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Abstract

We investigate enumerative properties of unbranched polyphenylene chains. In
particular, we find exact formulas for the numbers of matchings and independent
sets of given cardinalities in three types of uniform chains. Further, we show that
two of those three types are extremal with respect to the number of considered
structures among all chains of a given length. The paper also presents some results
on polyphenylene dendrimers.

1 Introduction

A phenylene is any of divalent aromatic radicals obtained from a benzene molecule by

removing two hydrogen atoms. Any of numerous polymers in which the basic building

block is a phenylene is called a polyphenylene. Polyphenylenes make an important class

of compounds that serve as precursors to many scientifically and commercially interesting

materials, such as, e.g., polyphenylene oxide and polyphenylene sulfide. Unbranched

polyphenylenes appear in the context of low-dimensional organic conductors [3], while

their dendrimer-like counterparts play an important role in synthesizing large graphene

molecules [4].

Polyphenylenes share many structural similarities with benzenoid compounds. As a con-

sequence, both classes of compounds can be efficiently modeled by closely related classes of

graphs. However, while the study of benzenoid compounds has been followed (and in many

cases preceded) by the study of benzenoid graphs, the graphs representing polyphenylene
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compounds remain largely unexplored. The main purpose of this paper is to investi-

gate structural and enumerative aspects of some chemically relevant concepts such as,

e.g., matchings and independent sets, in graphs that represent unbranched polyphenylene

chains. Among other results, we present explicit formulas for the number of matchings

(i.e., the Hosoya index) and for the number of independent sets (the Merrifield-Simmons

index) of three types of uniform chains. We also find the chains extremal with respect to

the considered indices. At the end, we briefly comment on branched polyphenylenes and

on some possible further developments.

The present paper follows the approach developed recently in a paper concerned by chain

hexagonal cacti [1]. For the reader’s convenience, we tried to make this paper reasonably

self-contained by presenting all necessary definitions and technical background and by

providing details of crucial proofs. However, we will refer the reader to the mentioned

reference for all details that do not offer any insight specific to the class of graphs we

consider here.

2 Definitions, conjectures, and preliminary results

We start by defining the basic terms. For the general graph-theoretic terminology we

refer the reader to any of standard monographs, such as, e. g., [7] or [10].

All graphs considered here are finite and simple. For a given graph G, the set of its

vertices is denoted by V (G) and the set of its edges by E(G). For a vertex u ∈ V (G) by

G− u we denote the graph induced by V (G)− {u}. For an edge e ∈ E(G) we denote by

G − e the graph obtained from G by deleting the edge e, while G\e denotes the graph

obtained by deleting e and both its end-vertices. The closed neighborhood of a vertex v

is denoted by N [v].

A cactus graph is a connected graph in which no edge is contained in more than one

cycle. Hence, each block of a cactus graph is either a cycle or an edge. A cactus graph

in which all blocks are cycles of the same size m is called m-uniform cactus graph. A

hexagonal cactus is a 6-uniform cactus. An example is shown in Fig. 1.

A polyphenylene is a graph obtained from a hexagonal cactus by expanding each of its

cut-vertices to an edge. The polyphenylene corresponding to the hexagonal cactus from

Fig. 1 is shown in Fig. 2.

A polyphenylene in which no hexagon has more than two cut-vertices is called a polyphe-
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Figure 1: A hexagonal cactus.

Figure 2: A polyphenylene.

nylene chain. Obviously, each polyphenylene chain contains exactly two hexagons with

only one cut-vertex. Those hexagons are called terminal; all other hexagons are inter-

nal. The number of hexagons in a given polyphenylene chain is called its length. A

polyphenylene chain of length 6 is shown in Fig. 3.

Figure 3: A polyphenylene chain of length 6.

