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Abstract

TheWiener index is the sum of distances between all pairs of vertices of a connected graph. In

this paper we propose q-analogs of the Wiener index, motivated by the theory of hypergeometric

series. The basic properties of these q-Wiener indices are established, as well as their relations

with the Hosoya polynomial. Some possible chemical interpretations and applications of the

q-Wiener indices are considered.

1 Introduction

In this paper we are concerned with simple graphs, and all graphs considered are assumed

to be connected. Let G be such a graph, with V (G) and E(G) being its vertex and edge

sets, respectively. The number of vertices of G, i. e., |V (G)|, is denoted by n = n(G).

The distance between two vertices u and v, denoted by d(v, u), is the length of a

shortest path between v and u. Then the Wiener index of G is

W = W (G) =
∑

{v,u}⊆V (G)

d(v, u)
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which also could be written as

W = W (G) =
∑
k≥1

k d(G, k) (1)

where d(G, k) is the number of pairs of vertices of the graph G whose distance is k.

For details of the mathematical theory of the Wiener index and its chemical applica-

tions see [1–4]; for some recent works along these lines see [5–10].

The aim to this paper is to study the q-analog of the Wiener index. The earliest

q-analog studied in detail is the basic hypergeometric series, which was introduced in the

19th century [11].

A q-analog is, roughly speaking, a theorem or identity in the variable q that gives

back a known result in the limit, as q → 1 (from inside the complex unit circle in most

situations).

q-Analogs find applications in a number of areas, including the study of fractals and

multi-fractal measures, and expressions for the entropy of chaotic dynamic systems. q-

Analogs also appear in the study of quantum groups and in q-deformed superalgebras

[12,13].

2 Definitions and Basic Properties

2.1 q-Wiener index

Let q be a positive real number, q �= 1. We define the q-analog of k, also known as the

q-bracket or q-number of k, to be

[k]q =
1− qk

1− q
=
∑
0≤i<k

qi = 1 + q + q2 + · · ·+ qk−1 . (2)

Then lim
q→1

[k]q = k.

Based on this formalism, one can conceive the q-analog of the Wiener index as

W1(G, q) =
∑

{v,u}⊆V (G)

[d(v, u)]q .

In what follows we shall also consider the second and third q-analogs of W , defined as

W2(G, q) =
∑

{v,u}⊆V (G)

[d(v, u)]q q
L−d(v,u)

W3(G, q) =
∑

{v,u}⊆V (G)

[d(v, u)]q q
d(v,u)
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where L is the diameter of G. Again, one recovers the usual Wiener index by taking the

limit q → 1 :

lim
q→1

W1(G, q) = lim
q→1

W2(G, q) = lim
q→1

W3(G, q) = W (G) . (3)

It is evident that such a generalization of the Wiener–index concept can be further

extended by considering ∑
{v,u}⊆V (G)

[d(v, u)]q Φ(q, d(v, u))

with Φ(x, y) being any function in the variables x and y, such that lim
x→1

Φ(x, y) = 1 for all

values of y. Yet we stop at W1 , W2 , and W3.

Bearing in mind Eqs. (1) and (2), it is straightforward to show that

W1(G, q) =
∑
k≥1

[k]q d(G, k) =
∑
k≥1

(1 + q + q2 + · · ·+ qk−1) d(G, k) (4)

W2(G, q) =
∑
k≥1

[k]q q
L−k d(G, k) =

∑
k≥1

(1 + q + q2 + · · ·+ qk−1) qL−k d(G, k) (5)

W3(G, q) =
∑
k≥1

[k]q q
k d(G, k) =

∑
k≥1

(1 + q + q2 + · · ·+ qk−1) qk d(G, k) . (6)

In addition, we have the following relations among the three q-Wiener indices:

W1(G, q) = qL−1 W2

(
G,

1

q

)

W2(G, q) = qL−1 W1

(
G,

1

q

)

W3(G, q) = (1 + q)W1(q
2)−W1(G, q) .

Let v and u be two vertices of the graph G and let their distance be d. The shortest

path between v and u can be viewed as a sequence d mutually incident edges, e1, e2, . . . , ed,

such that v is an end-vertex of e1 and u and end-vertex of ed. So, we can go from v to u

in d steps, along the edges e1, e2, . . . , ed. Suppose that the contribution of the first step is

unity, of the second step is q, of the third step q2 , of the i-th step is qi−1. The contribution

obtained by moving along the entire shortest path would then be 1+q+q2+· · ·+qd−1. This

observation may serve for an interpretation of the invariants W1 , and after an obvious

modification, also of W2 and W3. If the parameter q is chosen to be positive and less

than unity, then the q-analogs of the Wiener index would provide models for measuring
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interactions between individual atoms in a molecule which are known to decrease with

their distance.

