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Abstract

A mathematical methodology for understanding the construction of polyhedral links has been developed in 

this paper. A family of polyhedral links is generated based on the geometry of polyhedron by using the operation 

of ‘Tangle Covering’. We then show that the HOMFLY polynomial for this family of links can be derived from 

the Zw-polynomial of the original polyhedral graph by a simple substitution rule. The result thus generalizes the 

computation of the HOMFLY polynomial to the family of nearly arbitrary polyhedral links, which complements

our previous research on semi-regular case. In addition, our work also gives the HOMFLY polynomials of

rational links, a typical link family which could facilitate a number of important problems in knot theory.

1. Introduction

A link [1,2], a set of knotted loops all tangled up together, is the main study object of knot theory. In 

1961, the first topological catenane [3] was synthesized in laboratory, which immediately attracts the 

continuous interests of chemists. With the development of nanotechnology, a variety of polyhedral 

catenates such as DNA tetrahedron [4–6], DNA cube [7, 8], DNA truncated octahedron [9], DNA

octahedron [10, 11], DNA dodecahedron [6, 12], DNA icosahedron [13, 14] and DNA bipyramid [15], have
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been synthesized by using DNA blocks. These exciting results trigger scientist to study the properties 

of these topological nontrivial structures embedding in 3D space, and also open a new area for knot 

theory.

Polyhedral links, a mathematical model of DNA polyhedra, model edges of interlinked and 

interlocked architectures as two strands of DNA chains [16-26]. Qiu’s group has constructed some 

graceful links from Goldberg polyhedra and carbon nanotubes by the means of ‘three cross-curves and 

double lines covering’ [16, 17]. Subsequently, other construction methods have been developed based on 

the various polyhedrons [18–26]. However, due to the structure diversity of knots and catenanes [27],

some new methods to describe them may have to be considered. In this paper, a general operation

‘Tangle Covering’ is proposed to generate a family of polyhedral links including regular polyhedral 

links and semi-regular polyhedral links discussed in our previous work [23]. This work provides a

sound basis for the understanding of structure, properties and, further, the molecular design of DNA 

polyhedral catenanes.

The HOMFLY polynomial, a powerful invariant of oriented links, can distinguish most links from 

their mirror images [28], which is crucial in biomolecular system [29, 30]. It is known that the computation 

of HOMFLY polynomial is believed to be #P hard [31, 32]. For the links with small crossing number, we 

can resort to some software packages [33]. However, in the case of the links with large crossing number,

the computation becomes a difficult problem. This paper identifies a large family of links with special 

structure such that their HOMFLY polynomial can be easily obtained only by computing the

Zw–polynomial, a weighted dichromatic polynomial, of original graph. The general result greatly 

improves our previous work [23], and is expected to facilitate the subsequent identification of the 

topological link type and chirality of polyhedral links.

2. The construction for a family of polyhedral links

Some basic definitions, notations and operations are given in advance.

In graph theory, a planar graph is a graph which can be embedded in the plane or the sphere. A

planar graph already drawn in the plane without edge intersections is called a plane graph. All convex 

polyhedrons are 3-connected planar graphs [34], hence any one of them has a plane graph. While in this 
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paper, ‘polyhedral graph’ means one of its plane graphs. An isthmus of a graph is an edge whose 

deletion increases the number of components. A loop of a graph is an edge whose endpoints are the 

same.

A tangle is defined to be two strands twisted around each other, which is an ideal building block for 

the construction of knots and links [35, 36]. Four basic blocks used in this paper are a-tangle, b-tangle,

c-tangle and d-tangle (see Figure 1). The length of each tangle is defined as one half of its crossing

number. X-tangle denotes one of four tangles throughout this paper.

We shall now construct a new link from any connected plane graph G as follow: cover each edge 

with a tangle of length n (a-tangle, b-tangle, c-tangle or d-tangle), and connect the ends of tangles 

along each edge in a face of G. The resulting link is denoted by �(�) and is called polyhedral link if 

G is a polyhedral graph. This operation is called ‘Tangle Covering’ which generalizes Jaeger link [35]

and also the construction method in Ref. [36], and produces a family of links �(�) by changing the 

type and length of tangle for each edge.

In particular, the above operation will be called ‘X-Tangle Covering’ if we use only X-tangle to 

cover each edge. Also, it will be called ‘Xn-Tangle Covering’ if all tangles have the same length n for 

each edge. We write ��(�) and ���(�) for the two links obtained from G by using the operations 

‘X-Tangle Covering’ and ‘Xn-Tangle Covering’, respectively (see Figure 1).

Figure 1. Three operations on tetrahedron: Tangle Covering, X-Tangle Covering and Xn-Tangle Covering. 
(Each box in �(�)������� contains a tangle with length ni for i=1…6.)
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Some interesting results can be obtained if G only consists of one edge e. If e is a loop, then 

���(�) and ���(�) will be two torus links and �	�(�) and �	�(�) will be two trivial knots. 

Otherwise, the situation is reversed (see Figure 2).

Figure 2. (a) Four links derived from a loop. (b) Four links derived from an isthmus.

Semi-regular polyhedral links are obtained from any polyhedral graph G by using the operation 

“X-Tangle Covering”, which have the same type of tangles for each edge. They are classified as four 

classes of links according to the type of tangle used in ‘X-Tangle Covering’, and denoted by 

�
(�), ��(�), ��(�) and �(�). The four classes of links are just the links constructed in Ref. [23].

