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Abstract

The Wiener index is the sum of distances between all pairs of vertices of a connected graph. In
this paper we propose g-analogs of the Wiener index, motivated by the theory of hypergeometric
series. The basic properties of these g-Wiener indices are established, as well as their relations
with the Hosoya polynomial. Some possible chemical interpretations and applications of the

g-Wiener indices are considered.

1 Introduction

In this paper we are concerned with simple graphs, and all graphs considered are assumed
to be connected. Let G be such a graph, with V(G) and E(G) being its vertex and edge
sets, respectively. The number of vertices of G, i. e., |V(G)|, is denoted by n = n(G).

The distance between two vertices u and v, denoted by d(v,u), is the length of a
shortest path between v and u. Then the Wiener index of G is

W=w(@ = > duvu

{vu}CV(G)
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which also could be written as

W =W(G)=>_ kd(G,k) (1)
k>1
where d(G, k) is the number of pairs of vertices of the graph G whose distance is k.

For details of the mathematical theory of the Wiener index and its chemical applica-
tions see [1-4]; for some recent works along these lines see [5-10].

The aim to this paper is to study the g-analog of the Wiener index. The earliest
g-analog studied in detail is the basic hypergeometric series, which was introduced in the
19th century [11].

A g-analog is, roughly speaking, a theorem or identity in the variable ¢ that gives
back a known result in the limit, as ¢ — 1 (from inside the complex unit circle in most
situations).

g-Analogs find applications in a number of areas, including the study of fractals and
multi-fractal measures, and expressions for the entropy of chaotic dynamic systems. g¢-
Analogs also appear in the study of quantum groups and in ¢-deformed superalgebras

[12,13).
2 Definitions and Basic Properties
2.1 g-Wiener index

Let ¢ be a positive real number, ¢ # 1. We define the g-analog of &, also known as the
g-bracket or g-number of k, to be

1

—qk
1—

k], =

=Y d=l4q+@+ -+ (2)
0<i<k

Then lim[k], = k.
q—1
Based on this formalism, one can conceive the g-analog of the Wiener index as
WG = D [dvuw)l, .
{v,u}CV(G)

In what follows we shall also consider the second and third g-analogs of W, defined as

Wo(Gra) = Y [d(v,w)], g 0"
{vu}CV(G)
Wi(Gq) = Y [d(v,u)]q™"

{vu}cV(G)
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where L is the diameter of G. Again, one recovers the usual Wiener index by taking the
limit ¢ — 1:
lim W1 (G, q) = lim W5 (G, q¢) = im W5(G, ¢) = W(G) . (3)
q—1 q—1 q—1

It is evident that such a generalization of the Wiener—index concept can be further

extended by considering

[d(v, w)]; ©(q, d(v, u))
{vu}CV(G)

with @(z,y) being any function in the variables z and y, such that lini O(z,y) =1 for all
z—
values of y. Yet we stop at Wy, Wy, and Wj.
Bearing in mind Egs. (1) and (2), it is straightforward to show that

Wi(Gq) = D [Klyd(G k)= (1+q+¢ +-+q"")d(G,k) (4)
k>1 k>1

Wa(Gra) = Y [Mea" Fd(G k)= (1+q+¢ +---+d")g" "G k) (5
k=1 k>1

Wi(G,q) = Y [Fed"d(G k) =Y (1+q+¢ +-+¢"")¢"d(G,F) . (6)

In addition, we have the following relations among the three g-Wiener indices:

Wi(G,q) = ¢"'W, (G, é)

WQ(G(]) = qL71W1 (Gﬂé)
Wi(G.q) = (1+q)Wi(¢®) —Wi(G.q) .

