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Abstract 

Recently we introduced a nonlinear partial differential equation (nPDE) of the third order for the 
first time. This new model equation allows the extension of the Debye-Hückel Theory (DHT) 
considering time dependence explicitly. This also leads to a new formulation in the meaning of the 
nonlinear Poisson-Boltzmann Equation (nPBE) and therefore we call it the modified Poisson-
Boltzmann Equation (mPBE). 
The purpose of the present paper is to analyze the new model equation by algebraic methods 
without using any approximations and numerical methods.  
We show how we can integrate a highly nPDE leading to suitable classes of solutions importantly 
in electrochemical applications. 
Generalized relations for the potential, the charge density, and the electric field are given in an 
analytical way for special classes of solutions involving time dependence explicitly. 
Conclusions are supported by studying some test examples such like potassium chloride and other 
many-valued electrolytes. 
 
1. Preliminaries 
To evaluate the potential distribution around a central ion and/or describing the potential of 

electrodes the classical Debye-Hückel Theory (DHT) is used. Here the electric double layer 

interaction is the central point or to be more precisely, the electrode-electrolyte interface is assumed 

as a basis of electrodics. Under equilibrium conditions the time-average forces are the same in all 

directions and at all points in the bulk of the electrolyte (assuming to be isotropic perfectly and 

homogeneous) and there are no net preferentially directed electrical fields. 
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The fundamental equation describing electrical interfaces and/or the potential distribution around 

the central ion is a combination of the Poisson-Equation (from electrostatic view) and the 

Boltzmann law of distribution, [1–3].  

However, the theory remains time-independent explicitly. Solutions of the nPBE have thus found 

applicability in explaining the physics of a wide variety of phenomena, some of which are: (i) the 

estimation of ionic radii in solutions, [3], (ii) the theory of the disjoining pressure due to the 

overlapping of diffuse double layers and its application to instability phenomena in thin liquid 

films, [4], (iii) a wide variety of electrokinetic phenomena that include streaming potentials, 

electrophoresis, electroviscous effects, e.g. [5]  to mention some examples. 

 Another point is the fact that the PBE, due to the nonlinearity (acting as an exponential function), 

can only be solved by numerical standard methods, e.g. [6–8]. A practicable approach representing 

linearization describing chemical quantities (e.g. the activity coefficient) was done in the past, [9, 

10]. 

We stress that the DHT approximation is based upon the assumption that the electric potential is 

very small (that is in the range of 20 mV). Under this circumstance the nPBE can be linearized and 

closed-form solutions can be obtained. 
Note: Several modifications of the Boltzmann distribution function exists. The most favourite is considered by 
assuming higher terms in the series representation [12] and secondly, analogues to the eigen volume of a real gas the 
distribution function will be modified by using a suitable ‘number of vacancy’ instead of the ionic atmosphere [13]. 
 
It is necessary to mention that the DHT is valid only by considering some further reasonable 

conditions, e.g. [9, 11].  

 
1.1 Some known results 

At this stage let us summarize some known results. The purpose of our recent paper [11] was to 

introduce time-dependence in the DHT explicitly. Therefore we used the electro quasistatic 

approach (EQS) for the first time [14].  

The crucial step is the fact that the time-dependent electric field may derived from a scalar potential 

which is a solution of a certain nPDE of the third order [11]: 
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Let us formally impose boundary conditions so that Lx
uu �

	� 0lim  and 0lim �
	� xd

ud
x

 holds; they are 

necessary conditions later for the function ),( txuu � .  

Note: Lu  is the potential ‘deep in the bulk’ referring to as the (diffusive) Gouy-Chapman layer. We stress that we need 
not make use of the condition kTezi 

�0 , where �  means any potential. 
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The potential function ),( txuu �  plays the same role as in the DHT, therefore one can regard eq.(1) 

as an extended ‘modified nPBE’ with time dependence involved explicitly.  

Further for our purposes we assume much diluted (1,1)-electrolytes in the first instance and 

conductivities should be in the range of mS /100 3�� . It is convenient to introduce the 

following abbreviations 
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where �  means a characteristic system time in the range of s710��� . The quantity �  has the 

dimension � � 2.dim ��� ms  referring to a reciprocal diffusion constant if we compare with the 

expression obtained in the DHT. 2�  depends upon the conductivity and temperature reciprocally. 