Regular polyhedral links are obtained from any polyhedral graph G by using the operation 

‘Xn-Tangle Covering’. They are also classified as four classes of links according to the type of tangle 

used in ‘Xn-Tangle Covering’, and denoted by �
�(�), ���(�), ���(�) and ��(�). In contrast to 

semi-regular links, regular links have more special structure from which we can obtain the relationship

between Tutte polynomial and HOMFLY polynomial as discussed in Section 4.

Remark. Note that all polyhedral graphs are connected. However, the operation ‘Tangle Covering’

can be also extended to any plane graph G. In the case that G is disconnected, its each connected 

component will produce a link as above, then D(G) will be the collection of such links. We take this 

convention that �(�) will be an isolated Jordan curves if G consists of an isolated vertex.
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3. Dichromatic polynomial and HOMFLY polynomial

In this section, we establish the relationship between the HOMFLY polynomial [28] of a family of 

links obtained in section 2 and the dichromatic polynomial [36] of the original graph, which is 

stimulated by the earlier work of Traldi. From this result, we derive the connection between polyhedral 

links and the associated polyhedral graph. Hereinafter we use G �� and G · e to denote the graphs 

obtained from graph G by deleting and contracting edge e respectively. |V(G)| denotes the number of 

vertices of a graph G, and |E(G)| the number of edges.

A graph G is a weighted graph if each edge e is given a label w(e).

Definition 3.1 The dichromatic polynomial  ��(�) =  ��(�; �, �) � �[�, �] for a weighted graph G

is defined by the following rules:

(1) If G is an isolated vertex, then

��(�; �, �) = �.

(2) If G � H is the disjoint union of graphs G and H, then

��(� � �; �, �) = ��(�; �, �)��(�; �, �).

(3) If an edge e of G is a loop, then 

��(�; �, �) = (1 + �(�)�)��(� � �; �, �).

Otherwise,

��(�; �, �) = ��(� � �; �, �)+�(�)��(� � �; �, �).

Definition 3.2 The HOMFLY polynomial �(�) = �(�; �, �, �) � �[�, �, �] for an oriented link L is 

defined by the following rules:

(1) If L is a trivial knot, then

�(�; �, �, �) = 1.
(2) If two links L1 and L2 are equivalent under ambient isotopic, then

�(��; �, �, �) = �(��; �, �, �).
(3) Suppose that three link diagrams L+, L� and L0 are different only on a local region, as shown 

in Figure 3. Then
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��(��; �, �, �) + ��(��; �, �, �) + ��(��; �, �, �) = 0.

Figure 3. Three link diagrams: L+, L� and L0.

Here, we can obtain the HOMFLY polynomial in two variables:

�(�; !, �) = �(�; !��, �!, ��).
The HOMFLY polynomial has the following properties:

(1) If L is the connected sum of L1 and L2, denoted by L1#L2, then

�(�; �, �, �) = �(��; �, �, �)�(��; �, �, �).
(2) If L is the disjoint union of L1 and L2, denoted by L1 L2, then

�(�; �, �, �) = (� � + �� )�(��; �, �, �)�(��; �, �, �).
(3) If �" is the mirror image of L, then

�(�"; !, �) = �(�; !��, �).
It shows that the HOMFLY polynomial of an achiral link must satisfy:

�(�; !, �) = �(�; !��, �).
Lemma 3.3 Let e be an edge of a plane graph G which is covered by a-tangle of the length n. If e is a 

loop, then

�#�(�)$ = %� &� ��'� *� + �� - + *&� ��'� � 1- * �� + �-/ �#�(� � �)$.        (1)
Otherwise,

�#�(�)$ = &� ��'� �(�(� � �); �, �, �) + *&� ��'� � 1- * �� + �- �#�(� � �)$.        (2)

Proof We proceed by induction on the length of a-tangle, and split into two cases according to 

whether e is a loop or not.
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(i) We first assume that the length of a-tangle is one.

If e is a loop, applying the definition (3) of HOMFLY polynomial to one of the crossings of �(�)
associated to e, we can obtain

�#�(�)$ = %&� ��' *� � + �� - � ��/ �#�(� � �)$.
Formula (1) can be easily checked by using the above equation.

If e is not a loop, applying the definition (3) of HOMFLY polynomial to one of the crossings of 

�(�) associated to e, we can obtain

�#�(�)$ = � �� �#�(� � �)$ � �� �#�(� � �)$.
Formula (2) can be easily checked by using the above equation.

(ii) We now assume that the length of a-tangle is at least two. Let the link �3: �(�) be the same as 

�(�) only except the length of tangle covering the edge e is n.

If e is a loop, applying the definition (3) of HOMFLY polynomial to one of the crossings of �(�)
associated to e, two new links �3: ���(�) and �(� � �) can be obtained as depicted pictorially in

Figure 4, and

�(�(�); �, �, �) = &� ��' �#�3: ���(�)$ + &� ��' �#�(� � �)$.
Hence we can obtain the following equation by induction hypothesis. 

                          �#�(�)$ = &� ��' �#�(� � �)$ + &� ��'
                                     × %� &� ��'��� *� + �� - + *&� ��'��� � 1- * �� + �-/ �#�3: ���(� � �)$.

