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Abstract

The anti-Kekulé number of a connected graph G is the smallest number of edges

whose removal from G results in a connected subgraph without Kekulé structures

(perfect matchings). K. Kutnar et al. showed that the anti-Kekulé number of

leapfrog fullerene graphs is either 3 or 4 [On the anti-Kekulé number of leapfrog

fullerenes, J. Math. Chem. 45 (2009) 431-441]. In this paper, we show that the

anti-Kekulé number is always equal to 4 for all fullerene graphs.

1 Introduction

A fullerene is a spherically shaped molecule consisting of only carbon atoms such that

every carbon atom has bonds to three other atoms, and the length of each carbon ring

is either 5 or 6. Ever since the first fullerene, the famous football structure C60, was
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discovered by Kroto et al. in 1985 [6], fullerenes have been applied extensively in many

fields, such as physics, biology, chemistry, material science, etc. [9, 12]. As a molecular

graph of a fullerene, a fullerene graph is a 3-connected planar cubic graph with only

pentagonal and hexagonal faces. By Euler’s polyhedron formula, every fullerene graph

with n vertices has exactly 12 pentagonal faces and (n/2− 10) hexagonal faces.

An edge set M of a graph G is called a matching if no two edges in M have a common

endvertex. A matching M of G is perfect if every vertex of G is incident with an edge

in M . In organic molecule graphs, perfect matchings correspond to Kekulé structures,

playing an important role in analysis of the resonance energy and stability of hydrocarbon

compounds. Cyvin and Gutman systematically gave [1] detailed enumeration formulas for

Kekulé structures of various types of benzenoids. Kardoš et al. showed [5] that fullerene

graphs have exponentially many Kekulé structures.

The anti-Kekulé number of a connected graph G is the smallest number of edges such

that the remaining graph obtained from G by deleting these edges is still connected but

has no Kekulé structures. For benzenoids, Vukičević and Trinajstić showed [16] that the

anti-Kekulé number of parallelograms with at least three rows and at least three columns

is equal to 2, and they also showed [15] that cata-condensed benzenoids have anti-Kekulé

number either 2 or 3 and both classes are characterized. Afterwards, Veljan and Vukičević

[14] demonstrated that the anti-Kekulé numbers of the infinite triangular, rectangular and

hexagonal grids are 9, 6 and 4, respectively.

For fullerene graphs, D. Vukičević showed that the anti-Kekulé number of the icosahe-

dron C60 (buckministerfullerene) is 4. The leapfrog transformation of fullerenes is defined

in [3], and the icosahedron C60 is the smallest leapfrog fullerene graph. In general, Kutnar

et al. [8] proved that the anti-Kekulé number of all leapfrog fullerene graphs is either 3

or 4, and for each leapfrog fullerene graph the anti-Kekulé number can be established by

observing finite number of cases not depending on the size of the fullerene graph.

By taking into account some structural properties of fullerene graphs and applying

Tutte’s theorem on perfect matching of graphs, in this paper we show that the anti-

Kekulé number of all fullerene graphs is always equal to 4.

-282-



2 Preliminary

Let G = (V (G), E(G)) be a connected graph with at least one perfect matching (i.e.

Kekulé structure). For S ⊆ E(G), let G − S denote the graph obtained from G by

deleting all the edges in S. We call S an anti-Kekulé set if G − S is connected but has

no perfect matchings. The smallest cardinality of anti-Kekulé sets of G is called the

anti-Kekulé number, and denoted by ak(G).

A connected graph G with at least 2k + 2 vertices is called to be k-extendable if any

matching of G with size k is contained in some perfect matching of G.

Theorem 2.1 ([18]). Every fullerene graph is 2-extendable.

For a proper subset X �= ∅ of V (G), let X̄ = V (G)\X and G[X] denote the subgraph

of G induced by the vertices of X. Then [X, X̄], the set of k edges with one endvertex in

X and the other one in X̄, is a k-edge-cut of G. Further it is a minimal edge-cut if each

proper subset cannot be an edge-cut of G. It is known that an edge-cut [X, X̄] is minimal

if and only if both G[X] and G[X̄] are connected.

A k-edge-cut E of a connected graph G is cyclic if G−E has at least two components,

each containing a cycle. The minimum value of k such that G has a cyclic k-edge-cut is

called the cyclic edge-connectivity of G, dented by cλ(G). For a positive integer k, G is

cyclically k-edge-connected if k ≤ cλ(G). The following basic result has been obtained in

several different ways.