An internal hexagon is called ortho-hexagon, meta-hexagon, or para-hexagon if its

cut-vertices are at distance 1, 2, or 3, respectively. The terminology is inherited from

chemistry, where it is used to describe the relative position of two atoms in the benzene

molecule. (See Fig. 4.) If all internal hexagons in a polyphenylene chain are of the same

type, say ortho, the chain is an ortho-chain. The meta- and para-chains are defined

analogously. We denote an ortho-, a meta-, and a para-chain of length n by On, Mn, and

Ln, respectively. (We reserve Pn for the path on n vertices.) The three types of uniform

-315-



u u u

v

v

v

O M P

Figure 4: Ortho-, meta-, and para-positions of atoms in benzene.

chains are shown in Fig. 5. The cut-vertex u of the rightmost hexagon and the cut-edge

u

v
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Figure 5: Polyphenylene chains of length 6.

e = {u, v} incident to it will play special roles in our computations. We call them the

critical vertex and the critical edge, respectively. Three auxiliary graphs that appear

as components of G\e and G−N [u] are shown in Fig. 6. For a polyphenylene chain Gn,

O’ M’ L’5 5 5

Figure 6: The three types of auxiliary graphs.

its auxiliary graph is denoted by G′
n, where G stands for O, M , or L.

Clearly, polyphenylene chains of a given length are in a bijective correspondence with

cactus chains of the same length. That fact enables us to enumerate all polyphenylene

chains of a given length. We refer the reader to [1] for the proof of the following result.

Theorem 1

There are 1
2

(
3n−2 + 3�

n−1
2

�
)
different polyphenylene chains of length n.

In the rest of this section we define the basic concepts related to matchings and indepen-

dent sets.

A matching M in G is a set of edges of G such that no two edges from M have a vertex

in common. The number of edges in M is called its size. A matching in G with the

largest possible size is called a maximum matching. The cardinality of any maximum
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matching in G is called the matching number of G and denoted by ν(G). If a matching

in G is not a subset of a larger matching of G, it is called a maximal matching. The

size of any smallest maximal matching in G is called the saturation number of G and

denoted by s(G). Obviously, any maximum matching is also maximal, while the opposite

claim is generally not valid. A vertex u incident with an edge from a matching M is

said to be covered by M . The number of vertices of G not covered by a matching M is

the defect of M . We denote the number of matchings of defect d in G by Nd(G). The

matchings with defect zero are called perfect.

Let us denote by Φk(G) the number of matchings of size k in G. Obviously, Φ0(G) = 1,

Φ1(G) = |E(G)|, and Φk(G) = 0 for k > ν(G). A compact way to treat all numbers

Φk(G) as a single entity is to combine them into a matching polynomial.

The matching polynomial of G is defined as

m(G; x) =

ν(G)∑
k=0

Φk(G)xk,

where x is a formal variable. For the sake of brevity, we will often write m(G) instead of

m(G; x) when there is no possibility of confusion.

By evaluating m(G; x) at x = 1 we obtain the total number of matchings in G. We denote

this quantity by Φ(G). In chemical literature Φ(G) is often denoted by Z(G) and called

Hosoya Z-index of G.

There are two common forms of matching polynomials. The one considered here is some-

times called the matching generating polynomial, as opposed to the matching defect

polynomial, also known as the acyclic polynomial [5]. We refer the reader to Chapter 8.5

in [9] and to [2] for more information on the general theory of matching polynomials.

The following two results belong to the mathematical folklore.

Theorem M1 Let G be a graph and e an edge of G. Then

m(G; x) = m(G− e; x) + x ·m(G\e; x) .

Theorem M2 Let G be a graph with components G1, . . . , Gk. Then

m(G; x) = m(G1; x) · . . . ·m(Gk; x) .

Starting from the two quoted theorems and the fact m(K1; x) = 1, one can compute the

matching polynomial of any graph by recursively reducing it to trivial components.
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The matching polynomials of paths and cycles on n vertices are given by following for-

mulas:

m(Pn; x) =

�n/2�∑
k=0

(
n− k

k

)
xk ,

m(Cn; x) =

�n/2�∑
k=0

n

n− k

(
n− k

k

)
xk .

From them it follows that the total numbers of matchings in Pn and Cn are given by the

Fibonacci and Lucas numbers Fn+1 and Ln, respectively. We will find the above formulas

useful since both paths and cycles will appear as fragments of polyphenylene chains under

the decomposition procedure.

A set S ⊆ V (G) of vertices of G is an independent set in G if no two vertices of

S are adjacent. An independent set of the largest possible size is called a maximum

independent set. The cardinality of any maximum independent set in G is called

the independence number (or the stability number) of G and denoted by α(G).