Note: There is a deeper connection to eq.(1). To show this let us repeat some basics from the EQS.  
Normally, both the laws of Coulomb and Biot-Sarvart [15] are suitable to introduce a static theory of electromagnetism 
being still time-independent.  
The question is: How should these static laws generalized leading to an explicit time-dependence? It is assumed that 
there is both a weak current density due to the electric field and an impressed current density ej

�
. The EQS assumption 

now means that the sources act slowly so that the fields change slowly and the conductivity �  is rather small. 
For EQS we both assume 0/ ��� tB and the vanishing of the displacement current and the electric field is derived from 
a scalar potential. Let us now stress the general case known as the Darwin Model [16]: Both the conductivity and a 
time-dependent external current ej

�
 are prescribed. The total current may be written as )/( tAVjj e ��������

��
. 

We further use the Coulomb gauge, that is 0��A and the dynamics of the potentials is determined by the continuity 
equation so that we can write 
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This equation represents a kind of ‘Poisson Equation’ for a time-dependent impressed current and/or if we take the r.h.s. 
by the charge density through te ��� /  similar as in the DHL. 
This type of continuity equation has some similarity with the diffusion equation and therefore, naturally, diffusion-like 
quantities should appear. 
One can further ask for the applicability of the EQS. Considering the law of Gauß, charges and fields are linked by the 
relation 
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where L  means a characteristic system length (here e.g. from the electrode surface towards deep in the bulk). 
Both the EQS and MQS are predicated on having sufficiently slow time variations (low frequencies) and sufficiently 
small dimensions so that 
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where 00 ���c .  
The ratio cL /  is the time required for an electromagnetic wave to propagate at the velocity c over a length L 
characterizing the system. Thus the EQS is valid if an electromagnetic wave can propagate a characteristic length of the 
system in a time that is short compared to times �  of interest (corresponding to small frequencies).  
Whether we ignore the magnetic induction and use the EQS or neglect the displacement current times of interest �  
must be long compared to the time em�  required for an electromagnetic wave to propagate at the velocity c over the 
largest length L of the system. Hence one can write 
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We stress the difference that static is just a particular case of Maxwellian Equations (ME) whereas quasistatic keeps an 
approximation. 
 
In [11] we showed that the eq. (1) admits an infinite three-dimensional point group representing 

translations as well as dilatation operations. 

We derived different similarity solutions for the potential function ),( txuu �  and in addition we 

showed that the eq. (1) does not admit any potential symmetry but we found generalized 

symmetries also closely related to dilatation operations. 

Different cases for approximate symmetries could derive for the first time whereas the approximate 

symmetry behaviour differs completely from the classical case. 

In total we showed that it is possible to derive solutions of electrochemical importance by the 

method of group theory (especially the so-called similarity solutions). 

 
2. Algebraic solution procedures 
Let us now proceed further in studying the nPDE, eq. (1) seeking for solutions for which we assume 

,),( txFu � )(3 DCF � and 2RD�  is an open set.  

We exclude values for which  !.....,0,0,0:~),(: """�� tx uuuDtxuD  and consider a positive 

time 0#t . Suitable classes of solutions are Iu � , I  an interval so that DI $  and 2: RIu � . 

We state our main intension: We wish to solve the nPDE, eq.(1) analytically by use of algebraic 

methods. In the following note we summarize the basic facts of the hyperbolic tangent method [17] 

which is used below to handle the highly nPDE, eq. (1). 
Note: Consider a given nPDE in its two independent variables x  and t  
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Firstly the nPDE converts into a nonlinear ordinary differential equation (nODE) by using a frame of reference 

)(),( %� ftxu , tx &��%  and &  is a constant to be determined. Thus we have 
 
                                                         � � 0....,)('',)(',)( �%%% fffQ .                                                        (b) 
 
The nODE (b) is integrated as long as all terms contain derivatives. Further the associated integration constants can take 
to be zero in view of the localized solutions one is looking for. This is a necessary (but not sufficient) condition that 

)(%f  tends to zero as '	�% .  
The next step is that the solution can be expressed in terms of the following series representation by using an auxiliary 
variable )(%(�(  such that 
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Next one assumes that )(%(  satisfies a Riccati Equation of the form 
 

                                                                       ))(1()(' 2 %(��
%
(

�%( k
d
d

                                                                       (d)         

