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Abstract

The main purpose of this paper is to provide examples of hyperstructures and
weak hyperstructures associated with dismutation reactions.

1 Introduction

Algebraic hyperstructures represent a natural extension of classical algebraic structures

and they were introduced in 1934 by the French mathematician F. Marty [8]. In a classical

algebraic structure, the composition of two elements is an element, while in an algebraic

hyperstructure, the composition of two elements is a set. Hundreds of papers and several

books have been written till now on hyperstructures. Many of them are concerned with

the applications of hyperstructures in other topics. There exists a rich bibliography:

publications appeared within 1992 can be found in “Prolegomena of Hypergroup Theory”

by P. Corsini [1]. This book contains the principal definitions endowed with examples

and the basic results of the theory.

A recent book on these topics is “Applications of Hyperstructure Theory” by P. Corsini

and V. Leoreanu [2]. Another monograph is devoted especially to the study of Hyperring

Theory, written by Davvaz and Leoreanu–Fotea [6].
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One of the topics of great interest, in the last years, is the study of weak hyperstruc-

tures, so-called Hv-structures. The class of Hv-structures is the largest class of algebraic

hyperstructures. These structures satisfy weak axioms, where the non-empty intersec-

tion replaces the equality. This topic was introduced in 1990 by Vougiouklis [11], also see

[3, 13]. Another book on “Hyperstructures and Their Representations” by T. Vougiouklis,

was published one year later [12].

In [5, 4], B. Davvaz, A. Dehghan Nezad, and A. Benvidi provided examples of hyper-

structures associated with chain reactions.

The main purpose of this paper is to present examples of hyperstructures and weak

hyperstructures associated with dismutation reactions.

2 Hypergroups and Hv-groups

An algebraic hyperstructure is a non-empty set H together with a function · : H ×H −→
℘∗(H) called hyperoperation, where ℘∗(H) denotes the set of all non-empty subsets of H .

If A,B are non-empty subsets of H and x ∈ H, then we define

A · B =
⋃

a∈A,b∈B

a · b, x · B = {x} · B, and A · x = A · {x} .

The hyperoperation (·) is called associative in H if

(x · y) · z = x · (y · z) for all x, y, z in H

which means that ⋃
u∈x·y

u · z =
⋃

v∈y·z
x · v .

We say that a semihypergroup (H, ·) is a hypergroup if for all x ∈ H , we have x ·H =

H · x = H . A hypergroupoid (H, ·) is an Hv-group, if for all x, y, z ∈ H , the following

conditions hold:

(1) x · (y · z) ∩ (x · y) · z �= ∅

(2) x · H = H · x = H .

A non-empty subset K of a hypergroup (respectively, Hv-group) H is called a subhy-

pergroup (respectively, Hv-subgroup) of H if a · K = K · a = K for all a ∈ K.

Let (H1, ·) and (H2, ∗) be two Hv-groups. A map f : H1 −→ H2 is called an Hv-

homomorphism or a weak homomorphism if

f(x · y) ∩ f(x) ∗ f(y) �= ∅, for all x, y ∈ H1 .

-56-



f is called an inclusion homomorphism if

f(x · y) ⊆ f(x) ∗ f(y), for all x, y ∈ H1 .

Finally, f is called a strong homomorphism if

f(x · y) = f(x) ∗ f(y), for all x, y ∈ H1 .

If f is onto, one to one and strong homomorphism, then it is called an isomorphism. In

this case we write H1
∼= H2 .

3 Oxidation–Reduction Reactions

In a redox reactions or oxidation–reduction reaction, electrons are transferred from one

reactant to another. Oxidation refers to the loss of electrons, while reduction refers to the

gain of electrons. A substance that has strong affinity for electrons and tends to extract

them from other species is called an oxidizing agent or an oxidant. A reducing agent,

or reductant, is a reagent that readily donates electrons to another species [10]. A half–

reaction is a reduction or an oxidation reaction. Two half–reactions are needed to form

a whole reaction. Redox reactions have a number of similarities to acid–base reactions.

Like acid–base reactions, redox reactions are a matched set; you do not have an oxidation

reaction without a reduction reaction happening at the same time. When the change in

free energy (ΔG) is negative, a process or chemical reaction proceeds spontaneously in the

forward direction. When ΔG is positive, the process proceeds spontaneously in reverse.