An independent set in G that cannot be extended to a larger independent set is called

maximal.

The independence polynomial of a graph G is defined by

i(G; x) =

α(G)∑
k=0

Ψk(G)xk,

where x is a formal variable, and Ψk(G) denotes the number of independent sets in G with

k vertices. Obviously, Ψ0(G) = 1 and Ψ1(G) = |V (G)|. Again, setting x = 1 in i(G; x)

yields the total number of independent sets in G; we denote it by Ψ(G). In chemical

literature Ψ(G) is known as the Merrifield-Simmons index. When there is no possibility

of confusion, we will omit x and write simply i(G). The independence polynomial was

introduced by Gutman and Harary in 1983 [6]. For a recent survey on independence (and

other) polynomials we refer the reader to [8].

The following properties of independence polynomials are analogous to the properties

of matching polynomials from Theorems M1 and M2, and play a similar role in the

computations.

Theorem I1 Let G be a graph and u a vertex in G. Then

i(G; x) = i(G− u; x) + x · i(G−N [u]; x) .
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Theorem I2 Let G be a graph consisting of the components G1, G2, . . . , Gk. Then

i(G; x) = i(G1; x)i(G2; x) · . . . · i(Gk; x) .

It is a simple exercise to verify that the independence polynomials of paths and cycles are

given by the following formulas:

i(Pn; x) =

�n+1
2

�∑
k=0

(
n+ 1− k

k

)
xk;

i(Cn; x) =

�n/2�∑
k=0

n

n− k

(
n− k

k

)
xk.

From them one can see that the number of independent sets in cycles is equal to the

number of matchings, while in paths it exceeds the number of matchings by Fn.

3 Main results

3.1 Matchings in polyphenylene chains

Here we investigate structural and enumerative aspects of matchings in polyphenylene

chains. The structural aspects do not present any challenge; it is easy to see that all

polyphenylene chains have a perfect matching. Furthermore, it is easy to see using the

parity arguments that no cut-edge can participate in a perfect matching of a polyphenylene

chain. Hence we have the following observation.

Proposition 2

Let Gn be a polyphenylene chain of length n. Then ν(Gn) = 3n. Furthermore, Gn

contains exactly 2n different perfect matchings.

Proposition 3

Let Gn be a polyphenylene chain of length n and s(Gn) its saturation number. Then

s(Gn) = 2n.

Proof

It is easy to exhibit a maximal matching that leaves uncovered exactly two vertices in

each hexagon of Gn. Hence s(Gn) ≥ 2n. Let us assume that there is a maximal matching

M of smaller cardinality. Then there are at least 2n+2 vertices uncovered by M . By the

pigeonhole principle, at least one hexagon must contain at least three of those vertices.

From the maximality of M it follows that those three vertices must form an independent
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set, and this further implies that the remaining three vertices in the hexagon must be

covered by an edge of M not lying in the hexagon. Hence all three of them must be

cut-vertices, and this is a contradiction with the definition of polyphenylene chains.

From the parity arguments it follows that Gn has a defect-d matching for all even d

between 0 and 6n = V (Gn).

Now we turn our attention to the enumerative problems. For short lengths, n = 1 and 2,

there is no difference between ortho-, meta-, and para-chains. Their matching polynomials

are easily obtained by direct application of Theorems M1 and M2.

m(G1; x) = m(C6; x) = 1 + 6x+ 9x2 + 2x3;

m(G2; x) = 1 + 13x+ 62x2 + 134x3 + 129x4 + 45x5 + 4x6.

We are now ready for computing the matching polynomials of ortho-, meta- and para-

phenylene chains. In all three cases we proceed by deriving a recurrence relation by

decomposing all matchings into those that do and those that do not contain the critical

edge. We work out the ortho- case in some detail; the remaining two cases follow along

the same lines.

Lemma 4

m(On) = m(C6)m(On−1) + x ·m(P5)m(O′
n−2);

m(O′
n) = m(P5)m(On) + x ·m(P4)m(O′

n−1).

Theorem 5

The matching polynomials of On, n ≥ 2, are given by

m(On) = (1 + 7x+ 12x2 + 3x3)m(On−1)− x2(1 + 6x+ 11x2 + 6x3 + 2x4)m(On−2).