Figure 4. Five diagrams in the equation which differ only on a local region.
(Each diagram L stands for the value of H(L, x, y, z).)
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Because �3: ���(� � �) and �(� � �) are isotopic, we obtain

�#�(�)$ = %� &� ��'� *� + �� - � �� + *&� ��'� + ��- * �� + �-/ �#�(� � �)$.
Formula (1) follows immediately from the above equation. 

On the other hand, suppose that e is not a loop. Similarly, applying the definition (3) of HOMFLY 

polynomial to one of the crossings of D(G) associated to e, two links �3: ���(� � �) and     

�(� � �) can be obtained as depicted pictorially in Figure 5(a), then

�#�(�)$ = &� ��' �#�(� � �)$ + &� ��' �#�3:���(�)$.
By induction hypothesis, we have

�#�(�)$ = &� ��' �#�(� � �)$ + &� ��'� �#�3:���(� � �)$
                       + &� ��' * �� + �- %&� ��'��� � 1/ �#�3:���(� � �)$.

Since �3:���(� � �) and �(� � �) are isotopic, and �3:���(� � �) and �(� � �) are isotopic, we 

have

�(�(�); �, �, �) = &� ��'� �#�(� � �)$ + %* �� + �- %&� ��'� + ��/ � ��/ �#�(� � �)$.
Formula (2) follows immediately from the above equation.

Figure 5. Five diagrams in each of the equations (a) and (b) which differ only on a local region.
(Each diagram L stands for the value of of H(L, x, y, z).)
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Lemma 3.4 Let e be an edge of a plane graph G which is covered by b-tangle of the length n. If e is a 

loop, then

�(�(�)) = �#�(� � �)$.                         (3)

Otherwise,

�#�(�)$ = *� ��-� �#�(� � �)$ + **� ��-� � 1- * �� + �- �#�(� � �)$.                 (4)
Proof We proceed by induction on the length of b-tangle, and split into two cases according to 

whether e is a loop or not.

(i) We first assume that the length of b-tangle is one. 

If e is a loop, then �(�) and �(� � �) are ambient isotopic. Hence

�#�(�)$ = �#�(� � �)$.
If e is not a loop, applying the definition (3) of HOMFLY polynomial to one of the crossings

of �(�) associated to e, we can obtain

�#�(�)$ = *� ��- �#�(� � �)$ + *� ��- �#�(� � �)$.
The formula (3) can be easily checked by using the above equation. 

(ii) We now assume that the length of b-tangle is at least two. Let the link �3:�(�) be the same as 

�(�) only except the length of tangle covering the edge e is n.

If e is a loop, then �(�) and �(� � �) are ambient isotopic as above.

Otherwise, applying the definition (3) of HOMFLY polynomial to one of the crossings of �(�)
associated to e, two links �3: ���(�) and �(� � �) can be obtained as depicted pictorially in Figure

5(b), and

�#�(�)$ = *� ��- �#�3:���(�)$ + *� ��- �#�(� � �)$.
Hence we can obtain the following equation by our induction hypothesis.

�(�(�); �, �, �) = *� ��-� �#�3:���(� � �)$ + *� ��- �#�(� � �)$
                                 + *� ��- * �� + �- 5*� ��-��� � 16 �#�3:���(� � �)$.

Since �3: ���(� � �) and �(� � �) are isotopic, and �3: ���(� � �) and �(� � �) are isotopic,

we have
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                                      �(�(�); �, �, �) = *� ��-� �#�(� � �)$
                                   + %* �� + �- **� ��-� + ��- � ��/ �#�(� � �)$.

The formula (4) follows immediately from the equation above. �

Similarly, the Lemmas 3.5 and 3.6 are given below, their proofs are omitted here.

Lemma 3.5 Let e be an edge of a plane graph G which is covered by c-tangle of the length n. If e is a 

loop, then

�#�(�)$ = %� *� ��-� *� + �� - + **� ��-� � 1- * �� + �-/ �#�(� � �)$.
Otherwise,

�(�(�); �, �, �) = *� ��-� �#�(� � �)$ + **� ��-� � 1- �� + � �#�(� � �)$.
Lemma 3.6 Let e be an edge of a plane graph G which is covered by d-tangle of the length n. If e is a 

loop, then

�(�(�)) = �#�(� � �)$.

Otherwise,

�#�(�)$ = &� ��'� �#�(� � �)$ + *&� ��'� � 1- �� + � �#�(� � �)$. 

Based on the Lemmas 3.3-3.6, we can obtain the following main theorem.

Theorem3.7 Let G be a weighted plane graph, and let 7�, 7	, 78 and 79 be the numbers of the edges 

covered by a-tangle, b-tangle, c-tangle and d-tangle, respectively. For any edge e in G, it will be 

weighted with ��<(�) for  1 > ? > 7� , �	<(�) for  1 > ? > 7	, �8<(�) for  1 > ? > 78 or 

�9<(�)  for 1 > ? > 79 if the edge e is covered by a-tangle of the length @A, b-tangle of the length BA,
c-tangle of the length CA or d-tangle of the length DA. Then

                    �(�(�); �, �, �) = � * �� + �-EF�EG�� *� ��-H 	<IJ<KL �H 9<IM<KL N %&� ��'�< � 1/EF

AO�  
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 × N %*� ��-8< � 1/EG

AO� �� *�; � � + �� , � � + �� -,                          (5)
�Q�R�             ��<(�) = *� + �� - %1 � *� ��-�</�� , �	<(�) = * �� + �- 51 � &� ��'	<6, 

                      �8<(�) = *� + �� - %1 � &� ��'8</��  @SD  �9<(�) = * �� + �- 51 � *� ��-9<6.
Proof We proceed by induction on the number of edges of G. We consider only two cases when an

edge e of G is covered by a-tangle and b-tangle. For c-tangle and d-tangle cases, we can obtain

formula (5) by exchanging the variables x and y in above cases, respectively.

