V2(Yk+1) \ {v}) +H23(p, V3(Lk))

+ H23(q, V3(Lk)) +H23(r, V3(Lk)) +H23(s, V3(Lk)) +H23(t, V3(Lk))

= H23(Lk) + (x+ 1)H32(u, V2(Lk) \ {u}) + (x+ 1)H32(v, V2(Yk+1) \ {v})

+ (−1 + 2x2 + 2x3 + x4)H23(u, V3(Lk)) .

To give more accurate expression of H22(Lk+1) and H23(Lk+1) draw a straight line l

passing through all cut edges of Lk+1, as in Fig. 1(b). Denote by Vm(Lk+1, l
+), Vm(Lk+1, l)

and Vm(Lk+1, l
−) the sets of all vertices of degree m above l, on l and under l in Lk+1,

respectively. Then we further have

H22(Lk+1) = H22(Lk) + (x+ 1)(x3 + x2 + x− 1)(2H22(u, V2(Lk, l
+) \ {u})

+ H22(u, V2(Lk, l) \ {u})) +H22(V2(Yk+1)\{v})− 1

= H22(Lk) + (x+ 1)(x3 + x2 + x− 1)

(
2

k∑
j=1

(x4j−3 + x4j−2) + x4k−1

)
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+ (4 + 4x+ 4x2 + 2x3)

= H22(Lk) + (x+ 1)(x3 + x2 + x− 1)

(
2x(x4k − 1)

(x− 1)(x2 + 1)
+ x4k−1

)
+ (4 + 4x+ 4x2 + 2x3),

H23(Lk+1) = H23(Lk) + (x+ 1)(2H32(u, V2(Lk, l
+) \ {u}) +H32(u, V2(Lk, l) \ {u}))

+ (x+ 1)(2H32(v, V2(Yk+1, l
+) \ {v}) +H32(v, V2(Yk+1, l) \ {v}))

+ (−1 + 2x2 + 2x3 + x4)H33(u, V3(Lk))

= H23(Lk) + (x+ 1)

(
2

k−1∑
j=0

(x1+4j + x2+4j) + x3+4(k−1)

)

+ (x+ 1)(2x+ 2x2 + x3) + (−1 + 2x2 + 2x3 + x4)
k∑

j=2

(
x3+4(j−2) + x4(j−1)

)

= H23(Lk) + (x+ 1)

(
2x(x4k − 1)

(x− 1)(x2 + 1)
+ x3+4(k−1)

)
+ x(x+ 1)(x2 + 2x+ 2)

+ (−1 + 2x2 + 2x3 + x4)
x3(x4(k−1) − 1)

(x− 1)(x2 + 1)
.

By the inductive hypothesis and direct calculation, H33(Lh), H22(Lh) and H23(Lh) are

fulfilled for h = k + 1. Hence they are fulfilled for all h. Finally, combining them, we

obtain the last assertion of H(Lh). �

Let w be the unique vertex of degree 3 on a terminal hexagon Y of a polyphenyl

chain. Then a vertex x of degree 2 on Y is ortho, meta and para if dY (x, w) = 1, 2

and 3, respectively. If u is a vertex of a graph G and X is a subgraph of G, then we

define H(u|G) :=
∑

v∈V (G) x
dG(u,v) and H(u, V (X)) :=

∑
y∈V (X) x

dG(u,y). Next we give

two auxiliary lemmas to obtain the formula of H(Mh).

Lemma 2.1. Suppose that u and v are para and meta on the same terminal hexagon of

Lh, respectively. Then we have

H(u|Lh) = (1 + 2x+ 2x2 + x3) +
x4(x2 + x+ 1)(x4(h−1) − 1)

(x− 1)(x2 + 1)
,

H(v|Lh) = (1 + 2x+ 2x2 + x3) +
x3(x2 + x+ 1)(x4(h−1) − 1)

(x− 1)(x2 + 1)
.
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Proof. Drawing a straight auxiliary line l in Lh as in the proof of Theorem 2.2, we have

H(u|Lh) = H(u|Y1) +H(u, V (Lh, l
+)\V (Y1)) +H(u, V (Lh, l)\V (Y1))

+ H(u, V (Lh, l
−)\V (Y1))

= H(u|Y1) + x(2H(v, V (Lh, l
+)\V (Y1)) +H(v, V (Lh, l)\V (Y1)))

= (1 + 2x+ 2x2 + x3) + x

(
2

h−1∑
i=1

(x4i + x4i+1) +
h−1∑
i=1

(x4i−1 + x4i+2)

)

= (1 + 2x+ 2x2 + x3) +
x4(x2 + x+ 1)(x4(h−1) − 1)

(x− 1)(x2 + 1)
.