In electrochemical reactions ΔG = −nFE, where n , F , and E are number of electrons

transferred in the reaction, Faraday constant and cell potential, respectively [10].

The change in the oxidation state of a species lets you know if it has undergone

oxidation or reduction. Oxidation is the process in which an atom undergoes an algebraic

increase in oxidation number, and reduction is the process in which an atom undergoes

an algebraic decrease in oxidation number. On this basis, oxidation–reduction is involved

in the reaction

O2 + C −→ CO2

In this reaction, oxidation number of the C atom increases from zero to +4 whereas,

the oxidation number of O atom decreases from zero to −2. Furthermore, the total

increase in the oxidation number equals to the total decrease in oxidation number [9].
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4 Dismutation reactions

Disproportionation or dismutation is used to describe two particular types of chemical

reactions:

(1) A chemical reaction of the type 2A −→ A
′
+ A

′′
, where A,A

′
and A

′′
are different

chemical species [14]. Most but not all are redox reactions. For example 2H2O −→
H3O

+ + OH− is a disproportionation, but is not a redox reaction.

(2) A chemical reaction in which two or more atoms of the same element originally

having the same oxidation state react with other chemical(s) or themselves to give dif-

ferent oxidation numbers. In another word, disproportionation is a reaction in which a

species is simultaneously reduced and oxidized to form two different oxidation numbers.

The reverse of disproportionation is called comproportionation. Comproportionation is

a chemical reaction where two reactants, each containing the same element but with a

different oxidation number, will form a product with an oxidation number intermediate

of the two reactants. For example, an element tin in the oxidation states 0 and +4 can

comproportionate to the state +2 . The standard reduction potentials of all half reactions

are: E◦
Sn4+/Sn2+ = 0.154 V ,E◦

Sn2+/Sn = −0.136 V , E◦
Sn4+/Sn = 0.009 V . Therefore,

the comproportionation reaction

Sn + Sn4+ −→ 2Sn2+

is spontaneous.

All possible combinations for the set S = {Sn, Sn2+, Sn4+} to do without energy can

be displayed as follows. The major products are written in the following table:

⊕ Sn Sn2+ Sn4+

Sn Sn Sn, Sn2+ Sn2+

Sn2+ Sn, Sn2+ Sn2+ Sn2+, Sn4+

Sn4+ Sn2+ Sn2+, Sn4+ Sn4+

We rename Sn , S2+
n , and S4+

n as follows:

Sn := a, S2+
n := b and S4+

n := c .

Then we obtain the following table:

⊕ a b c
a a {a, b} b
b {a, b} b {b, c}
c b {b, c} c
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Now, we have:

a ⊕ (a ⊕ a) = a ⊕ a = a (a ⊕ a) ⊕ a = a ⊕ a = a
b ⊕ (a ⊕ a) = b ⊕ a = {a, b} (b ⊕ a) ⊕ a = {a, b} ⊕ a = {a, b}
c ⊕ (a ⊕ a) = c ⊕ a = b (c ⊕ a) ⊕ a = b ⊕ a = {a, b}
a ⊕ (b ⊕ a) = a ⊕ {a, b} = {a, b} (a ⊕ b) ⊕ a = {a, b} ⊕ a = {a, b}
a ⊕ (c ⊕ a) = a ⊕ b = {a, b} (a ⊕ c) ⊕ a = b ⊕ a = {a, b}
a ⊕ (a ⊕ b) = a ⊕ {a, b} = {a, b} (a ⊕ a) ⊕ b = a ⊕ b = {a, b}
a ⊕ (a ⊕ c) = a ⊕ b = {a, b} (a ⊕ a) ⊕ c = a ⊕ c = b
b ⊕ (b ⊕ b) = b ⊕ b = b (b ⊕ b) ⊕ b = b ⊕ b = b
a ⊕ (b ⊕ b) = a ⊕ b = {a, b} (a ⊕ b) ⊕ b = {a, b}
c ⊕ (b ⊕ b) = c ⊕ b = {b, c} (c ⊕ b) ⊕ b = {b, c} ⊕ b = {b, c}
b ⊕ (a ⊕ b) = b ⊕ {a, b} = {a, b} (b ⊕ a) ⊕ b = {a, b} ⊕ b = {a, b}
b ⊕ (c ⊕ b) = b ⊕ {b, c} = {b, c} (b ⊕ c) ⊕ b = {b, c} ⊕ b = {b, c}
b ⊕ (b ⊕ a) = b ⊕ {a, b} = {a, b} (b ⊕ b) ⊕ a = b ⊕ a = {a, b}
b ⊕ (b ⊕ c) = b ⊕ {b, c} = {b, c} (b ⊕ b) ⊕ c = b ⊕ c = {b, c}
c ⊕ (c ⊕ c) = c ⊕ c = c (c ⊕ c) ⊕ c = c ⊕ c = c
a ⊕ (c ⊕ c) = a ⊕ c = b (a ⊕ c) ⊕ c = b ⊕ c = {b, c}
b ⊕ (c ⊕ c) = b ⊕ c = {b, c} (b ⊕ c) ⊕ c = {b, c} ⊕ c = {b, c}
c ⊕ (a ⊕ c) = c ⊕ b = {b, c} (c ⊕ a) ⊕ c = b ⊕ c = {b, c}
c ⊕ (b ⊕ c) = c ⊕ {b, c} = {b, c} (c ⊕ b) ⊕ c = {b, c} ⊕ c = {b, c}
c ⊕ (c ⊕ a) = c ⊕ b = {b, c} (c ⊕ c) ⊕ a = c ⊕ a = b
c ⊕ (c ⊕ b) = c ⊕ {b, c} = {b, c} (c ⊕ c) ⊕ b = c ⊕ b = {b, c}
a ⊕ (b ⊕ c) = a ⊕ {b, c} = {a, b} (a ⊕ b) ⊕ c = {a, b} ⊕ c = {b, c}
a ⊕ (c ⊕ b) = a ⊕ {b, c} = {a, b} (a ⊕ c) ⊕ b = b ⊕ b = b
b ⊕ (a ⊕ c) = b ⊕ b = b (b ⊕ a) ⊕ c = {a, b} ⊕ c = {b, c}
b ⊕ (c ⊕ a) = b ⊕ b = b (b ⊕ c) ⊕ a = {b, c} ⊕ a = {a, b}
c ⊕ (a ⊕ b) = c ⊕ {a, b} = {b, c} (c ⊕ a) ⊕ b = b ⊕ b = c
c ⊕ (b ⊕ a) = c ⊕ {a, b} = {b, c} (c ⊕ b) ⊕ a = {b, c} ⊕ a = {a, b}

Therefore, (S,⊕) is weak associative. Also, we can conclude that ({a, b},⊕) is a

hypergroup and ({b, c},⊕) is an Hv-semigroup.

Chlorine gas reacts with dilute hydroxide to form chloride, chlorate and water. The

ionic equation for this reaction is as follows [7]:

3Cl2 + 6OH− −→ 5Cl− + ClO3
− + 3H2O

As a reactant, the oxidation number of the elemental chlorine, chloride and chlorate

are 0 , -1 , and +5, respectively. Therefore, chlorine has been oxidized to chlorate whereas

it has been reduced to chloride [7].

Indium has three oxidation states 0 , +1 , and +3 . The standard reduction potentials

of all half reactions are: E◦
In3+/In+ = −0.434 V , E◦

In+/In = −0.147 V , E◦
In3+/In =

−0.338 V . According to the standard reduction potentials, disproportionation reaction
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of In+ is spontaneous. All possible combinations for the set S = {In, In+, In3+} to do

without energy can be displayed as following table.

� In In+ In3+

In In In, In+ In, In3+

In+ In, In+ In, In3+ In+, In3+

In3+ In, In3+ In+, In3+ In3+

We rename In , I+
n , and I3+

n as follows:

In := a, I+
n := b and I3+

n := c .