(i) Suppose first that G has exactly one edge e.

Case 1 The edge e is covered by a-tangle with length a1.

If e is a loop, �(�) can be described as ���(�) in Figure 2 (a). Applying Lemma 3.3 to e, we can 

obtain

 �(�(�); �, �, �) = %&� ��'�L *� � + �� - + *&� ��'�L � 1- * �� + �-/  �(�(� � �); �, �, �).
                                            = &� ��'�L *� � + �� - + *&� ��'�L � 1- * �� + �-
Since �(� � �) is a trivial knot.

On the other hand, by (1) and (3) of Def. 3.1, we can obtain

��(�; �, �) = (1 + ��L(�)�)�.
By variable substitution, we have

�� *�; � � + �� , � � + �� - = 51 � *� + �� -� *1 � *� ��-�L-��6 *� � + �� -.   
Hence

�(�(�); �, �, �) = � * �� + �-� %&� ��'�L � 1/ �� *�; � � + �� , � � + �� -.
If e is not a loop, then �(�) is a trivial knot. Hence

�(�(�); �, �, �) = 1.
On the other hand, by Def. 3.1, we can obtain

  ��(�; �, �) = �� + ��L(�)�.
By variable substitution, we have
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          �� *�; � � + �� , � � + �� - = 51 � %1 � *� ��-�L/��6 *� + �� -�.
So it is easy to check formula (5) follows from the above equations.

Case 2 The edge e is covered by b-tangle with length b1.

If e is a loop, then �(�) is a trivial knot and can be described as �	�(�) in Figure 2(a). Hence

�(�(�); �, �, �) = 1.
On the other hand, we have

��(�; �, �) = (1 + �	L(�)�)�.
By variable substitution, we can obtain

   �� *�; � � + �� , � � + �� - = &� ��'	L *� � + �� -.
So it is easy to check formula (5) from the above equations.

If e is not a loop, then �(�) can be described as �	�(�) in Figure 2(b). Applying Lemma 3.4 to e,

we have

  �(�(�); �, �, �) = *� ��-	L �(�(� � �); �, �, �) + T*� ��-	L � 1U * �� + �-  �(�(� � �); �, �, �)
                                      = * �� + �- 5*� ��-	L � 16 + *� ��-	L *� � + �� -

Since �(� � �) is a trivial knot and �(� � �) is a trivial link with two components.

On the other hand, we have

  ��(�; �, �) = �� + �	L(�)�.
By variable substitution, we can obtain

�� *�; � � + �� , � � + �� - = V� � + �� + * �� + �- 51 � &� ��'	L6W *� � + �� -.  
So it is easy to check formula (5) from the above equations.

(ii) We now assume that G has at least two edges, and also consider two cases as above.

Case 1 The edge e is covered by a-tangle with the length aj for 1 > X > |7�|.
If e is a loop, applying Lemma 3.3 to e, we can obtain

  �(�(�); �, �, �) = %� &� ��'�Y *� + �� - + %&� ��'�Y � 1/ * �� + �-/  �(�(� � �); �, �, �).
Hence, by induction,
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                  �(�(�); �, �, �) = � * �� + �- %&� ��'�Y � 1/ 5*� + �� -� **� ��-�Y � 1-�� + 16
                                                      × * �� + �-EF�EG *� ��-H 	<IJ<KL �H 9<IM<KL N %&� ��'�< � 1/EF

AO�AZ\
           

                                                       × N %*� ��-8< � 1/EG

AO� �� *� � �; � � + �� , � � + �� -.              
On the other hand, by Def 3.1 (3), we can obtain

��(�; �, �) = (1 + ��Y(�)�)��(� � �; �, �).
By variable substitution method, we have

 �� *�; � � + �� , � � + �� - = 51 + *� + �� -� **� ��-�Y � 1-��6 �� *� � �; � � + �� , � � + �� -.
Hence

�(�(�); �, �, �) = � * �� + �- %&� ��'�Y � 1/ * �� + �-EF�EG *� ��-H 	<IJ<KL �H 9<IM<KL

                                                      × N %&� ��'�< � 1/EF
AO�AZ\

  N %*� ��-8< � 1/EG

AO� �� *�; � � + �� , � � + �� -.
If e is not a loop, applying the lemma 3.3 to e, we can obtain

�(�(�); �, �, �) = &� ��'�Y �(�(� � �); �, �, �) + *&� ��'�Y � 1- * �� + �-  �(�(� � �); �, �, �).
Applying the induction hypothesis to � � � and � � �, we have

�(�(�); �, �, �)
             = � * �� + �-EF�EG��  *� ��-H 	<IJ<KL �H 9<IM<KL N %&� ��'�< � 1/EF

AO� N %*� ��-8< � 1/EG

AO�
             × 5� + �� *1 � *� ��-�Y-��   �� *� � �; � � + �� , � � + �� - + �� *� � �; � � + �� , � � + �� -6.