Let v and u be two vertices of the graph G and let their distance be d. The shortest
path between v and u can be viewed as a sequence d mutually incident edges, €1, e, . .., €4,
such that v is an end-vertex of e; and u and end-vertex of e4. So, we can go from v to u
in d steps, along the edges e, es,. .., e4. Suppose that the contribution of the first step is
unity, of the second step is ¢, of the third step ¢?, of the i-th step is ¢~'. The contribution
obtained by moving along the entire shortest path would then be 1+q+q?+- - -+¢%~!. This
observation may serve for an interpretation of the invariants Wy, and after an obvious

modification, also of Wy and Wj. If the parameter ¢ is chosen to be positive and less

than unity, then the g-analogs of the Wiener index would provide models for measuring
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interactions between individual atoms in a molecule which are known to decrease with
their distance.
In connection with the above deliberations, it should be mentioned that in a recent

paper [14], a class of invariants of (molecular) graphs was considered, having the form

Q= 3 fldlw,u)

{v,u}CV(G)

where f(z) depends solely on the distance d(u,v) between the vertices u and v. This

invariant satisfies the identity

which should be compared with Egs. (1) and (4)—(6).

Adopting the standard convention

by straightforward calculation we arrive at:

Uy + Qg1 + -+ -+ ap ifm<n

0 fm=n+1

Proposition 1. The g-Wiener indices W1(G, q), Wa(G, q), and W3(G, q) are polynomials

mn q, and

L-1 L

Wi(G,q) = Y > d(Gj)d* (7)
k=0 j=k+1
L-1 k

Wa(G,q) = d(G,L—k+j)q"
k=0 j=0
L-1 k 2L-1 L

Wi(Gg) = > > dGHd+d, Y dGg)d
k=0 j=|k/2]+1 k=L j=|k/2]+1

where |£] is the greatest integer smaller or equal to (.

This proposition shows us that the coefficients of ¢* in Wy(G,q), Wa(G,q), and
W3(G, q) is exactly the numbers of edges of G that have been weighted with ¢* .
In Table 1 are given the coefficients of the polynomial W;(G,q) for some alkanes,

according to Eq. (7).
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alkane ap ar ay az ag as ag W(G)
2-methyloctane 36 28 20 14 5 2 114
3-methyloctane 36 28 20 13 4 1 110
4-methyloctane 36 28 20 13 7 3 1 108
2,2-dimethyloctane 45 36 25 18 12 7 3 146
2,3-dimethyloctane 45 36 26 17 11 6 2 143
2,4-dimethyloctane 45 36 26 18 10 5 2 142
3,3-dimethyloctane 45 36 25 16 10 5 1 138
3,4-dimethyloctane 45 36 26 16 4 1 137
4,4-dimethyloctane 45 36 25 16 3 1 134
2,2,3-trimethyloctane 55 45 32 21 14 8 3 178
2,2,4-trimethyloctane 55 45 32 23 13 7 3 178
2,3,3-trimethyloctane 55 45 32 20 13 7 2 174
2,3,4-trimethyloctane 55 45 33 21 12 6 2 174
3,3,4-trimethyloctane 55 45 32 19 11 5 1 168
3,4,4-trimethyloctane 55 45 32 19 10 4 1 166
2,24 4-tetramethyloctane | 66 55 39 28 14 7 3 212
2,3,4,5-tetramethyloctane | 66 55 41 26 14 6 2 210

Table 1. The coefficients a (0 < k < 6), pertaining to ¢* in Eq. (7).

From Table 1 we see that 2,2, 3-trimethyloctane and 2, 2, 4-trimethyloctane have equal
Wiener indices W(G), but different W3 (G, ¢). The same is true for 2, 3, 3-trimethyloctane
and 2, 3, 4-trimethyloctane. This hints toward possible advantages of the g-Wiener indices
over the ordinary Wiener index.

The vast majority of chemical applications of the Wiener index deal with acyclic
organic molecules. Their molecular graphs are trees [15]. In view of this, it is not surprising
that in the chemical literature there are numerous studies of properties of the Wiener
indices of trees.