                                 
and k  means a constant. The parameter n  in eq.(c) is found by balancing the highest derivative with the nonlinear 
terms in the reduced nODE, eq.(b). Moreover, this parameter must be a positive integer since it represents the number 
of terms in the series (c). In the case of fractions one can take transformations as shown later. Substituting (c) and (d) 
into the relevant nODE will yield a system of nonlinear polynomial equations with respect to 0a , 1a  , …. , k  and & . 
Solutions of the Riccati Equation can be expressed depending upon the constant k  
 
        � �%����% kkw tanh)( , � �%����% kkw coth)( ,         for 0
k ,                                                           (e) 
 
      � � � �%�%�% kkkkw cottan)( .                                         for 0#k .                                                            (f) 
 
Remark: The case 0�k  will be excluded although a solution exists [17]. It represents an useless solution for our 
purposes. 
 
2.1 The application of special algebraic methods 
a) The hyperbolic tangent method 

Firstly we convert the eq.(1) by )(),( %� ftxu , tx &��%  to derive the nODE of the third order 
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Note:  The similarity transformation is called the traveling wave reduction describing any wave propagation and &  
means the velocity. However if we assume the EQS model solutions of electromagnetic field problems can not 
represent traveling waves. Therefore the quantity &  is seen as a pure quantity of calculation. Without any loss of 
generality we set 1�&  for later considerations. 
 
Then we seek for solutions for which )(%� Fv , where 3RF �  and 2RD )   is an open set and 

further we exclude  !0)(:~),(: �%�%� fDfD . Suitable solutions are Iv� , I  an interval so that 

DI $  and 2: RIv � . Since the l.h.s of eq.(3) is a continuous functions we ensure at least 

existence locally and due to the lemmas both from Peano and Picard-Lindelöf we assume 

uniqueness (also at least locally) in a given domain. 

We also note that it may necessary to expand the domain so that we admit complex-valued 

solutions. For the nODE, eq.(3) we therefore require:  

Let )(CD  be a complex domain, CCCD *$)(  for all holomorphic functions and further let 
			 �*% CCC: so that   ! 0,....,'',', )( "nffff  where the prime means %d/d . 

Simultaneously as in the real-valued case we further require that the nODE, eq.(3) has at least one 

solution and the solution is unique. The solution develops completely in an interval I  for which 

 ! )()(, CDIf )�%%% I�%+  holds and so we ensure complex-valued solutions of eq.(3).  

The question is: Can we integrate the nODE so that we can write the nODE, eq.(3) in a complete 

differential form? Indeed, we have 
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Integrating once with 1c  as an arbitrary constant of integration gives a second-order nODE 
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The meaning of the constant 1c  will be clear later. The transformation )]([ln1)( %
�

�% wf  removes 

the exponential function yielding a further nODE of the second-order 
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This nODE is the starting point to apply algebraic methods.  

First of all we need the parameter of the series, eq.(c). Balancing the highest-order nonlinear term 

and the highest-order linear term results in 2��n . This is impossible since the number must be 
�� Zn . We employ the transformation 2)( �%� pw  to derive a further second-order nODE  
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Now the balancing procedure results in the suitable form 1�n  and the polynomial ansatz of the 

first order for the function )(%p  is appropriate: (�� 10 aap   from the series, eq.(c).  

The following result is of interest: If we set 01 �c  (meaning as a shift) the corresponding nonlinear 

algebraic system admits only the trivial solution; therefore a solution of eq.(7) is a pure constant 

resulting from the eqs.(e) and (f). 

However if we admit the constant 1c  acting as an unknown and the quantities �  and �  being as free 

parameters the following solutions are obtained 
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where the constants 1a  and 1c  can be chosen arbitrarily.  

It is seen that such classes of functions are of singular character and hence a practical use is not of 

relevance. Otherwise, singular classes of solutions represent a necessary contribution to the 

solution-manifold of eq.(6). On the contrary, choosing the parameter k  to be positive we obtain 
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Case (ii)   0#k : 
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where the constants 1a  and 1c  also can be chosen arbitrarily. To prevent complex-valued solutions, 

however, 1c  should be �� Rc1 . Surprisingly the first solution represents a continuously non-

singular solution where we have to exclude such values from the set of definition where the 

argument of the logarithm takes the identity. Therefore the solution is valid for all values for which  

R�%  \  !)4(tanh2,0 1��  and the second solution is of singular character once again. 