Proof

The result follows by plugging in the second expression of Lemma 4 into the first, taking

into account the explicit expressions for matching polynomials of paths and cycles and

simplifying the resulting expressions.

By putting x = 1 into the recurrence for m(On) we can obtain the explicit formula for

the number of all matchings in On. The recurrence for Φ(On) has the form

Φ(On) = 23Φ(On−1) + 26Φ(On−2),
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with the initial conditions Φ(O1) = 18, Φ(O2) = 388. The generating function for Φ(On)

is given by go(x) =
1−5x

1−23x+26x2 , and the explicit formula is then readily obtained by solving

the characteristic equation 1−23x+26x2 = 0 and taking into account the initial conditions.

Theorem 6

Φ(On) =

(
13 + 5

√
17

10
√
17

)(
23 + 5

√
17

2

)n

+

(
−13 + 5

√
17

10
√
17

)(
23− 5

√
17

2

)n

.

The leading term of the above expression behaves asymptotically as 21.8078n.

Now we present, omitting the details, the results for meta- and para- phenylene chains.

Lemma 7

m(Mn) = m(C6)m(Mn−1) + x ·m(P5)m(M ′
n−2)

m(M ′
n) = m(P5)m(Mn) + x ·m(P3)m(M ′

n−1).

Theorem 8

The matching polynomials of Mn, n ≥ 2, are given by

m(Mn) = (1 + 7x+ 11x2 + 2x3)m(Mn−1) + x3(1 + 4x+ 5x2)m(Mn−2).

Theorem 9

Φ(Mn) =

(
15 +

√
481

2
√
481

)(
21 +

√
481

2

)n

+

(
−15 +

√
481

2
√
481

)(
21−

√
481

2

)n

.

We can conclude from the above expression that Φ(Mn) ∼ 21.4659n for large values of n.

Lemma 10

m(Ln) = m(C6)m(Ln−1) + x ·m(P5)m(L′
n−2)

m(L′
n) = m(P5)m(Ln) + x ·m(P2)

2m(L′
n−1).

Theorem 11

The matching polynomials of Ln, n ≥ 2, are given by

m(Ln) = (1 + 7x+ 11x2 + 3x3)m(Ln−1)− 2x4(1 + x)2m(Ln−2) .
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Theorem 12

Φ(Ln) =

(
7 +

√
113

2
√
113

)
(11 +

√
113)n +

(
−7 +

√
113

2
√
113

)
(11−

√
113)n.

Asymptotic behavior of the above expression is given by 21.6301n.

We observe that the number of matchings in a para-polyphenylene chain of a given length

falls between the numbers of matchings in ortho- and meta- chains of the same length.

We proceed by showing that the ortho- and meta- chains are indeed extremal with respect

to the number of matchings among all chains.

Theorem 13

Let Gn be a polyphenylene chain of length n. Then

Φ(Mn) ≤ Φ(Gn) ≤ Φ(On).

Proof

Let S1 and S2 be two polyphenylene chains whose lengths add to n− 1. There are three

ways to insert a hexagon between them and forming a chain of length n. The inserted

hexagon becomes an ortho-, a meta-, or a para-hexagon of the resulting chains. The three

possibilities are shown in Fig. 7. Let us denote the cut-vertices of the inserted hexagon by

S OS S MS S LS

S S S S S S

u u

u

v v

v1

1

1

1 1

1 2

2

2

22

2

Figure 7: Three ways of inserting a hexagon.

u and v. By Φu(G) we denote the number of matchings that cover vertex u, and similarly

for vertex v. By considering and counting the matchings that cover vertices u and v we

arrive at six auxiliary graphs shown in Fig. 8. By applying the decomposition procedure

we obtain following expressions.

Φ(S1OS2) = Φu(S1 ∼ u)Φ(S ′
2) + Φ(S1)Φ(C6 ∼ S2)

= Φu(S1 ∼ u)[Φ(P4)Φ(S2 ∼ v) + Φ(P5)Φ(S2)] + Φ(S1)Φ(C6 ∼ S2);
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Figure 8: The six auxiliary graphs.