Similarly, we can obtain H(v|Lh) = (1 + 2x+ 2x2 + x3) + x3(x2+x+1)(x4(h−1)−1)
(x−1)(x2+1)

. �

Lemma 2.2. Suppose that u is meta on a terminal hexagon of Mh. Then we have

H(u|Mh) =
(x+1)(x3h−1)

x−1
.

Proof. Draw a straight line l through the centers of all hexagons inMh so that all vertices

of degree 3 are above l. Then we have H(u|Mh) = H(u, V (Mh, l
+)) +H(u, V (Mh, l

−)) =∑3h−1
i=0 xi +

∑3h
i=1 x

i = (x+1)(x3h−1)
x−1

. �

Theorem 2.3. If h � 2 then we have

H(Mh) = 6h+ 3(h+ 1)x+ 2(h+ 2)x2 + 2hx3 + x4h−1

− x(x+ 1)[(h− 2)(x5 + x4 + x3 + 4) + 5(h− 1)x2]

(x− 1)(x2 + 1)

+ 2x
(2x4 + x2 + 2x+ 2)(x4(h−1) − 1)

(x− 1)(x2 + 1)

+
x2(x+ 1)(x5(x3(h−2) − 1)− x3h(x2 + x+ 1)(xh−2 − 1))

(x− 1)2(x2 + 1)

+
x3((4x4 + 1)(x4(h−1) − 1) + x2(x5 + x4 + x3 + 4)(x4(h−2) − 1))

(x− 1)2(x2 + 1)2
.

Proof. Let Yi be the i-th hexagon of Lh, and suppose that Yi and Yi+1 are connected by

wiui and that vi is a vertex of Yi+1 that is adjacent to ui (1 � i � h− 1), as in Fig. 2.
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Let Gk be the chain obtained from Lh by deleting the cut edges w1u1, . . . , wkuk and

then adding cut edges w1v1, . . . , wkvk (k = 1, . . . , h− 2). Then Gh−2 = Mh. Set G0 = Lh.

Then by Lemmas 2.1 and 2.2, we have

H(Gk+1)−H(Gk) = H(wk+1|Mk+1)(H(vk+1|Lh−k−1)−H(uk+1|Lh−k−1))

= −(x+ 1)(x3(k+1) − 1)

x− 1
· x

4(x2 + x+ 1)(x4(h−k−2) − 1)

x2 + 1

= −x4(x+ 1)(x2 + x+ 1)(x4h−k−5 − x4(h−k−2) − x3(k+1) + 1)

(x− 1)(x2 + 1)
.

Since H(Mh) −H(Lh) =
h−3∑
k=0

(H(Gk+1)−H(Gk)), substituting H(Lh) into it, we can

obtain the assertion. �

Lemma 2.3. Suppose that u is ortho on a terminal hexagon of Oh. Then we have

H(u|Oh) =
(x2h−1−1)+x(x+1)(x2h−1)

x−1
.

Proof. Drawing auxiliary vertical lines l1, l2, . . . , lh as in the proof of Theorem 2.1, we

have

H(u|Oh) = H(u,∪h
i=1V2(Yi, li(l))\{u, w}) +H(u,∪h

i=1V2(Yi, li(r))\{u, w})

+ H(u, V3(Oh)) + xd(u,w) =
h∑

i=1

(x2i−1 + x2i) +
h∑

i=1

(x2i + x2i+1)

+
2h−2∑
i=0

xi + xd(u,w) =
(x2h−1 − 1) + x(x+ 1)(x2h − 1)

x− 1
.