Then we obtain the following table:

⊕ a b c
a a {a, b} {a, c}
b {a, b} {a, c} {b, c}
c {a, c} {b, c} c

Now, we have:

a ⊕ (a ⊕ a) = a ⊕ a = a (a ⊕ a) ⊕ a = a ⊕ a = a
b ⊕ (a ⊕ a) = b ⊕ a = {a, b} (b ⊕ a) ⊕ a = {a, b} ⊕ a = {a, b}
c ⊕ (a ⊕ a) = c ⊕ a = {a, c} (c ⊕ a) ⊕ a = {a, c} ⊕ a = {a, c}
a ⊕ (b ⊕ a) = a ⊕ {a, b} = {a, b} (a ⊕ b) ⊕ a = {a, b} ⊕ a = {a, b}
a ⊕ (c ⊕ a) = a ⊕ {a, c} = {a, c} (a ⊕ c) ⊕ a = {a, c} ⊕ a = {a, c}
a ⊕ (a ⊕ b) = a ⊕ {a, b} = {a, b} (a ⊕ a) ⊕ b = a ⊕ b = {a, b}
a ⊕ (a ⊕ c) = a ⊕ {a, c} = {a, c} (a ⊕ a) ⊕ c = a ⊕ c = {a, c}
b ⊕ (b ⊕ b) = b ⊕ {a, c} = {a, b, c} (b ⊕ b) ⊕ b = {a, c} ⊕ b = {a, b, c}
a ⊕ (b ⊕ b) = a ⊕ {a, c} = {a, c} (a ⊕ b) ⊕ b = {a, b, c}
c ⊕ (b ⊕ b) = c ⊕ {a, c} = {a, c} (c ⊕ b) ⊕ b = {b, c} ⊕ b = {a, b, c}
b ⊕ (a ⊕ b) = b ⊕ {a, b} = {a, b, c} (b ⊕ a) ⊕ b = {a, b} ⊕ b = {a, b, c}
b ⊕ (c ⊕ b) = b ⊕ {b, c} = {a, b, c} (b ⊕ c) ⊕ b = {b, c} ⊕ b = {a, b, c}
b ⊕ (b ⊕ a) = b ⊕ {a, b} = {a, b, c} (b ⊕ b) ⊕ a = {a, c} ⊕ a = {a, c}
b ⊕ (b ⊕ c) = b ⊕ {b, c} = {a, b, c} (b ⊕ b) ⊕ c = {a, c} ⊕ c = {a, c}
c ⊕ (c ⊕ c) = c ⊕ c = c (c ⊕ c) ⊕ c = c ⊕ c = c
a ⊕ (c ⊕ c) = a ⊕ c = {a, c} (a ⊕ c) ⊕ c = {a, c} ⊕ c = {a, c}
b ⊕ (c ⊕ c) = b ⊕ c = {b, c} (b ⊕ c) ⊕ c = {b, c} ⊕ c = {b, c}
c ⊕ (a ⊕ c) = c ⊕ {a, c} = {a, c} (c ⊕ a) ⊕ c = {a, c} ⊕ c = {a, c}
c ⊕ (b ⊕ c) = c ⊕ {b, c} = {a, c} (c ⊕ b) ⊕ c = {b, c} ⊕ c = {b, c}
c ⊕ (c ⊕ a) = c ⊕ {a, c} = {a, c} (c ⊕ c) ⊕ a = c ⊕ a = {a, c}
c ⊕ (c ⊕ b) = c ⊕ {b, c} = {b, c} (c ⊕ c) ⊕ b = c ⊕ b = {b, c}
a ⊕ (b ⊕ c) = a ⊕ {b, c} = {a, b, c} (a ⊕ b) ⊕ c = {a, b} ⊕ c = {a, b, c}
a ⊕ (c ⊕ b) = a ⊕ {b, c} = {a, b, c} (a ⊕ c) ⊕ b = {a, c} ⊕ b = {a, b, c}
b ⊕ (a ⊕ c) = b ⊕ {a, c} = {a, b, c} (b ⊕ a) ⊕ c = {a, b} ⊕ c = {a, b, c}
b ⊕ (c ⊕ a) = b ⊕ {a, c} = {a, b, c} (b ⊕ c) ⊕ a = {b, c} ⊕ a = {a, b, c}
c ⊕ (a ⊕ b) = c ⊕ {a, b} = {a, b, c} (c ⊕ a) ⊕ b = {a, c} ⊕ b = {a, b, c}
c ⊕ (b ⊕ a) = c ⊕ {a, b} = {a, b, c} (c ⊕ b) ⊕ a = {b, c} ⊕ a = {a, b, c}
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Therefore, (S,⊕) is weak associative. Clearly, ⊕ is commutative. Also, the reproduc-

tion axiom holds. Therefore, (S,⊕) is a commutative Hv-group. Moreover, ({a, c},⊕) is

an Hv-subgroup of (S,⊕) .