Φ(S1MS2) = Φu(S1 ∼ u)Φ(S ′′
2 ) + Φ(S1)Φ(C6 ∼ S2)

= Φu(S1 ∼ u)[Φ(P1)Φ(P3)Φv(S2 ∼ v) + Φ(P5)Φ(S2)] + Φ(S1)Φ(C6 ∼ S2);

Φ(S1PS2) = Φu(S1 ∼ u)Φ(S ′′′
2 ) + Φ(S1)Φ(C6 ∼ S2)

= Φu(S1 ∼ u)[Φ(P2)
2Φv(S2 ∼ v) + Φ(P5)Φ(S2)] + Φ(S1)Φ(C6 ∼ S2);

Now we pairwise subtract the above expressions.

Φ(S1OS2)− Φ(S1PS2) = Φu(S1 ∼ u)Φv(S2 ∼ v)[Φ(P4)− Φ(P2)
2] > 0;

Φ(S1PS2)− Φ(S1MS2) = Φu(S1 ∼ u)Φv(S2 ∼ v)[Φ(P2)
2 − Φ(P3)] > 0.

Hence, a polyphenylene chain with maximum number of matchings cannot contain meta-

and para-hexagons. The same argument implies that a polyphenylene chain with mini-

mum number of matchings cannot contain ortho- and para-hexagons.

We conclude this section by computing the expected size of a matching in each of the

considered chains. We start by computing the bivariate generating functions from the

recurrences for matching polynomials. The bivariate generating functions are denoted as

follows.

O(x, y) =
∑
n≥0

∑
k≥0

Φk(On)x
nyk;

M(x, y) =
∑
n≥0

∑
k≥0

Φk(Mn)x
nyk;

L(x, y) =
∑
n≥0

∑
k≥0

Φk(Ln)x
nyk.
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It is obvious from the definition that the coefficients of xn are exactly our computed

generating polynomials (just taken in variable y). We introduce compact notation for the

polynomials appearing in the recurrences for matching polynomials:

o1(y) = 1 + 7y + 12y2 + 3y3;

o2(y) = −y2(1 + 6y + 11y2 + 6y3 + 2y4);

m1(y) = 1 + 7y + 11y2 + 23;

m2(y) = y3(1 + 4y + 5y2);

l1(y) = 1 + 7y + 11y2 + 3y3;

l2(y) = −2y4(1 + y)2.

The matching polynomials of three shortest chains we denote by

m0(x, y) = 1;

m1(x, y) = x(1 + 6y + 11y2 + 6y3 + 2y4);

m2(x, y) = x2(1 + 13y + 62y2 + 134y3 + 129y4 + 45y5 + 4y6).

Now the recurrence for matching polynomials can be written as

m(Gn) = g1(y)m(Gn−1) + g2(y)m(Gn−2),

where G stands for O, M , and L, and g stands for o, m, and l, respectively. The bivariate

generating functions are now obtained in the usual way, by multiplying the recurrences

through by xn and summing over all n ≥ 2. The result is a linear equation in the unknown

generating function G(x, y)

G(x, y)−m0(x, y)−m1(x, y) = xg1(y)[G(x, y)−m0(x, y)] + x2g2(y)G(x, y).

The equation is readily solved, yielding the explicit formula for the bivariate generating

function.

G(x, y) =
m0(x, y)[1− xg1(y)] +m1(x, y)

1− xg1(y)− x2g2(y)
.

By substituting the pairs (O, o), (M,m), and (L, l) for (G, g) in the obtained formula, we

get the explicit formulas for desired bivariate generating functions.
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Theorem 14

O(x, y) =
1− xy − 3x2y + x3y

1− xo1(y)− x2o2(y)
;

M(x, y) =
−1 + xy + 2xy2

1− xm1(y)− x2m2(y)
;

L(x, y) =
−1 + xy + 2xy2 + xy3

1− xl1(y)− x2l2(y)
.

By setting y = 1 in the above expressions we recover the univariate generating functions

for the number of matchings in the three types of polyphenylene chains.

Corollary 15

O(x) =
1− 5x

1− 23x+ 26x2
;

M(x) =
1− 3x

1− 21x− 10x2
;

L(x) =
1− 4x

1− 22x+ 8x2
.

