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Numerous of its chemical applications and mathematical properties are well studied [1,

6-8, 13-15]. For detailed results on this topic, the readers could be referred to [6, 7]. A

closed concept related to Wiener index is the mean distance. For an n− vertex graph G,

the mean distance is defined as μ(G) = W (G)/
(

n
2

)
. Mean distance is used in studying

efficiency of networks, good networks are often characterized by a small distance.

In the investigation of Wiener index of graphs, many interesting extremal results

have been found. Entringer et. al [8] proved that if Tn is a tree on n vertices, then

(n − 1)2 ≤ W (Tn) ≤ (n+1
3

)
, and the upper bound is achieved if and only if Tn

∼= Pn

and the lower bound is achieved if and only if Tn
∼= K1,n−1. J. Plesńık [13] determined

the lower bound of Wiener index in the class of graphs with n vertices and diameter d,

and proved that among all 2-connected graphs of a given order n the Wiener index is

maximized by the cycle Cn. H. B. Walikar, V. S. Shigehall, H. S. Ramane [15] gave some

upper and lower bounds on the Wiener index of a graph in terms of some graph-theoretic

parameters, like radius, diameter, order, size, independence number, connectivity and

chromatic number. On the other hands, some extremal results on mean distance are also

established. In [5], Chung has showed that the mean distance is at most as large as the

independence number, which was a conjecture of the widely known Graffiti program of

Fajtlowicz [10]. Kouider and Winkler have used the minimum degree to bound the upper

bound of mean distance [12]. Recently, Bekkai and Kouider gave the lower and upper

bounds on the mean distance in a connected graph in terms of its order and girth [2].

In this paper, we give the upper and lower bounds on the Wiener index of a graph

in term of its order and circumference. The extremal graphs which minimize and max-

imize the Wiener index among all graphs with given order and circumference are also

characterized.

2 Lemmas and results

We first introduce some classes of graphs and lemmas which will help to prove our

main result. Given two numbers a and b, if a divides b, we use the notation a|b.
Let n and l be two positive integers such that (l− 1)|(n−1). We use S(n, l) to denote

the following class of graphs: each of which has n−1
l−1

blocks and every block is a complete

graph Kl. S∗
n,l denotes the following graph: take n−1

l−1
disjoint copies of the complete graph

Kl−1, add a vertex u and join u to every vertex of those complete graphs.

It is easily checked that S(n, l) ⊆ G(n, l) and S∗
n,l is the unique graph in S(n, l) with

diameter 2. Some of these graphs are depicted in Fig.1.
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a graph in S(10, 4) S∗
10,4

Fig. 1 Some graphs of S(10, 4)

Let Cr ·Pt be the graph obtained from a r− vertex cycle Cr and Pt by joining a vertex

of Cr to one end vertex of Pt. In Fig.2, we have drawn C3 · P4.
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Fig. 2 C3 · P4

The following well-known theorem proved by Erdős and Gallai in 1959 is a classical

result in extremal graph theory, see [3, Chapter 3] or see [9] for details.

Lemma 1 ([3, 9]). Let G be a graph on n vertices with c(G) ≤ l. Then

e(G) ≤ (n − 1)l/2

and the equality holds if and only if (l − 1)|(n − 1) and G ∈ S(n, l) .

Lemma 2 ([14]). W (C2n) =
(2n)3

8
, W (C2n+1) =

(2n + 2)(2n + 1)(2n)

8
.

Lemma 3 ([6]). W (Pn) =
(

n+1
3

)
.

Lemma 4 ([1]). Let G be a connected graph with a cut-vertex u such that G1 and G2

are two connected subgraphs of G having u as the only common vertex and G1 ∪G2 = G.

Let n1 = |V (G1)| and n2 = |V (G2)|. Then

W (G) = W (G1) + W (G2) + (n1 − 1) dG2(u) + (n2 − 1) dG1(u) .
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Lemma 5. Let n and l be two positive integers such n > l. Then

W (Cl · Pn−l) = k3 +

(
n − 2k + 2

3

)
+

(n − 2k)(n − 2k + 1)(2k − 1)

2
+ (n − 2k)k2

if l = 2k, k = 2, 3, . . . , and

W (Cl · Pn−l) =
(k + 1)(2k + 1)k

2
+

(
n − 2k + 1

3

)
+ (n − 2k − 1)(nk − k2 + k)

if l = 2k + 1, k = 1, 2, . . . .