Vanadium forms a number of different ions including V , V 2+ , V 3+ , V O2+ , and V O2
+ .

The oxidation states of these species are 0, +2, +3, +4 , and +5 , respectively. The stan-

dard reduction potentials of all corresponding half reactions are:

V O
+

2
V O2+

V 3+ V 2+
V

0.361

0.668 −0.838

−0.236

0.041

1.00 0.337 −0.225 −1.13

All possible combinations for the set S = {V, V 2+, V 3+, V O2+, V O2
+} to do without

energy in acidic media can be displayed as following table. When the reactants are added

in appropriate stoichiometric ratios. For example vanadium (V ) reacts with V O2
+ as

follows:

2V + 3V O2
+ + 12H+ −→ 5V 3+ + 6H2O

⊕ V V 2+ V 3+ V O2+ V O2
+

V V V, V 2+ V 2+ V 2+, V 3+ V 3+

V 2+ V, V 2+ V 2+ V 2+, V 3+ V 3+ V 3+, V O2+

V 3+ V 2+ V 2+, V 3+ V 3+ V 3+, V O2+ V O2+

V O2+ V 2+, V 3+ V 3+ V 3+, V O2+ V O2+ V O2+, V O2
+

V O2
+ V 3+ V 3+, V O2+ V O2+ V O2+, V O2

+ V O2
+

We rename V , V 2+ , V 3+ , V O2+ , and V O2
+ as follows:

V := a, V 2+ := b, V 3+ := c, V O2+ := d and V O2
+ := e .

Then we obtain the following table:

⊕ a b c d e
a a {a, b} b {b, c} c
b {a, b} b {b, c} c {c, d}
c b {b, c} c {c, d} d
d {b, c} c {c, d} d {d, e}
e c {c, d} d {d, e} e
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Now, (S,⊕) is a hyperstructure. The hyperstructures ({a, b},⊕) , ({b, c},⊕) , ({c, d},⊕) ,

and ({d, e},⊕) are hypergroups. Moreover,

({a, b},⊕) ∼= ({b, c},⊕) ∼= ({c, d},⊕) ∼= ({d, e},⊕) .

The major products between all forms of vanadium are showed in the following table.

It is assumed the reactants are added together in 1 : 1 mole ratios.

⊕ V V 2+ V 3+ V O2+ V O2
+

V V V, V 2+ V, V 2+ V 2+ V 2+, V 3+

V 2+ V, V 2+ V 2+ V 2+, V 3+ V 3+ V 3+, V O2+

V 3+ V, V 2+ V 2+, V 3+ V 3+ V 3+, V O2+ V O2+

V O2+ V 2+ V 3+ V 3+, V O2+ V O2+ V O2+, V O2
+

V O2
+ V 2+, V 3+ V 3+, V O2+ V O2+ V O2+, V O2

+ V O2
+

We rename V , V 2+ , V 3+ , V O2+ and V O2
+ as follows:

V := a, V 2+ := b, V 3+ := c, V O2+ := d and V O2
+ := e .

Then we obtain the following table:

⊕ a b c d e
a a {a, b} {a, b} b {b, c}
b {a, b} b {b, c} c {c, d}
c {a, b} {b, c} c {c, d} d
d b c {c, d} d {d, e}
e {b, c} {c, d} d {d, e} e

Now, (S,⊕) is a hyperstructure. The hyperstructures ({a, b},⊕) , ({b, c},⊕) , ({c, d},⊕) ,

and ({d, e},⊕) are hypergroups. Moreover,

({a, b},⊕) ∼= ({b, c},⊕) ∼= ({c, d},⊕) ∼= ({d, e},⊕) .
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