�

An ortho-segment of a polyphenyl chain is a subgraph that is an ortho-polyphenyl

chain and is maximal with respect to this property. The meta-segment and para-segment

can be analogously defined. A segment is a terminal segment if it contains a terminal

hexagon, and internal segment otherwise. Suppose that S1, S2, . . . , Sn are all segments of
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a polyphenyl chain G and that Si and Si+1 are connected by the edge uivi (1 � i � n−1)

(See Fig. 3).

Fig. 3 A polyphenyls chain G(S1, S2, · · · , Sn) and the edges uivi for i = 1, 2, · · · , n− 1.

Then we use G(S1, S2, . . . , Sn) instead of G to denote such a polyphenyl chain. If

G(Si, . . . , Sn) is a partial chain of G, then we let î = 0, and for i+ 1 � j � n, set

ĵ :=

⎧⎪⎨
⎪⎩

1, if Sj is an ortho-segment;

2, if Sj is a meta-segment;

3, if Sj is a para-segment.

Theorem 2.4. Let G = G(S1, S2, · · · , Sn) be a polyphenyls chain of length h. Then we

have

H(G) =
n∑

i=1

H(Si) + x
n−1∑
i=1

f(li)f(li+1) +
n−2∑
m=1

f(lm)
n−1∑

k=m+1

x
∑k

j=m+1(ĵ+1)lj+1f(lk+1),

where li is the length of the segment Si (1 � i � n), and

f(li) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x2li−1−1)+x(x+1)(x2li−1)
x−1

, if Si is an ortho-segment;

(x+1)(x3li−1)
x−1

, if Si is a meta-segment;

(1 + 2x+ 2x2 + x3) + x4(x2+x+1)(x4(li−1)−1)
(x−1)(x2+1)

, if Si is a para-segment.

Proof. Draw a straight line passing through all cut edges of G. Then we can observe

that all shortest paths between a vertex in the segment Si and a vertex in Sj (j > i) pass

through the vertices lying on the straight line and above the straight line. Thus we have

H(G) =
n∑

i=1

H(Si) +
n−1∑
i=1

xH(ui|Si)H(vi|G(Si+1, · · ·, Sn))

=
n∑

i=1

H(Si) + xH(u1|S1)
n∑

i=2

H(v1|Si) + xH(u2|S2)
n∑

i=3

H(v2|Si)

+ · · ·+ xH(un−2|Sn−2)
n∑

i=n−1

H(vn−2|Si) + xH(un−1|Sn−1)H(vn−1|Sn) .
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By the definitions of î and ĵ (i + 1 � j � n) in the partial chain G(Si, . . . , Sn) of

G(S1, S2, . . . , Sn), we further have

H(G) =
n∑

i=1

H(Si) + xH(u1|S1)(H(v1|S2) +
n−1∑
k=2

x
∑k

j=2(ĵ+1)ljH(vk|Sk+1))

+ xH(u2|S2)(H(v2|S3) +
n−1∑
k=3

x
∑k

j=3(ĵ+1)ljH(vk|Sk+1))

+ · · ·+ xH(un−2|Sn−2)
(
H(vn−2|Sn−1) + x(n̂−1+1)ln−1H(vn−1|Sn)

)

+ xH(un−1|Sn−1)H(vn−1|Sn) .

Note that both vi and ui+1 are ortho, meta and para on the terminal hexagons of

Si+1 if Si+1 is an ortho-segment, meta-segment and para-segment, respectively (1 � i �
n− 2), and that u1 and vn−1 have similar properties on two terminal segments S1 and Sn,

respectively. Therefore, combining lemmas 2.1, 2.2 and 2.3 with the definition of f(li),

we obtain

H(G) =
n∑

i=1

H(Si) + xf(l1)(f(l2) +
n−1∑
k=2

x
∑k

j=2(ĵ+1)ljf(lk+1))

+ xf(l2)(f(l3) +
n−1∑
k=3

x
∑k

j=3(ĵ+1)ljf(lk+1))

+ · · ·+ xf(ln−2)
(
f(ln−1) + x(n̂−1+1)ln−1f(ln)

)
+ xf(ln−1)f(ln)

=
n∑

i=1

H(Si) + x

n−1∑
i=1

f(li)f(li+1) +
n−2∑
m=1

f(lm)
n−1∑

k=m+1

x
∑k

j=m+1(ĵ+1)lj+1f(lk+1) . �
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