b) The hyperbolic sine method 

Alternatively to generate classes of solutions we apply the sinh-method [18]. This method is also a 

practical useful approach. In the following note a short overview is given. 
Note: Instead of the series eq.(c) a suitable combination of hyperbolic sine- and cosine functions is introduced so that 
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using an auxiliary function � �%� ww  which is also a solution of the first-order equation 
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where solutions of eq.(9) are expressed in the following form (equally thought as a transformation): 
 
                                                %�� echcossinh w    and   %�� cothcosh w .                                           (10)   
  
From balancing we know that 1�n  holds, therefore the linear ansatz (�(�� coshsinh 110 baap  

is appropriate. Introducing into eq.(7) we derive the nonlinear algebraic system of polynomial 

equations consisting of nine equations for three unknowns. Surprisingly, the solution is also of 

trivial form by assuming 01 �c  and therefore useless for our purposes. 

c) The application of an exponential transform method – regular analytical solutions 

This method developed by the author [19] has been applied successfully to solve the nODE, eq.(7) 

in a closed-form. From the knowledge below we conclude that it is necessary to require 01 "c . 
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Note: We find it useful to state out the basic steps of this method. We do not change the series eq.(c) but solutions we 
are looking for are solutions of the following first-order differential equation (a generalized Riccati Equation) 
 

                                                                � � � �bwBawA
d

wd
�%�%�

%
)()( ,                                                                   (11) 

 
whereby solutions of  eq.(11) are represented in terms of  exponential functions so that the constants A, B, a and b may 
not vanish commonly 
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Here 1C  is a further constant of integration and A, B, a and b are arbitrary constants ( )(%(  acts as the auxiliary 
function). 
The benefit of this new approach is given by the fact that we have introduced several constants which can be chosen 
arbitrarily. This constants influence the nonalgebraic system of polynomial equations positively (it is known that most 
of the polynomial systems are over-determined; by increasing the number of unknowns however, the number of 
equations can be reduced so that the ‘degree of over-determination’ is also reduced). 
 

We finally derive the nonlinear algebraic system of polynomial equations consisting of five 

equations for seven unknowns.  

In total we get seven solutions (two of them are of trivial form) and from the remaining five 

solution we decided to choose the cases 

     Case (i)     0�a , 10 / aBab ��  ,  Bac 21 � , 0"B .                                                                (13) 
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If we use the linear ansatz (�� 10 aap  and inserting the above given parameter values we derive 

the following expressions for the function )(%if , 2,1�i  in a most general form: 
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where the constants Abaa ,,, 10 and B can be chosen arbitrarily restricted by 01 "a .  

Furthermore, two sub-cases by using different values of the parameters can be considered:  

Let 110 ����� BAbaa , then both of the cases (i) and (ii) reduces to a constant expression  
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where �  follows from eq.(2). Otherwise, let 110 ���� BAaa and 1��b . Then we have 
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To be a regular function we have to exclude some values where the argument may not assume the 

identity. We require that we exclude those values of the domain of definition for which  

%+  \ � � !3ln1),(,1 iii '�9��  for the function 1f  and %+  \ � � !3/cosh,,0 1 ii '�9' �  for the 

function 2f ,  here i  means 12 ��i . 

Note: If we admit complex-valued solutions the above given complex-valued conditions have to be considered. 

We assumed that for the constant 1c  the requirement 01 "c  holds. By considering this fact it is 

possible to calculate classes of solutions both by the tanh- and sinh-method.  

However, these functions are of singular character and therefore useless in practise. Otherwise the 

importance of such functions is found in the fact that they are included in the solution-manifold as 

mentioned earlier. 

 The application of the tanh-method results in classes of functions depending upon the parameter k : 
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where 0a  means an arbitrary constant. 

In addition, by using the sinh-method the following function exemplifies the singular character 
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where 1b  also means an arbitrary constant. 

Note: Several other algebraic approaches for solving the highly nonlinear nPDE, eq.(1) exist, especially those 
developed by the author, e.g. [20] and [21] but we believe it is sufficient to apply the given standard procedures.  
The most important fact however is the possibility to solve the eq.(1) without any numerical methods.  
From this standpoint one can say that the derived solutions are all of analytical character representing exact classes of 
solutions. 
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2.2 Analysis 
Let us summarize in short: Our main task is to solve the nPDE, eq.(1) in an analytical way 

dispensing numerical approaches. This can be done by keeping in mind the special function 

methods. Although the eq.(1) is highly nonlinear, algebraic methods can therefore be applied 

successfully. By using several methods different solutions could obtained and in addition it is of 

interest to compare these solutions. 
Note: The crucial step is the assumption that the unknown solution function of any nPDE under consideration is also a 
solution of some ordinary differential equations which can be solved explicitly. However there is no guarantee that the 
algorithm works successfully. It might happen that solutions of the nonlinear polynomial system of equations admit 
only trivial solutions (some nPDE, e.g. the Sine Gordon Equation admits only 0�n ). Further general remarks to 
algebraic methods can be found in [21] and [22]. 
 