Proof. Suppose u is the unique vertex in Cl · Pn−l with degree 3. Set G1 = Cl and

G2 = Pn−l−1. Thus G1 and G2 are two connected subgraphs of Cl · Pn−l having u as the

only common vertex and G1 ∪G2 = Cl · Pn−l. Applying Lemma 2, Lemma 3 and Lemma

4 can give the result. �

Now we are in the position to state the main result of this paper.

When n = l, among all graphs in G(n, l), it is easily seen that the Wiener index is

maximized by the cycle Cn and minimized by the complete graph Kn. So in the following,

we only consider the graph G with n vertices and c(G) = l ≤ n − 1. Define

f(n, l) = k3 +

(
n − 2k + 2

3

)
+

(n − 2k)(n − 2k + 1)(2k − 1)

2
+ (n − 2k)k2

if l = 2k, k = 2, 3, . . . , and

f(n, l) =
(k + 1)(2k + 1)k

2
+

(
n − 2k + 1

3

)
+ (n − 2k − 1)(nk − k2 + k)

if l = 2k + 1, k = 1, 2, . . . .

Then we have the following result.

Theorem 6. Let G ∈ G(n, l), where n > l. Then

n(n − 1) − (n − 1)l

2
≤ W (G) ≤ f(n, l) .

The lower bound is achieved if and only if (l − 1)|(n − 1) and G ∼= S∗
n,l, the upper bound

is achieved if and only if G ∼= Cl · Pn−l.

Proof. Suppose the diameter of G is d. Then the Wiener index of G can be expressed

as:

W (G) =
d∑

i=1

i d(G, i) .

The number of vertex pairs at unit distance in G is equal to the number of edges of

G. Thus, d(G, 1) = e(G) . Therefore,

W (G) = d(G, 1) +
d∑

i=2

i d(G, i) = e(G) +
d∑

i=2

i d(G, i) ≥ e(G) + 2
d∑

i=2

d(G, i) (1)
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= e(G) + 2

[
d∑

i=1

d(G, i) − d(G, 1)

]
= e(G) + 2

[(
n

2

)
− e(G)

]

= n(n − 1) − e(G) ≥ n(n − 1) − (n − 1)l

2
(by Lemma 1) . (2)

It is evident that the equality in (1) will hold if and only if the diameter of G is 2. By

Lemma 1, the equality in (2) will hold if and only if (l− 1)|(n− 1) and G ∈ S(n, l). Note

that S∗
n,l is the unique graph in S(n, l) with diameter 2. So

W (G) ≥ n(n − 1) − (n − 1)l

2
,

and the discussion above implies that the equality holds if and only if (l − 1)|(n− 1) and

G ∼= S∗
n,l.

In the following, we will prove the upper bound on W (G) by induction on n.

Let G∗ be a graph with maximum Wiener index in the class G(n, l) and C a cycle of

length l in G∗. Since n > l, and G∗ maximizes the Wiener index, it is easy to see that

there exists a vertex u ∈ V (G∗) \ V (C) such that u a pendent vertex of G∗.

Because the vertex pairs of G∗ can be divided into two groups: those which do not

contain u and those which do contain u. The sum of distances of the vertex pairs of the

first type is just the Wiener index of the graph G∗ − u. So

W (G∗) = W (G∗ − u) + dG∗(u) .

Let v be the pendent vertex of Cl · Pn−l. Similarly, we have

W (Cl · Pn−l) = W (Cl · Pn−l − v) + dCl·Pn−l
(v) = W (Cl · Pn−l−1) + dCl·Pn−l

(v) .

Clearly, G∗−u ∈ G(n−1, l), by the induction hypothesis, W (G∗−u) ≤ W (Cl ·Pn−l−1).

It is easily checked that dG∗(u) ≤ dCl·Pn−l
(v) with the equality holding if and only if G∗ ∼=

Cl · Pn−l. So, W (G∗) ≤ W (Cl · Pn−l), and the equality holds if and only if G∗ ∼= Cl · Pn−l.

By Lemma 5, W (Cl · Pn−l) = f(n, l). Therefore,

W (G) ≤ f(n, l)

and the equality holds if and only if G ∼= Cl · Pn−l. �
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[13] J. Plesńık, On the sum of all distances in a graph or digraph, J. Graph Theory 8

(1984) 1–21.

[14] B. E. Sagan, Y. N. Yeh, P. Zhang, The Wiener polynomial of a graph, Int. J. Quant.

Chem. 60 (1996) 959–969.

[15] H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a

graph, MATCH Commun. Math. Comput. Chem. 50 (2004) 117–132.

[16] H. Wiener, Structual determination of paraffin boiling points, J. Amer. Chem. Soc.

69 (1947) 17–20.

-336-