On the other hand, by Def 3.1 (3), we can obtain

  ��(�; �, �) =   ��(� � �; �, �) + ��Y(�)  ��(� � �; �, �).
By variable substitution, we have

                       �� *�; � � + �� , � � + �� - = �� *� � �; � � + �� , � � + �� -
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                                                                       + � + �� *1 � *� ��-�Y-�� �� *� � �; � � + �� , � � + �� -.
Hence formula (5) follows immediately from the above equations.

Case 2 The edge e is covered by b-tangle with the length bj for 1 > X > |7	|.
If e is a loop, then �(�) and �(� � �) are ambient isotopic. Hence

�(�(�); �, �, �) = �(�(� � �); �, �, �).

Applying our induction hypothesis to �(� � �), we have

                 �(�(� � �); �, �, �) = � * �� + �-EF�EG�� *� ��-H 	<IJ<KL �H 9<IM<KL N %&� ��'�< � 1/EF

AO�  
                                                        × N %*� ��-8< � 1/EG

AO� 5&� ��'	Y �� *� � �; � � + �� , � � + �� -6.
On the other hand, we have

��(�; �, �) = (1 + �	Y(�)�)��(� � �; �, �).
By variable substitution, we can obtain

�� *�; � � + �� , � � + �� - = &� ��'	Y �� *� � �; � � + �� , � � + �� -.
Hence formula (5) follows immediately from the above equations.

If e is not a loop, by using Lemma 3.4, we can obtain

�(�(�); �, �, �) = *� ��-	Y �(�(� � �); �, �, �) + T*� ��-	Y � 1U * �� + �- �(�(� � �); �, �, �).
Applying our induction hypothesis to � � � and � � �, we can obtain

         �(�(�); �, �, �)
              = � * �� + �-EF�EG��  *– ��-H 	<IJ<KL �H 9<IM<KL N %&� ��'�< � 1/EF

AO� N %*� ��-8< � 1/EG

AO�
              × 5�� *� � �; � � + �� , � � + �� - + �� + � T1 � &� ��'	YU �� *� � �; � � + �� , � � + �� -6.

On the other hand, we have

  ��(�; �, �) = ��(� � �; �, �) + �	Y(�)��(� � �; �, �).
By variable substitution, we have

                           �� *�; � � + �� , � � + �� - = �� *� � �; � � + �� , � � + �� -
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                                                                             + �� + � T1 � &� ��'	YU �� *� � �; � � + �� , � � + �� -.
Hence formula (5) follows immediately from the above equations. �

Remark. Theorem 3.7 holds for all links obtained from the plane graphs, hence also for polyhedral 

links. Moreover, we have the following corollary for regular polyhedral links, which can be obtained 

immediately from Theorem 3.7.

Corollary 3.8 Let G be a weighted polyhedral graph, and each edge e will be given a weight 

��(�),  �	(�),  �8(�) or �9(�) if it is covered by a-tangle, b-tangle, c-tangle or d-tangle of the length 

n. Then

 (1)   �(�
�(�); �, �, �) = � * �� + �-|E(^)|�� *&� ��'� � 1-|E(^)|  �� *�; � � + �� , � � + �� - ;
 (2)   �(���(�); �, �, �) = � * �� + �- *� ��-�|E(^)|  �� *�; � � + �� , � � + �� - ;
 (3)   �(���(�); �, �, �) = � * �� + �-|E(^)|�� **� ��-� � 1-|E(^)|  �� *�; � � + �� , � � + �� - ;
 (4)   �( ��(�); �, �, �) = � * �� + �- &� ��'�|E(^)|  �� *�; � � + �� , � � + �� -,

�Q�R�             ��(�) = *� + �� - %1 � *� ��-�/�� , �	(�) = * �� + �- %1 � &� ��'�/, 
                          �8(�) = *� + �� - %1 � &� ��'�/�� @SD   �9(�) = * �� + �- %1 � *� ��-�/.
4. Applications

4.1 HOMFLY polynomial and W-polynomial

Using Theorem 3.7, we establish the relationship between HOMFLY polynomial and W-polynomial 

[36, 39, 40], which generalizes the connection between polyhedral links and polyhedral graphs, and greatly 

improves the existing result [23]. In addition, this work also gives a connection between rational links 

and their associated plane graphs.

We define a graph G as a colored graph, if there is a function f from edge set E to color set �.

Definition 4.1.1 The W-polynomial `(�) = `(�; D, a�, a�) � �[a�, a�, D] for a colored graph G is 
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defined by the following recursion formulas:

(1) If En be a graph which is composed of n isolated vertexes, then

`(7�) = D���.

(2) Let e be an edge of G. We use c(e) to denote the color of edge e and assume that C(�) = b.

If e is an isthmus, then

`(�) = (�c + �ca�)`(� · �).

If e is a loop, then

`(�) = (�c + �ca�)`(� � �).

Otherwise,

`(�) = �c`(� · �) + �c`(� � �).
The following Lemma can be easily obtained by the skein relations of Zw-polynomial and 

W-polynomial, from which any weighted graph G can be considered as a colored graph.

Lemma 4.1.2 Let G be a weighted and colored graph, and each edge e will be given a weight �(�) if

and only if it is colored with b = C(�). In W(G), if  �c = �(�c), �c = 1, then

                                ��(�; �, �) = �`(�; �, �, �).
The following Theorem can be followed directly from Theorem 3.7 and Lemma 4.1.2, and hence its 

proof is omitted here.