In connection with the above deliberations, it should be mentioned that in a recent

paper [14], a class of invariants of (molecular) graphs was considered, having the form

Q̃ =
∑

{v,u}⊆V (G)

f(d(v, u))

where f(x) depends solely on the distance d(u,v) between the vertices u and v. This

invariant satisfies the identity

Q̃ =
∑
k≥1

f(k) d(G, k)

which should be compared with Eqs. (1) and (4)–(6).

Adopting the standard convention

n∑
k=m

ak =

{
am + am+1 + · · ·+ an if m ≤ n

0 if m = n+ 1

by straightforward calculation we arrive at:

Proposition 1. The q-Wiener indices W1(G, q), W2(G, q), and W3(G, q) are polynomials

in q, and

W1(G, q) =
L−1∑
k=0

L∑
j=k+1

d(G, j) qk (7)

W2(G, q) =
L−1∑
k=0

k∑
j=0

d(G,L− k + j) qk

W3(G, q) =
L−1∑
k=0

k∑
j=�k/2�+1

d(G, j) qk +
2L−1∑
k=L

L∑
j=�k/2�+1

d(G, j) qk

where ��� is the greatest integer smaller or equal to �.

This proposition shows us that the coefficients of qk in W1(G, q), W2(G, q), and

W3(G, q) is exactly the numbers of edges of G that have been weighted with qk .

In Table 1 are given the coefficients of the polynomial W1(G, q) for some alkanes,

according to Eq. (7).
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alkane a0 a1 a2 a3 a4 a5 a6 W (G)

2-methyloctane 36 28 20 14 9 5 2 114

3-methyloctane 36 28 20 13 8 4 1 110

4-methyloctane 36 28 20 13 7 3 1 108

2,2-dimethyloctane 45 36 25 18 12 7 3 146

2,3-dimethyloctane 45 36 26 17 11 6 2 143

2,4-dimethyloctane 45 36 26 18 10 5 2 142

3,3-dimethyloctane 45 36 25 16 10 5 1 138

3,4-dimethyloctane 45 36 26 16 9 4 1 137

4,4-dimethyloctane 45 36 25 16 8 3 1 134

2,2,3-trimethyloctane 55 45 32 21 14 8 3 178

2,2,4-trimethyloctane 55 45 32 23 13 7 3 178

2,3,3-trimethyloctane 55 45 32 20 13 7 2 174

2,3,4-trimethyloctane 55 45 33 21 12 6 2 174

3,3,4-trimethyloctane 55 45 32 19 11 5 1 168

3,4,4-trimethyloctane 55 45 32 19 10 4 1 166

2,2,4,4-tetramethyloctane 66 55 39 28 14 7 3 212

2,3,4,5-tetramethyloctane 66 55 41 26 14 6 2 210

Table 1. The coefficients ak (0 ≤ k ≤ 6), pertaining to qk in Eq. (7).

From Table 1 we see that 2, 2, 3-trimethyloctane and 2, 2, 4-trimethyloctane have equal

Wiener indices W (G), but different W1(G, q). The same is true for 2, 3, 3-trimethyloctane

and 2, 3, 4-trimethyloctane. This hints toward possible advantages of the q-Wiener indices

over the ordinary Wiener index.

The vast majority of chemical applications of the Wiener index deal with acyclic

organic molecules. Their molecular graphs are trees [15]. In view of this, it is not surprising

that in the chemical literature there are numerous studies of properties of the Wiener

indices of trees.

A tree is a connected acyclic graph. Each pair of vertices of a tree is connected by

a unique path. A vertex of degree one is called a pendent vertex. A tree on n vertices

has at least 2 and at most n − 1 pendent vertices. The (unique) n-vertex trees with 2

and n− 1 pendent vertices are the path and the star, respectively, denoted by Pn and Sn,

respectively. For these trees we have:
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Proposition 2. For n ≥ 2,

W1(Sn, q) =

(
n

2

)
+

(
n− 1

2

)
q

W2(Sn, q) =

(
n− 1

2

)
+

(
n

2

)
q

W3(Sn, q) = (n− 1)q +

(
n− 1

2

)
q2 +

(
n− 1

2

)
q3

W1(Pn, q) =

(
n

2

)
+

(
n− 1

2

)
q +

(
n− 2

2

)
q2 + · · ·+ qn−2

W2(Pn, q) = 1 +

(
3

2

)
q +

(
4

2

)
q2 + · · ·+

(
n

2

)
qn−2

W3(Pn, q) =
n−2∑
k=1

1

2

(
2n− k −

⌊
k

2

⌋
− 1

)(
k −
⌊
k

2

⌋)
qk +

2n−3∑
k=n−1

(
n−
⌊
k
2

⌋
2

)
qk .