A tree is a connected acyclic graph. Each pair of vertices of a tree is connected by
a unique path. A vertex of degree one is called a pendent vertex. A tree on n vertices
has at least 2 and at most n — 1 pendent vertices. The (unique) n-vertex trees with 2
and n — 1 pendent vertices are the path and the star, respectively, denoted by P, and S,

respectively. For these trees we have:
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Proposition 2. Forn > 2,

s = (3)+ ("5 ")

v = (1) )

i < w3 (3
Wi = (5)+ ("5 e (") e
WalPa) = 1+ (3)a+ ()t ()0

WP q) = ni% (ankf EJ _ 1) (k, ED qu:"?zli (n leﬂ) &

k=1
2.2 g-Multiplicative Wiener index
Few years ago the multiplicative version of the Wiener index, denoted by m(G), was put
forward [16]. This molecular structure descriptor is equal to the product of the distances
of all pairs of vertices of the underlying molecular graph, i. e.,
@)= JI dwuw.

{v.u}CV(G)
Since this index is, even for small molecular graphs, rather large number, e. g. 34,560 for
the hexane graph (Fs), in QSPR/QSAR modeling it is convenient to work with log 7(G)

instead of 7(G). Of course,

logm(G)= Y logd(v,u)=> (logk)d(G, k) .

{v,u}CV(G) k>1
The g-analogs of the multiplicative Wiener index are defined in full analogy with

WiG.q), i=1,2,3:

m(G,q) = H [d(uu)]q:H{[k}q}d(G,k)

{v,u}CV(G) k>1
mGa) = [ dewwla= 2 = [[{k, a1
{v,u}CV(G) k>1

m(Ga) = [ [l = T{K, ¢"

{v,u}CV(G) k>1
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from which it immediately follows:

logm(G,q) = Y. (log 11:‘2)01(0, k)

k>1

ok
logma(G,q) = Z (log 11 4 ) d(G, k) + (Z) Llogqg— W(G)loggq

log m3(G, q) ) d(G, k) + W(G)logq .

|
x
v
A
T
9
o)
—_| =
R
= |

3 Relations between q-Wiener Indices and Hosoya
Polynomial

The counting polynomial
L
H(G,\) =Y d(G k) \* (8)
k=1

was first put forward by Hosoya [17]. Hosoya himself called it “Wiener polynomial”, but
eventually the more appropriate name “Hosoya polynomial” has been accepted.
Combining Eq. (8) with the definitions of the ¢-Wiener indices, we arrive at:

Proposition 3. Let G be a connected graph on n vertices. Then

.o = (1) - mc.)

1—q|\2
v - & (6)-()
WilG.a) = o [H(G.a) = H(G.")].

The most famous property of the Hosoya polynomial is that its first derivative at A = 1
is equal to the Wiener index [17]. The analogous relations between the derivatives of the

g¢-Wiener indices and the Hosoya polynomial are stated in:

Proposition 4. Let G be a connected graph. Then,

WG = 1 [WilG.a) - H'(Goo)
o - chyfroaat o) ()] (o)
WiG.a) = = [Wa(G.a) + H'(Go) — 21'(Ga)]
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By taking the limit ¢ — 1, we get:

WG, 1) = %H”(G,l)
WHG,1) = % [(QL —9)H'(G,1) — H"(G, 1)]
WHG,1) = %[2H’(G,1)+3H”(G,1)}.

Before stating the next properties, we need to define the partial Hosoya polynomial

H,,(G, ), defined as

H,(G,\N)=0 ifm=0
Ho(GN) = 3 d(G, k) AP itm=123...L
k=1

We see that H.(G,\) = H(G, A) and H.(G,1) = (}).

Proposition 5. Let G be a connected graph. Then,

Wi(G.q) = Z [HL(G 1) - Hk(c;,n} ¢

WQ(G7 q) = - [HL(G71) 7HL,/€,1(G71):| qk
k=0

WyGg) = [HL(G. 1) = Hipgs)(G,1)] " - ) [HL(G. 1) = H(G,1)] o
k=0 k=0

Bearing in mind the limit values (3), we arrive at the following interesting corollary

of Proposition 5:
-1

[HL G,1) Hk(GJ)] .

k=0
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