Theorem 4.1.3 Let G be a weighted plane graph as defined in theorem 3.7, and hence also a colored 

graph. In W(G), if

��< = ��<(�) = *� + �� - %1 � *� ��-�</�� , ��< = 1, 
�	< = �	<(�) = * �� + �- 51 � &� ��'	<6 , �	< = 1, 

�8< = �8<(�) = *� + �� - %1 � &� ��'8</�� , �8< = 1, 
�9< = �9<(�) = * �� + �- 51 � *� ��-9<6 , �9< = 1, 
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Then,

                �(�(�); �, �, �) = * �� + �-EF�EG *� ��-H 	<IJ<KL �H 9<IM<KL N %&� ��'�< � 1/EF

AO�  
                                                      × N %*� ��-8< � 1/EG

AO� ` *�; � � + �� , � � + �� � � + �� -.  

Remark. Theorem 4.1.3 clearly holds for all polyhedral links obtained in section 2. For rational 

links, we will show that they can be also constructed from some plane graphs in the next section, and 

hence their HOMLY polynomial can be derived by using this theorem.

4.2 HOMFLY polynomial and Tutte polynomial

Using Corollary 3.8, we establish the relationship between the HOMFLY polynomial of regular 

polyhedral links and the Tutte polynomial [37, 38] of the origin graph, which generalizes the known 

result [21].

Definition 4.2.1 The Tutte polynomial d(�; �, �) � �[�, �] for a graph G is defined by the following 

recursion formulas:

(1) If G is a graph with no edge, then

d(�; �, �) = 1.
(2) Let e be an edge of G. If e is an isthmus, then

d(�; �, �) = �d(� � �; �, �).
If e is a loop, then

d(�; �, �) = �d(� � �; �, �).
Otherwise,

d(�; �, �) = d(� � �; �, �) + d(� � �; �, �).

Lemma 4.2.2 [21] Let G be a connected graph, and each edge be given a weight w. Then

��(�; �, �) = �ef(^)e���d &�; 1 + �� , 1 + ��'.
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The following Theorem can be immediately obtained from the Corollary 3.8 and lemma 4.2.2, and 

its proof is omitted here.

Theorem 4.2.3 Let G be a weighted polyhedral graph, and each edge will be given a weight 

��(�),  �	(�),  �8(�) or �9(�) if it is covered by a-tangle, b-tangle, c-tangle or d-tangle of the length 

n. Then

(1)  �(�
�(�); �, �, �) = *� + �� -|f(^)|�|E(^)|�� *&� ��'� � 1-|E(^)|�|f(^)|�� &� ��'�(|f(^)|��)

                                          × d T�; *� ��-� , 1 � *� + �� -� *1 � *� ��-�-��U ;
(2)  �(���(�); �, �, �) = * �� + �-|f(^)|�� *1 � &� ��'�-|f(^)|�� *� ��-�|E(^)|

                                           × d T�; 1 � *� + �� -� *1 � &� ��'�-�� , &� ��'�U ;
(3)  �(�8�(�); �, �, �) = *� + �� -|f(^)|�|E(^)|�� **� ��-� � 1-|E(^)|�|f(^)|�� *� ��-�(|f(^)|��)

                                           × d T�; &� ��'� , 1 � *� + �� -� *1 � &� ��'�-��U ;
(4)  �(��(�); �, �, �) = * �� + �-|f(^)|�� *1 � *� ��-�-|f(^)|�� &� ��'�|E(^)|

                                           × d T�; 1 � *� + �� -� *1 � *� ��-�-�� , *� ��-�U.
5. Examples

5.1 The HOMFLY polynomial for tetrahedral links

Applying Theorem 3.7 to tetrahedral links, we compute their HOMFLY polynomials and explore

their topological properties.

Tetrahedral links �g(�) are obtained from the tetrahedral graph G by using the operation ‘Tangle 

Covering’, where the edge ei is covered by the a-tangle of the length ai for i=1,2,3, and the edges e4, e5

and e6 are covered by b-tangle of the length n4, c-tangle of the length n5 and d-tangle of the length n6

respectively. These links can be also described as �(�)������� in Figure 1 when n1=a1, n2=a2, n3=a3, n4=b4,

n5=a5 and n6=a6. Here, using Theorem 3.7, the HOMFLY polynomial of �g(�) can be described by

the following formula:
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�(dh(�); !, �) = � �i  j� � �j� � �kjk + �ljm,

Where

     j� = !�����L���n���o��	p��8q(!� � 1)#!�	p � !�9r + !�8q��9r$,
     j� = � sLtnJptnGqsn�� (!��n � !��L���n�!��n���o � !��n��9r�!��o��9r + !�8q��9r ,

           +!��L���n���o + !��L���n��	p + !��L���o��	p + !��n���o��	p + !��n���o��9r   
           +!��o��	p��9r � 4!��L���n���o��	p + 2!��L���n���o��9r � !��L���o��	p��9r

      �!��n���o��	p��9r + !��L���n���o��	p��8q + !��L���n���o��	p��9r
           �2!��L���n���o��8q��9r),

           jk = � !k��	p��8q(!� � 1)k (�2!��n�!��o+!�8q + 3!��n���o + 2!��L���n + 2!��n��9r
           +2!��o��9r + !��L���o � 2!�8q��9r + !��n��	p+!��o��	p�!��L��8q
           +!��L���q��9r + !�	p���q��9r+!��L��	p���q � !��L���n��9r � !��L���o��9r
           �!��n���o���q � !��n��	p��9r � 2!��L���n��	p � 2!��L���o��	p