Theorem 2.2 ([2, 4, 11]). Every fullerene graph has the cyclic edge-connectivity 5.

An edge cut is called trivial if all of its edges are incident with the same vertex.

The following results are related to edge-cuts of fullerene graphs, or generally cyclically

5-edge-connected cubic graphs.

Lemma 2.3. Let E = [X, X̄] be a minimal edge-cut of a cyclically 5-edge-connected cubic

graph G with |X| ≤ |X̄|. We have the following statements:

(i) If |E| = 3, then E is trivial and |X| = 1,

(ii) If |E| = 4, then |X| = 2, and

(iii) If |E| = 5, then either E is a cyclic 5-edge-cut or |X| = 3.

Proof. Suppose that E is not a cyclic edge-cut of G. Without loss of generality, suppose

that G[X] is a tree with n vertices and m edges. By degree-sum formula of graph G[X]

-283-



and tree property, we have that

2m = 3n− |E| = 2(n− 1),

which implies that n = |E| − 2. Hence the lemma follows.

The following result was previously proved to be true for leapfrog fullerene graphs [8],

and now we extend this result to all fullerene graphs.

Lemma 2.4. Let G be a fullerene graph. Then 3 ≤ ak(G) ≤ 4.

Proof. To prove this upper bound on ak(G), it suffices to find an anti-Kekulé set of G

with the size 4. Let v1v2v3 be a path of length 2 of G. Let e1, e2 be the incident edges

with v1 other than v1v3, and e3, e4 the incident edges with v2 other than v2v3 (see Fig.

1). We can show that S := {e1, e2, e3, e4} is an anti-Kekulé set of G. Let G′ := G − S.

Then G′ has no perfect matchings since G′ has two 1-degree vertices v1 and v2 adjacent

to the same vertex v3. Next, we will show that G′ is connected. If G′ is not connected,

then S is a minimal edge-cut of G by Lemma 2.3 (i) and 3-connectivity of G. Since G′

has one component containing vertices v1, v2 and v3, and only v1 and v2 are adjacent to

vertices of the other component of G′ in G. Hence v1v3 and v2v3 also form an edge cut of

G, contradicting that G is 3-edge-connected. Consequently, S is an anti-Kekulé set of G.

Figure 1: An anti-Kekulé set {e1, e2, e3, e4} (bold edges) of a fullerene graph.

To prove that lower bound on ak(G), choose any pair of edges e1, e2 of G. It suffices to

show that G has a perfect matching M such that M∩{e1, e2} = ∅. Since G is 2-connected,

we can choose a cycle C of G containing e1 and e2. Since G is cyclically 5-edge-connected

(Theorem 2.2), C has length at least 5 [7, Proposition 2.1]. So there exist two edges ea

and eb of C such that ea and eb are disjoint, and adjacent to e1 and e2 respectively. Since
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G is 2-extendable (Theorem 2.1), G has a perfect matching M containing ea and eb. So

M ∩ {e1, e2} = ∅. That is, {e1, e2} is not anti-Kekulé set of G.

3 Main results

The following well-known 1-factor theorem due to Tutte plays a crucial role in proving

our main result.

Theorem 3.1 (Tutte’s Theorem, [10, 13]). A graph G has a perfect matching if and only

if for any X ⊆ V (G), o(G − X) ≤ |X|, where o(G − X) denotes the number of odd

components of G−X.

We now describe our main result on the anti-Kekulé number of fullerene graphs as

follows, and prove it by applying the similar technique used in the proof of Theorem 2.2

in [17], together with 2-extendability and cyclic edge-connectivity 5 of fullerene graphs,

and Lemmas 2.3 and 2.4.

Theorem 3.2. Let G be a fullerene graph. Then ak(G) = 4.

Proof. By Lemma 2.4, we have that ak(G) is either 3 or 4. Suppose to the contrary

that ak(G) = 3. Then there exists an anti-Kekulé set S = {e1, e2, e3} of G. That is,

G′ := G− S is connected but has no perfect matchings.

Claim 1. Any two edges in S do not have a common adjacent edge.

