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Abstract

Cubane derivatives with chiral and achiral proligands are counted as 3D structural iso-

mers and as steric isomers in the light of the proligand method developed by us (S. Fujita,

Theor. Chem. Acc., 113, 73–79, (2005); 113, 80–86, (2005); and 115, 37–53, (2006)). The

results are further applied to count achiral derivatives as well as enantiomeric pairs of chiral

derivatives. By taking account of the sphericities of cycles, the proligand method is capa-

ble of counting cubane derivatives with chiral and achiral proligands, where the chirality of

each proligand is judged in isolation. Pólya’s theorem is concluded to lack such sphericities

of cycles, so that it is restricted to counting cubane derivatives with achiral proligands only.

A Maple program source for counting cubane derivatives as 3D structural isomers etc. is

given as an example of practical calculation.

1 Introduction
Cubane (1) is a trivial name of pentacyclo[4.2.0.02,5.03,8.04,7]octane (the IUPAC name), which

corresponds to the numbering shown in the formula 1a of Figure 1. Cubane itself, in which all

the substituents are hydrogen atoms, was synthesized by Eaton and Cole [1]. Thereafter, Eaton
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(The IUPAC numbering) (The numbering of this article)

Figure 1: Numbering of the eight positions of cubane (1)

et al. have actively continued studies on cubane derivatives so that they reported systematic sub-

stitution on the cubane skeleton [2, 3] and synthesis of octanitrocubane and related compounds

[4] as powerful explosives. Because the cubane skeleton belongs to the Oh point group, there

exist many substitution derivatives in addition to such derivatives as have been synthesized. It

is desirable to enumerate them in order to obtain a perspective of these derivatives.

A large repertoire of methods for isomer enumeration, which has been described in review

articles [5–7] or books [8–12], would be applicable to enumerate cubane derivatives. It is to be

emphasized, however, the calculation of the derivative number for a given set of substituents

requires new techniques as discussed in [13], because the cubane skeleton has high symmetry

(Oh). In particular, more sophisticated treatments become necessary, when chiral ligands in

isolation (in addition to achiral ligands) are taken into consideration.

Recently, we have developed the proligand method [14–16] as a new technique for com-

binatorial enumeration, where the concept sphericities of cycles has been defined as a key for

treating chiral proligands after the term proligand was defined as an abstract ligand with and

without chirality sense in isolation. The proligand method was compared with Pólya’s method,

where the latter was concluded to be deficient in the concept sphericities of cycles [17]. The

proligand method has been applied to the combinatorial enumeration of alkanes and substi-

tuted alkanes [18–21]. Related enumerations itemized from various viewpoints have been also

reported in [22–25] (concerning uninuclear vs. binuclear etc.) and in [21–29] (concerning in-

ternal branching and so on).

The purpose of the present series is to compare various methods of combinatorial enumera-

tion, where we use the cubane skeleton of high symmetry (Oh) as a common starting structure

and we emphasize three-dimensional structures of enumerated isomers as well as those of lig-

ands to be substituted. In this paper, the proligand method is applied to isomer enumerations of

cubane derivatives, where both achiral and chiral ligands (more abstractly, proligands) are taken

into consideration. Thereby, the versatility of the proligand method is emphasized even in the

cubane skeleton of high symmetry (Oh).

2 Cubane Derivatives as 3D-structural Isomers

2.1 Cycle Index with Chirality Fittingness of Oh

According to Def. 3 of [30], the term 3D-structural isomers is used in the present article to refer

to a set of (self-)enantiomeric pairs which are characterized by the same molecular formula,

-6-



where each (self-)enantiomeric pair (an achiral entity or a pair of enantiomers) coincides with

itself under proper rotations as well as improper rotations (reflections and inversions). Note

that a self-enantiomeric pair corresponds to an achiral entity in the present terminology, while

an enantiomeric pair corresponds to a pair of enantiomers (chiral entities of opposite chirality

senses) in the same way as the conventional terminology of stereochemistry. Thus the number

of 3D-structural isomers per molecular formula (or equivalent) is referred to the size of such

a set of 3D-structural isomers, where an chiral molecule and its enantiomer are paired to be

counted once.

Let us consider the numbering of a cubane skeleton shown in 1b (Figure 1 right), which

belongs to the Oh-point group of order 48:

Oh =
{

I,C2(1),C2(2),C2(3);C3(1),C3(3),C3(2),C3(4),C
2
3(1),C

2
3(4),C

2
3(3),C

2
3(2),

C′
2(6),C

′
2(1),C

′
2(4),C

′
2(2),C

′
2(5),C

′
2(3),C

3
4(3),C4(3),C

3
4(1),C4(1),C4(2),C

3
4(2);

i,σh(3),σh(2),σh(1),S
5
6(1),S

5
6(3),S

5
6(2),S

5
6(4),S6(1),S6(4),S6(3),S6(2),

σd(1),σd(6),σd(2),σd(4),σd(3),σd(5),S4(3),S
3
4(3),S4(1),S

3
4(1),S

3
4(2),S4(2)