               �2!��o��	p��9r � 3!��L���n���o � 3!��n���o��	p � 3!��n���o��9r
           +5!��L���n���o��	p + 3!��n���o��	p��9r + 2!��L���o��	p��9r
           +!��L���n���o��9r + !��L���n���o��8q + !��L���n��	p��9r
           +!��n���o��8q��9r�!��L��	p��8q��9r � !��n���o��	p��8q��9r
           �2!��L���n���o��	p��8q � 3!��L���n���o��	p��9r
           +!��L���n���o��	p��8q��9r),

           jm = sqtnJptnGq(sn��)q (!��L � 1)#!�	p � 1$#!�9r � 1$(!��n + !��o�2!��n���o
           �!�8q + !��n���o��8q).

(1) Some chiral links ��,u are obtained from �g(�) for b4=c5 = d6= m.

�(��,u) = !�����L���n���o� (1 � !�) � �!��mu!� � 1 (!mu + !��n�!�u���n�!��L���n
                +!�u���L���n � !�u���o + !mu���o + !�u���L���o � !mu���L���o � !��n���o
                +2!�u���n���o � !mu���n���o+2!��L���n���o � 2!�u���L���n���o)
                � �k!k�mu(!� � 1)k (!�u � 1)(!��L � 1)(!�u � !mu � 2!��n + !�u���n � 2!��o
                �!��o + 2!�u���o + 3!��n���o � 4!�u���n���o + !mu���n���o)
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                � �l!l�mu(!� � 1)l (!�u � 1)�(!��L � 1)(�!�u + !��n + !��o
                �2!��n���o + !�u���n���o).

If Ln is achiral, H(Ln, v, z) must be symmetric in v, and hence !�����L���n���o(1 � !�) must 

also be symmetric in v. However, it is not symmetric in v. Therefore, all links from �g(�) are chiral

for b4=c5 = d6= m.

(2) The HOMFLY polynomials of some links obtained from �g(�).
The links Ln are obtained from �g(�) for a1=a2=a3=b4=c5=d6=n. Their HOMFLY polynomials 

are given in the following.

                              �(��) = 1� (!���v� � !��v�) + �!����!� � 1 (!�� � 1)(1 � 2!�� + 4!m�)
                                � �k!k���(!� � 1)k (!�� � 1)m(!�� � 2) + �l!l���(!� � 1)l (!�� � 1)l.

The links ��,u � are obtained from �g(�) for a1=a2=a3=n and b4=c5=d6=m. Their HOMFLY 

polynomials are given in the following.

�(��,u � ; �, �, �) = 1� (!���v� � !��v�) + �!��mu!� � 1 (!�� � 1)(!mu + !�� � !m� � 2!�u���
         +2!mu��� + 2!�u�m�)  � �k!k�mu(!� � 1)k (!�u � 1)�(!� � 1)�(!�u � 3!�� + !�u���)
         + �l!l�mu(!� � 1)l (!�u � 1)�(!�� � 1)�(!�u � 2!�� + !�u���).

The links ��,u � are obtained from �g(�) for a1=a2= n and a3= b4=c5 = d6= m. Their HOMFLY 

polynomials are given in the following.

�(��,u � ; �, �, �) = !����u�m�� (1 � !�) � �!��mu!� � 1 (!vu + !�� � !m� � 2!�u���
                 +3!mu��� � 2!vu��� + 2!�u�m� � 2!mu�m�)  � �k!k�mu(!� � 1)k (!�u � 1)
                 × (!�� � 1)(!mu � 2!�� + 4!�u��� � 4!mu��� + !vu���) 
                 + �l!l�mu(!� � 1)l (!�u � 1)�(!�� � 1)(!�� � 2!����u + !mu���).

5.2 The HOMFLY polynomial of rational links

Rational links is a very important and simple class of links which often leads to solving some 

important problems of knot theory. Here, by using Theorem 4.1.2, we give an explicit formula of their 

-84-



HOMLY polynomial.

Let  ��,	(�w), �8,9(�w), ��,	(�s) and �8,9(�s) be four families of rational links obtained from 

a connected plane graphs �w and �s by using the operation ‘Tangle Covering’ respectively (see

Figure 6). According to the Theorem 3.7, we can obtained the corresponding four weighted graphs 

��,	w , �8,9w , ��,	s and �8,9s . Hence according to Theorem 4.1.2, the above weighted graphs are also

considered as four colored graphs (see Figure 6).

Using Theorem 11 in Ref. [39], we can obtain the W-polynomials of  ��,	w ,  �8,9w , ��,	s  @SD �8,9s .

Figure 6. Four families of rational links  ��,	(�w), �8,9(�w), ��,	(�s) and �8,9(�s) 
and the corresponding colored graph ��,	w , �8,9w , ��,	s  and �8,9s .