Suppose there exist two edges in S, say e1 and e2, having a common adjacent edge

ea. Then, either both e1 and e2 are incident to the same end-vertex of ea or to different

endvertices of ea. For the former, ea �= e3; for the latter, ea = e3 may be allowed. If

ea = e3, choose edges e
′
1 and e′2 such that e′1 is adjacent to both e1 and ea, and e′2 adjacent

to both e2 and ea. Then e′1 and e′2 are disjoint. By the 2-extendability of a fullerene graph

(Theorem 2.1), {e′1, e′2} is contained in a perfect matching of G avoiding e1, e2 and e3.

That is, G′ has a perfect matching, a contradiction.

So suppose ea �= e3. Then G has a cycle C that contains both ea and e3 since G

is 2-connected. We have that C has length at least 5 by Theorem 2.2; see the proof of

Lemma 2.4. Note that E(C) ∩ {ea, e1, e2} induces a path on C. So C contains an edge

eb different from e1, e2 and ea such that eb is adjacent to e3 but not to ea. So ea and eb

are two disjoint edges of G. By the similar reason as above, {ea, eb} can be extended to
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a perfect matching of G avoiding e1, e2 and e3. That is, G′ has a perfect matching, a

contradiction.

Claim 2. G′ is 2-edge-connected.

If not, there exists a cut edge, say e, of G′. If S ′ = S∪{e}, then G−S ′ is not connected.

By Claim 1 and Lemma 2.3 (i), S ′ is a minimal 4-edge-cut of G. Hence S ′ = [X,X] for

some ∅ �= X ⊂ V (G). Using Lemma 2.3 (ii), one of the |X| and |X| is 2. Since |S| = 3,

there must exist two edges in S that have a common adjacent edge, contradicting Claim

1.

Claim 3. G′ is a bipartite graph.

Since G′ has no perfect matchings, Tutte’s theorem ensures the existence of a subset

X ⊆ V (G′) such that o(G′ − X) > |X|. Since |V (G′)| is even, o(G′ − X) and |X| have
the same parity. Consequently,

o(G′ −X) ≥ |X|+ 2. (1)

For the sake of convenience, let α := o(G′ −X), and let G1, G2, · · · , Gα denote the odd

components of G′ − X. By Claim 1, the endvertices of edges e1, e2 and e3 are pairwise

different.

Since ak(G) = 3, adding any edge in S to G′ results in a spanning subgraph of G with

at least one perfect matching. Hence by Tutte’s theorem we can see that every edge of

S must join two different odd components in G′ − X. That is, adding an edge in S to

G′ will decrease the number of odd components of G′ − X by 2. Then α − 2 ≤ |X| by
Tutte’s theorem. Taking (1) into account, we know that

α = |X|+ 2. (2)

Let T be the set of odd components of G′ −X which contain at least one vertex incident

with one of edges e1, e2 and e3. It is easy to see that |T | ≤ 6.

Now we consider the number of edges from X to Gi. For i = 1, 2, · · · , α, let ni

denote the number of edges of G′ from X to Gi. Since G is 3-edge-connected and G′ is

2-edge-connected, we have

ni ≥ 3 for each Gi /∈ T ; ni ≥ 2 for each Gi ∈ T. (3)

Then

3|X| ≥
α∑

i=1

ni ≥ 3(α− |T |) + 2|T | = 3|X|+ (6− |T |) ≥ 3|X|. (4)
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In the above expression, the first inequality holds because the edges between X and the

odd components of G′−X are partial edges from X towards outside; Inequality (3) implies

the second inequality; Take into account of (2) and |T | ≤ 6, the rest of the relationship

holds.

We can see that all equalities in (4) hold. Hence X is an independent set of G′, G′−X

has no even components, ni = 3 for each Gi /∈ T , and |T | = 6 and ni = 2 for each Gi ∈ T .

Further, each odd component Gi in T is joined by exactly one edge in S to the other

in T , and there are exactly three edges of G from each Gi going outward. Lemma 2.3

(i) implies that each such three edges form a trivial edge-cut of G and hence every odd

component of G′ − X is a singleton. Then G′ is a bipartite graph and Claim 3 follows.

That is, G′ has no cycles of odd length.

Since G is a fullerene graph, there are 12 pentagons in G. After deleting three edges

from G, there are at least six pentagons in the remaining graph. So G′ contains pentagons,

contradicting Claim 3. Therefore, ak(G) = 4.
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