Let us start with the most important regular potential function from Case (ii), )(1 %f , eq.(7b). It is 

seen that the second solution )(2 %f of eq.(7b) represents singular character as well as the function 

)(0 %f . Firstly the function )(1 %f  satisfies the above given boundary conditions. Surprisingly, the 

potential does not depend upon the parameter � . It is proven that � �2/3log
21
1)(lim 10

��%
�%

f  and 

0)/(lim 1 �%
	�%

ddf . The first expression means that the derived potential takes any value that the 

potential in the bulk can have. The negative sign can be directly connected with a negative charge 

environment. Further we detect that the potential depends upon the temperature. In Tab.1 values for 

a specific temperature domain are given and Fig.1 shows graphically the linear dependence where 

we assume the absolute value for the potential function. 

                                     

Fig.1 The temperature dependence of the potential function )(1 %f , eq.(7b). The potential depends linearly upon the 

temperature and can be described by a relation like %�� baf  with 00984,0�a  and .105,3 5�*�b  The relative error 

is approximately 99948,0�R  and the standard deviation is calculated to be .104 5�*�  Note that the absolute value of 
the potential function is assumed. Without loss of generality we chose the arbitrary constants 111 �� ca and a single-
valued electrolyte 1�iz  is assumed. 
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That means that by increasing the temperature the diffusive layer expands more and more into the 

inner part of the electrolyte. 

We remark that no adsorption effects occur so that we have the OHL (Outer Helmholtz Layer; 

referred as the Stern layer having an assumed thickness approximately equal to the radius of one 

hydrated ion) as a maximal distance thinkable from the electrode surface. 
Note: It is reasonable to assume that the whole excess charge is located in the OHL because due to the finite electrical 
conductivity and perturbations of the electrical forces due to the Brownian movements the space charge has a maximum 
in the OHL. The adjacent domain is known as the diffusive layer which tends as deep in the solution as the electrical 
conductivity decreases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        
 
 
 
 
 
 
 
 
 
 
 
Tab.1 Calculated values for the temperature dependence of the potential function )(1 %f , eq.(7b). T means the 

temperature in 0 C, 0e  is the elementary charge and k  means the Boltzmann constant. Note that the absolute value of 
the potential function is assumed. 
 
 
The electric field can derived from the potential by application of the gradient operator to give 

       � � � �� � � � � � � � � �� ��
�
�

�
�
� %��%�%��%�

�
%�%�

�%
expexp

2
1expexp222

1
cosh2sinh222

1)(E
�

,        (17) 

where we converted the hyperbolic functions into pure exponentials.  

If we assume complex-valued arguments the denominator may not assume values for which the 

denominator vanishes, that is % \ � � !3/5cosh, 1 ��9 �i . 

Note: The electric field can be represented in form of a convergent analytical power series since all contributions in the 
second part of eq.(17) are convergent functions with a convergence radius of 	�R . We explicitly have the 
representation 
 

CT o/ )1()(1 �*%f kTe /0

0 0,0099 42,45 

10 0,0102 40,94 

20 0,0105 39,55 

30 0,0109 38,25 

40 0,0112 37,02 

50 0,0116 35,88 

60 0,0119 34,8 

70 0,0123 33,79 

80 0,0127 32,83 

90 0,0130 31,93 

100 0,0134 31,07 
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where (.):  means the Gamma function. It is seen that the electric field can be approached in first order by an 
exponential function. 
 
 
 
Introducing the similarity variable tx &��% , 1�& , we compute the time-depending electric field 

                                  � � � �� � !txtx
txE

����
�

cosh122sinh22
1),(

�
,                                    (17b) 

where we resigned to write out the exponential representation. 

In Fig.2 we both show the potential function )(1 %f  representing a typical kink-like behaviour as 

well as the solution surface for the time-depending electrical field. This bell-shaped continuous 

electric field takes a finite value as 0�% , vanishes as 	�%  and this is in agreement with the 

potential’s property.  
            