Now the expected number of edges in a random matching is obtained in the standard

way, by using the fact that ∂G
∂y
(x, y)

∣∣∣
y=1

is the generating function for the total number

of edges in all matchings and by dividing the total number of edges by the total number

of matchings. (See [11] for more on bivariate generating functions.) We present only the

leading term, leaving out the computational details.

Theorem 16

Let k(Gn) be the expected number of edges in a random matching in Gn. Then

k(On) ∼ 1.7045n;

k(Mn) ∼ 1.6893n;

k(Ln) ∼ 1.7004n.

3.2 Independent sets in polyphenylene chains

Now we present the results on structural and enumerative properties of independent sets

in polyphenylenes. Again, the structural properties are not difficult to obtain, due to the

very special structure of our chains.
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Proposition 17

The stability number of any polyphenylene chain is given by α(Gn) = 3n. The smallest

maximal independent set in Gn has the cardinality of 2n.

The results concerning the enumerative properties are derived much in the same way

as for the case of matchings. Hence we restrict ourselves to presenting them in a very

concise form, omitting all computational details. We start with the recurrences for the

independence polynomials.

Theorem 18

i(On) = (1 + 6x+ 9x2 + 2x3)i(On−1)− x2(1 + 3x+ x2)2i(On−2);

i(Mn) = (1 + 6x+ 8x2 + x3)i(Mn−1) + x3(1 + 4x+ 5x2 + x3)i(Mn−2);

i(Ln) = (1 + 6x+ 8x2 + 2x3)i(Ln−1)− x4(2 + 4x+ x2)i(Ln−2).

Theorem 19

Ψ(On) =
9 + 2

√
14

4
√
14

(9 + 2
√
14)n − 9− 2

√
14

4
√
14

(9− 2
√
14)n;

Ψ(Mn) =
2 +

√
3

2
√
3

(8 + 5
√
3)n +

−2 +
√
3

2
√
3

(8− 5
√
3)n;

Ψ(Ln) =
19 + 3

√
29

6
√
29

(
17 + 3

√
29

2

)n

+
−19 + 3

√
29

6
√
29

(
17− 3

√
29

2

)n

.

The leading terms for Ψ(On), Ψ(Mn) and Ψ(Ln) are 16.4833n, 16.6603n, and 16.5777n,

respectively. We observe that Mn is richer than Ln, and that one is in turn richer than

On with respect to the total number of independent sets. By using the same approach as

in the case of matchings it can be shown that the ortho- and the meta-chain are extremal

among all chains of a given length.

Theorem 20

Let Gn be a polyphenylene chain on n hexagons. Then

Ψ(On) ≤ Ψ(Gn) ≤ Ψ(Mn).

We notice that the richest chains with respect to independent sets are the poorest ones

with respect to matchings, and vice versa. This is consistent with the behavior of other

types of chains, such as hexagonal cacti or benzenoid chains.

-326-



The meta-chain is also the richest one in terms of maximum independent sets; while On

and Ln contain n + 1 independent set of cardinality 3n, the meta-chain contains Fn+2

maximum independent sets. The result can be verified by simple combinatorial reasoning

and we omit the details.

We close this section by reporting the asymptotic behavior of the expected size of a

random independent set in the three types of chains. We denote that quantity by i(Gn),

where G stands for O, M , and L. The computations involved are completely analogous

to the ones for matchings.

Theorem 21

i(On) ∼ 1.5991n;

i(Mn) ∼ 1.6166n;

i(Ln) ∼ 1.6062n.

We observe that Mn keeps its primacy also with respect to the size of a random indepen-

dent set.

4 Further developments

In this section we report some preliminary results on polyphenylene dendrimers. An

example is shown in Fig. 9. In order to keep the presentation reasonably short we will

Figure 9: A polyphenylene dendrimer.

consider only the case in which six polyphenylene chains of the same type and the same

length are attached to a central hexagon. We denote the generic chain by Gn and the

graph with all six chains attached by Sn,6 = S6. The auxiliary graphs that have k chains
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of length n attached to k consecutive vertices of a hexagon we denote by Sk for 0 ≤ k ≤ 5.