2.2 q-Multiplicative Wiener index

Few years ago the multiplicative version of the Wiener index, denoted by π(G), was put

forward [16]. This molecular structure descriptor is equal to the product of the distances

of all pairs of vertices of the underlying molecular graph, i. e.,

π(G) =
∏

{v,u}⊆V (G)

d(v, u) .

Since this index is, even for small molecular graphs, rather large number, e. g. 34,560 for

the hexane graph (P6), in QSPR/QSAR modeling it is convenient to work with log π(G)

instead of π(G). Of course,

log π(G) =
∑

{v,u}⊆V (G)

log d(v, u) =
∑
k≥1

(log k) d(G, k) .

The q-analogs of the multiplicative Wiener index are defined in full analogy with

Wi(G, q) , i = 1, 2, 3 :

π1(G, q) =
∏

{v,u}⊆V (G)

[d(v, u)]q =
∏
k≥1

{[k]q}d(G,k)

π2(G, q) =
∏

{v,u}⊆V (G)

[d(v, u)]q q
L−d(v,u) =

∏
k≥1

{[k]q qL−k}d(G,k)

π3(G, q) =
∏

{v,u}⊆V (G)

[d(v, u)]q q
d(v,u) =

∏
k≥1

{[k]q qk}d(G,k)
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from which it immediately follows:

log π1(G, q) =
∑
k≥1

(
log

1− qk

1− q

)
d(G, k)

log π2(G, q) =
∑
k≥1

(
log

1− qk

1− q

)
d(G, k) +

(
n

2

)
L log q −W (G) log q

log π3(G, q) =
∑
k≥1

(
log

1− qk

1− q

)
d(G, k) +W (G) log q .

3 Relations between q-Wiener Indices and Hosoya

Polynomial

The counting polynomial

H(G, λ) =
L∑

k=1

d(G, k)λk (8)

was first put forward by Hosoya [17]. Hosoya himself called it “Wiener polynomial”, but

eventually the more appropriate name “Hosoya polynomial” has been accepted.

Combining Eq. (8) with the definitions of the q-Wiener indices, we arrive at:

Proposition 3. Let G be a connected graph on n vertices. Then

W1(G, q) =
1

1− q

[(
n

2

)
−H(G, q)

]

W2(G, q) =
qL

1− q

[
H

(
G,

1

q

)
−
(
n

2

)]

W3(G, q) =
1

1− q

[
H(G, q)−H(G, q2)

]
.

The most famous property of the Hosoya polynomial is that its first derivative at λ = 1

is equal to the Wiener index [17]. The analogous relations between the derivatives of the

q-Wiener indices and the Hosoya polynomial are stated in:

Proposition 4. Let G be a connected graph. Then,

W ′
1(G, q) =

1

1− q

[
W1(G, q)−H ′(G, q)

]

W ′
2(G, q) =

1

1− q

{
W2(G, q) + L qL−1

[
H

(
G,

1

q

)
−
(
n

2

)]
− qL−2H ′

(
G,

1

q

)}

W ′
3(G, q) =

1

1− q

[
W3(G, q) +H ′(G, q)− 2qH ′(G, q2)

]
.
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By taking the limit q → 1, we get:

W ′
1(G, 1) =

1

2
H ′′(G, 1)

W ′
2(G, 1) =

1

2

[
(2L− 2)H ′(G, 1)−H ′′(G, 1)

]

W ′
3(G, 1) =

1

2

[
2H ′(G, 1) + 3H ′′(G, 1)

]
.

Before stating the next properties, we need to define the partial Hosoya polynomial

Hm(G, λ), defined as

Hm(G, λ) ≡ 0 if m = 0

Hm(G, λ) =
m∑
k=1

d(G, k)λk if m = 1, 2, 3, . . . , L .

We see that HL(G, λ) = H(G, λ) and HL(G, 1) =
(
n
2

)
.

Proposition 5. Let G be a connected graph. Then,

W1(G, q) =
L−1∑
k=0

[
HL(G, 1)−Hk(G, 1)

]
qk

W2(G, q) =
L−1∑
k=0

[
HL(G, 1)−HL−k−1(G, 1)

]
qk

W3(G, q) =
2L−1∑
k=0

[
HL(G, 1)−H�k/2�(G, 1)

]
qk −

L−1∑
k=0

[
HL(G, 1)−Hk(G, 1)

]
qk .

Bearing in mind the limit values (3), we arrive at the following interesting corollary

of Proposition 5:

W (G) =
L−1∑
k=0

[
HL(G, 1)−Hk(G, 1)

]
.
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