 
 
 
Fig.2  Left: The stable kink-solution for the potential function )(1 %f , eq.(7) satisfying the boundary conditions. 
Right: The solution surface for the time-depended electric field, eq.(7b). This continuous function shows a marked peak 
representing a maximum of charge. 
 
By applying the divergence operator upon the electric field (%  acting as the local coordinate) we get 

the charge density by 

  � � � �� �
� � � �� �
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where )(%W  is used instead of the hyperbolic and exponential term, respectively. Fig.3 shows the 

run of the function eq.(17c). Introducing the relaxation time by 
�
��

�� 0  one can express the charge 

density time-dependent so that we have the connection 
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���� .                          (17d) 
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Here the charge density is directly proportional to the conductivity and the relaxation time and 

inversely proportional to the relative dielectric constant of the electrolyte.  

 
 
Fig.3   The behaviour of the charge density, eq.(17c) at 0�t . To specific humps on both sides of the domains could 
observed (the function changes the sign). In this model the central ion is thought to be located in the centre.  
The increasing (decreasing) part up to the maximum (minimum) matches domains of higher concentrated charged areas.  
It is shown that  0)( �%�  as 	'�%  holds. Beyond the OHL the space charge is a decreasing function.  
 
Theoretical calculated values can be seen in the Tab.2 and Tab.2a, respectively and Fig.4 shows the 

behaviour of the function for some different many-valued electrolytes. 

 
 

              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Tab.2/2a Theoretical values of the function )(%W for different many-valued electrolytes. The first column of the right 
table represents potassium chloride, the second and the third column represents calcium sulphate and sodium sulphate, 
respectively. The constant C is assumed to be 13104 �*�KClC , 11105,2

4

�*�CaSOC  and 11102,3
42

�*�SONaC . 

Note that a standard concentration of lmolc /01,0� at a standard temperature of KT 15,273�  is assumed. 
 

%  )(%*WC  )(%*WC  )(%*WC  

0 1510.14,1 �  1410.1,7 �  1410.1,9 �  

1 1510.81,1 �  1310.13,1 �  1310.14,1 �  

2 1510.16,1 �  1410.24,7 �  1410.25,9 �

3 1610.29,5 �  1410.31,3 �  1410.24,4 �

4 1610.11,2 �  1410.32,1 �  1410.69,1 �

5 1710.02,8 �  1510.01,5 �  1510.42,6 �

6 1710.89,2 �  1510.87,1 �  1510.39,2 �

7 1710.10,1 �  1610.89,6 �  1610.82,8 �

8 1810.01,4 �  1610.54.2 �  1610.25,3 �

9 1810.5,1 �  1710.35,9 �  1610.2,1 �  

10 1910.5,5 �  1710.44,3 �  1710.4,4 �  

%  )(%*WC  )(%*WC  )(%*WC  

0 1510.14,1 �� 1410.1,7 ��  1410.1,9 ��

-1 1610.57,9 �  1410.6 �  1410.68,7 �

-2 1510.83,1 �  1310.14,1 �  1310.46,1 �  

-3 1510.23,1 �  1410.71,7 �  1410.87,9 �

-4 1610.77,5 �  1410.6,3 �  1410.61,4 �

-5 1610.32,2 �  1410.45,1 �  1410.88,1 �  

-6 1710.38,8 �  1510.52,5 �  1510.1,7 �  

-7 1710.23,3 �  1510.06,2 �  1510.63,2 �

-8 1710.22,1 �  1610.6,7 �  1610.73,9 �

-9 1810.48,4 �  1610.8,2 �  1610.59,3 �

-10 1810.65,1 �  1610.03,1 �  1610.32,1 �  
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Note: Otherwise it follows from eq.(17d) that the relaxation time is directly proportional to the relative dielectric 
constant of the medium and inversely proportional to the conductivity and the function ).(%W In addition, a direct 
connection of the divergence of the electric field in the OHL is seen. This relation is therefore suitable for proofing in 
experiments later. 
 
Let a  be a specific distance (from the electrode surface to the centre of the hydrated ions in the 

OHL). The total charge totq  contained in the OHL is obtained by integrating the charge density 

)(%�  from the electrode surface with the reference point taken at infinity.  