(We suppress n for sake of notational brevity.) Another type of auxiliary graphs formed

by attaching k chains of length n to k consecutive vertices of P5 we denote by S ′
k for

0 ≤ k ≤ 5. (The k vertices on P5 where the chains are attached include a terminal

vertex.) Finally, G′
n denotes an auxiliary graph of the type shown in Fig. 6, where G can

be O, M , or L. Examples are shown in Fig 10.

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn

Gn Gn

Gn

Gn Gn

Gn Gn

S S S

S’ S’ S’

6 4 2

135

Figure 10: Auxiliary graphs for star-like polyphenylene dendrimer.

Label the edges between the copies of Gn and the central hexagon by e1, . . . , e6. By

applying iteratively Theorems M1 and M2 to S6, we obtain the following expression for

m(S6).

m(S6) = m(S6 − e1) + x ·m(S6\e1) = m(Gn)m(S5) + x ·m(G′
n−1)m(S ′

5)

= m(Gn)[m(S5 − e2) + x ·m(S5\e2)] + x ·m(G′
n−1)m(S ′

5)

= m(Gn)
2m(S4) + x ·m(G′

n−1)m(Gn)m(S ′
4) + x ·m(G′

n−1)m(S′
5)

...

= m(Gn)
6m(C6) + x ·m(G′

n−1)[m(S ′
5) +m(Gn)m(S ′

4) + . . .+m(Gn)
5m(S ′

0)].

Now we take a closer look at the edges of the central hexagon. Applying the decomposing
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procedure to them will result in graphs consisting of paths of length m for 1 ≤ m ≤ 5

with a chain of length n attached to each vertex. We denote such graphs by Hm. The

graph obtained by attaching a chain of length n to each internal vertex and only one

of the terminal vertices is denoted by H ′
m. Now the generating function for matching

polynomials of Hm is obtained by starting from the coupled recurrences

m(Hm) = m(H ′
m−1)m(Gn) + x ·m(Hm−1)m(G′

n−1)

m(H ′
m−1) = m(Hm−1) + x ·m(Hm−2)m(Gn).

That results in a recurrence for m(Hm) of the form

m(Hm) = m(H1)m(Hm−1) + [m(H2)−m(H1)
2]m(Hm−2),

with the initial conditions

m(H1) = m(Gn) + x ·m(G′
n−1)

m(H2) = m(H1)
2 + x ·m(Gn)

2.

Now the generating function H(z) =
∑

m≥1 m(Hm)z
m is readily obtained as

H(z) =
1

1− [m(Gn) + x ·m(G′
n−1)]z − x ·m(Gn)2z2

− 1.

It remains to find the matching polynomials of G′
n. From previous Lemmas we know that

m(G′
n) = m(P5)m(Gn) + x · αG ·m(G′

n−1),

where αO = m(P4), αM = m(P3), and αL = m(P2)
2. Now the generating function

K(x, y) =
∑

n≥0 m(G′
n; x)y

n is given by

K(x, y) =
m(P5)(1 +G(x, y))

1− x · αG · y .

Now we have all necessary elements for writing down the explicit formula for the matching

polynomial of the star-like dendrimer.

Theorem 22

m(Sn) = (1 + 6x+ 9x2 + 2x3)m(Gn)
6 + 6x(1 + 4x+ 3x2)m(Gn)

5m(G′
n−1)

+ 3x2(5 + 12x+ 3x2)m(Gn)
4m(Gn−1)

2 + 4x3(5 + 6x)m(Gn)
3m(G′

n−1)
3

+ 3x4(5 + 2x)m(Gn)
2m(G′

n−1)
4 + 6x5m(Gn)m(G′

n−1)
5 + x6m(G′

n−1)
6 .
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We have compared the number of matchings in three types of stars and found out that

the relative order of the three types of chains is preserved: there are about 2.40668 · 1033,
1.78317 · 1033, and 2.0624 · 1033 matchings, respectively, in stars with 6 ortho-, meta-, and

para-chains of length 4. We have also compared the number of matchings in the three

types of stars with the number of matchings in the corresponding chains on the same

number of hexagons and found that the stars are richer in the number of matchings.

The methods developed here can be also used to compute the matchings and independent

sets related invariants for dendrimers with lower symmetries.
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