( Each box contains a-tangle with length  @A, b-tangle with length B\, c-tangle with length CA
or d-tangle with length D\, where 1 > ? > 2S and 1 > X > 2S + 1 in ��,	s  and �8,9s , 

and 1 > ? > 2S + 1 and 1 > X > 2S + 2 in ��,	w and �8,9w .)
Theorem 5.2.1 Let  ��,	w ,  �8,9w , ��,	s  @SD �8,9s be four colored graph as described above. Then

(1) `(��,	w , D, D, D) = ( {��,  {��)(} ~A�AO� )�, (2) `(��,	s , D, D, D) = ( {k�,  {m�)(} ~A�AO� )�,
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(3) `(�8,9w , D, D, D) = # {l�,  {v�$#} ~\�\O� $� (4) `(�8,9s , D, D, D) = ( {��,  {��)#} ~\�\O� $�,

where

 {�� = �	LDm, {�� = �	LDk, {l� = �9LDm, {v� = �9LDk,

 {k� = ��L�	nDm,        {m� = ��L�	nDk + ��L�	nDk + ��L�	nDm,
 {�� = �8L�9nDm,         {�� = �8L�9nDk + �8L�9nDk + �8L�9nDm,

@�,�A = ��n<�	n<�LD� + ��n<�	n<�LD,  @�,�A = ��n<�	n<�LD + ��n<�	n<�L,   
  @�,�A = ��n<�	n<�LD�, @�,�A = ��n<�	n<�LD + ��n<�	n<�L D + ��n<�	n<�LD�,
@�,�\ = �8nY�9nY�LD� + �8nY�9nY�LD,  @�,�\ = �8nY�9nY�LD + �8nY�9nY�L,   

  @�,�\ = �8nY�9nY�LD�, @�,�\ = �8nY�9nY�LD + �8nY�9nY�L D + �8nY�9nY�LD�.
Using Theorem 4.1.3 and Theorem 5.2.1, we can obtain the following theorem which give the 

HOMFLY polynomials of ��,	(�w), �8,9(�s),  ��,	(�s) and �8,9(�s).
Theorem 5.2.2 Let  ��,	(�w),  �8,9(�w),  ��,	(�s) and �8,9(�s) be four families of rational links 

as constructed above. Then

(1)  �#��,	(�w$; !, �) = & !�!� � 1'|EF| !� H �	<�IJ�<KL N(!��< � 1)|EF|
AO�  ( {��,  {��) �N ~A

�
AO� � �,

(2)  �#��,	(�s$; !, �) = & !�!� � 1'|EF| !� H �	<�IJ�<KL N(!��< � 1)|EF|
AO�  ( {k�,  {m�) �N ~A

�
AO� � �,

(3)  �#�8,9(�w$; !, �) = & !�!� � 1'|EG| !H �9<�IM�<KL N(!��8< � 1)|EG|
AO� # {l�,  {v�$ �N ~\

�
\O� � �,  

(4)  �#�8,9(�s$; !, �) = & !�!� � 1'|EG| !H �9<�IM�<KL N(!��8< � 1)|EG|
AO� ( {��,  {��) �N ~\

�
\O� � �,

where

 {�� =  {k� =  {l� =  {�� = T1 � !�!� Um , {�� = #!�	L � 1$ T1 � !�!� U�  , {v� = #!��9L � 1$ T1 � !�!� U�,
{m� = (!���L � 1)�� T1 � !�!� Um +#!�	n � 1$ T1 � !�!� U� + (1 � !���L)��#1 � !�	n$ T1 � !�!� Um,
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{�� = (!�8L � 1)�� T1 � !�!� Um +#!��9n � 1$ T1 � !�!� U� + (1 � !�8L)��#1 � !��9n$ T1 � !�!� Um,
~A = T@�,�A @�,�A

@�,�A @�,�A U with

@�,�A = T1 � !�!� U� + (!���n< � 1)�� T1 � !�!� U�,
@�,�A = T1 � !�!� U� , @�,�A = 1 � !�	n<�L1 � !���n< + !�	n<�L � 1   @SD

@�,�A = (!���n< � 1)�� T1 � !�!� U� + (1 � !���n<)��#1 � !�	n<�L$ T1 � !�!� U� + !�	n<�L � 1,
~\ = �@�,�\ @�,�\

@�,�\ @�,�\ � with

@�,�\ = T1 � !�!� U� + #!�8nY � 1$�� T1 � !�!� U�,
@�,�\ = T1 � !�!� U� , @�,�\ = 1 � !��9nY�L1 � !�8nY + !��9nY�L � 1 @SD

@�,�\ = (!�8n< � 1)�� T1 � !�!� U� + T1 � !��9nY�L1 � !�8nY U T1 � !�!� U� + !��9nY�L � 1.

6 Conclusions

Given any polyhedron, a large family of polyhedral links is obtained by applying the operation 

‘Tangle Covering’, which enriches the topology of molecular links. Two important classes of links, 

named as regular links and semi-regular links, are derived from this family of links, where regular 

links have the same type and crossing number of tangles for each edge and semi-regular links only 

have the same type of tangles. These links have been regarded as mathematical model for molecular 

knots and links, and parts of them constructed on the regular polyhedron have been discussed in other

papers [16-26].

Furthermore, we have given a generalized relationship between the HOMFLY polynomial of a 
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family of polyhedral links and the Zw-polynomial of an original graph. This results in two important 

relationships, one between the HOMFLY polynomial of regular links and the Tutte polynomial of the 

original graph, and the other between the HOMFLY polynomial of regular links and the W-polynomial 

of the original graph. Our result not only enriched the connections between graphs and links but also 

simplified the computation of HOMFLY polynomial, especially for the links with large crossing 

number. Therefore, this paper provides a possible approach to classifying and identifying the complex 

links, as well as the description and analysis of the chemical properties for molecular catenanes and 

knots.
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