Therefore we have from eq.(17c) 

                               � �][sinh][cosh22
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88
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00

aa
dq
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��%%�

9
�

�� ;
	

                                (17e) 

and totq  takes a function of the distance. The situation is analogues to that from the DHT where a 

central ion of charge 0ezi�  is enveloped by a cloud containing the total charge 0ezi� . 

Note: The total charge in eq.(17e) is considered at the time 0�t , so it follows from the similarity variable 
%����% xtx  as a local coordinate. In the DHT it was found that the electrical effect of the cloud on the central ion 

could be simulated by placing the entire charge of the cloud, 0ezi�  at the distance 1�<  from the central ion. 
 
Let us study two limit cases: (i) for small distances, say, 0�a , the total charge tends to a constant 

factor: 9��� 352/0totq ; (ii) for large distances it is shown that 0�totq  as 	�a . This is also in 

agreement with the boundary conditions assumed earlier and matches our expectation exactly. 

Further potential solutions are given by the relations eqs.(14a) and (14b), respectively. 

Due to the similarity we decided to discuss the solution eq.(14a). It is of interest to stress that the 

solution is a continuous function but does not satisfy the boundary conditions. Moreover, it is 

shown that either for the cases 0�%  and 	�%  the function takes a real valued number and does 

not vanish, as it must. 

Let us now discuss the solution for Case (a), 0
k , eq.(15) of the form 
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ze
Tkf

i
p ,  00 "a ,                                       (18) 

with arbitrary chosen 0a . The limiting analysis shows that the function takes 	�  as 0�%  and 

vanishes as 	�% . Such classes of solutions are called peakon-solution representing a singular 

behaviour at 0�% . It is further shown that 
0

1,
�%

%�
�

pf  takes complex infinity.  
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Fig.4   The behaviour of the function ),(%W  eq.(17d) for different electrolytes. Left from top to bottom: A positive 
argument of )(%W is used and the curves show potassium chloride, calcium sulphate and sodium sulphate. 
Right from top to bottom: Special values for a negative argument; the electrolytes are the same. The valence might 
not influence the function )(%W . No significant differences between (1,1)-, (2,1)- and (1,2)-electrolytes could observed. 
In all cases the function )(%W tends to a domain of saturation. 
 
That means that both the function and the first derivative are discontinuous at the point 0�% .  
In Fig.5 we show a planar plot where a similarity to the unit potential (and/or charge) is remarkable.  
The second solution )(2, %pf  containing the hyperbolic cotangent remains also singular and does not 

match a situation usefully for our purposes. 

 
               Fig.5 The peakon-solution fort the potential function, eq.(18). A similarity to a unit potential is seen. 
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3. Conclusion and outlook 
In this second part we showed that the nPDE, Eq. (1) in the meaning of a modified Poisson-

Boltzmann Equation can be solved analytically by algebraic methods.  

Such solutions also represent the unknown potential and can be seen as exact closed-form solutions 

since we need not any numerical methods although the nPDE, Eq. (1) under consideration is highly 

nonlinear in the potential. 

We applied three different algebraic approaches recognizing the fact that classes of solutions differ 

completely in their behaviour. It is a special hallmark of algebraic methods that one can not predict 

appropriate solutions. From the mathematical point of view it is necessary to analyze this unusual 

behaviour in future papers. We further detected that solutions depend critically upon some 

parameters (in the case of the hyperbolic tangent method the parameter 1c ). 

Moreover, regular as well as singular solutions occur and also the hyperbolic sine method generates 

different results. Further solutions obtained by application of a method derived by the author are 

given. For a specific case the potential function can be calculated as a continuous function 

satisfying the boundary conditions. From the potential, the electric field, the charge density and the 

total charge in the OHL could derive whereby the results correlate the real physical situation. 

For different many-valued electrolytes the new generalized potential function )(%W  is calculated 

and graphical representations are suitable to clarify the dependence. 

However, similar to other models, suitable assumptions have been made e.g. the ions are spheres, 

we have no dispersion forces and we also neglect effects of adsorption. Further, from the EQS, 

additional restrictions are necessary. 

In spite of these assumptions it is possible to formulate time-dependence in the present model. 

In the third paper following soon we will study new results by applying the capacitor model 

including diffusion-like processes and effects of adsorption. 

In one of our next papers we will show the structure of an electrolyte near a special central ion 

(praseodymium was used) by experiments and we will show the difference to (1,1)-electrolytes 

explicitly. We shall study the behaviour of special mixtures with organic solvents to analyze 

deviations from the simple case. 
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