}
, (1)

where the proper rotations are categorized as follows: I (identity element); C2( j) ( j = 1,2, or 3)
is a two-fold rotation around a four-fold axis through the centers of the top and bottom faces,

through the centers of the right and left faces, or through the centers of the front and back faces;

a pair of C3(i) and C2
3(i) ( j = 1,2,3, or 4) represents three-fold rotations around a three-fold

axis through vertices 1 and 6, through vertices 7 and 4, through vertices 2 and 8, or through

vertices 5 and 3; a pair of C4( j) and C3
4( j) ( j = 1,2, or 3) is four-fold rotations around the four-

fold axis being the same as specified for the two-fold rotations, C2( j) ( j = 1,2,3); and C′
2( j) ( j =

1,2, . . . , or 6) is a two-fold rotation around a two-fold axis bisecting two diagonally faced edges

of a pair; while the improper rotations are categorized as follows: i (inversion); σh( j) ( j =
1,2, or 3) is a reflection due to the mirror plane containing C2(k)- and C2(l)-axes ( j �= k and

j �= l); a pair of S6(i) and S5
6(i) ( j = 1,2,3, or 4) represents six-fold rotoreflections along with

the three-fold axis concerning a pair of C3(i) and C2
3(i) ( j = 1,2,3, or 4); σd( j) ( j = 1,2, . . . , or 6)

is a reflection due to the mirror plane containing a pair of two diagonally faced edges; and a pair

of S4( j) and S3
4( j) ( j = 1,2, or 3) is a four-fold rotoreflections around the four-fold rotoreflection

axis being the same as specified for the two-fold rotations, C2( j) ( j = 1,2,3).
Each symmetry operation shown in Eq. 1 is operated on the substitution positions (numbered

as 1 to 8) so as to result in the generation of a permutation, which is shown in the form of a

product of cycles in Table 1. The resulting set of permutations can be regarded as a coset

representation Oh(/C3v), as formulated in [31, 32].

According Lemmas 1 and 2 of [14], each cycle is recognized to be hemispheric, enantio-

spheric, or homospheric so that such a k-cycle is assigned to a sphericity index (SI) as follows:

a hemispheric k-cycle in a rotation operation is assigned to an SI bk (k: even or odd), an enantio-

spheric k-cycle in a rotoreflection operation is assigned to an SI ck (k: even), or a homospheric

k-cycle in a rotoreflection operation is assigned to an SI ak (k: odd). Thereby, the product of SIs

is ascribed to the product of cycles, as shown in Table 1.

Equation 2 reported in [14] is calculated to specify the present case of cubane derivatives

as 3D-structural isomers, where the products of SIs listed in Table 1 are added and divided by

the order of the point group Oh (|Oh| = 48) to give the following cycle index with chirality
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Table 1: Products of Sphericity Indices for the Elements of Oh

proper rotations improper rotations

element permutation product of permutation product of

element (cycles) SIs (cycles) SIs

I (1)(2)(3)(4)(5)(6)(7)(8) b8
1 i (1 7)(2 8)(3 5)(4 6) c4

2

C2(1) (1 6)(2 5)(3 8)(4 7) b4
2 σh(3) (1 4)(2 3)(5 8)(6 7) c4

2

C2(2) (1 8)(2 7)(3 6)(4 5) b4
2 σh(2) (1 2)(3 4)(5 6)(7 8) c4

2

C2(3) (1 3)(2 4)(5 7)(6 8) b4
2 σh(1) (1 5)(2 6)(3 7)(4 8) c4

2

C3(1) (4)(6)(1 8 3)(2 5 7) b2
1b2

3 S5
6(1) (4 6)(1 2 3 7 8 5) c2c6

C3(3) (2)(8)(1 3 6)(4 7 5) b2
1b2

3 S5
6(3) (2 8)(1 5 6 7 3 4) c2c6

C3(2) (1)(7)(2 4 5)(3 8 6) b2
1b2

3 S5
6(2) (1 7)(2 6 5 8 4 3) c2c6

C3(4) (3)(5)(1 6 8)(2 7 4) b2
1b2

3 S5
6(4) (3 5)(1 4 8 7 6 2) c2c6

C2
3(1) (4)(6)(1 3 8)(2 7 5) b2

1b2
3 S6(1) (4 6)(1 5 8 7 3 2) c2c6

C2
3(4) (3)(5)(1 8 6)(2 4 7) b2

1b2
3 S6(4) (3 5)(1 2 6 7 8 4) c2c6

C2
3(3) (2)(8)(1 6 3)(4 5 7) b2

1b2
3 S6(3) (2 8)(1 4 3 7 6 5) c2c6

C2
3(2) (1)(7)(2 5 4)(3 6 8) b2

1b2
3 S6(2) (1 7)(2 3 4 8 5 6) c2c6

C′
2(6) (1 5)(2 8)(3 7)(4 6) b4

2 σd(1) (3)(4)(6)(8)(1 3)(5 7) a4
1c2

2

C′
2(1) (1 7)(2 6)(3 5)(4 8) b4

2 σd(6) (1)(3)(5)(7)(2 4)(6 8) a4
1c2

2

C′
2(4) (1 7)(2 8)(3 4)(5 6) b4

2 σd(2) (1)(4)(6)(7)(2 5)(3 8) a4
1c2

2

C′
2(2) (1 7)(2 3)(4 6)(5 8) b4

2 σd(4) (2)(3)(5)(8)(1 6)(4 7) a4
1c2

2

C′
2(5) (1 2)(3 5)(4 6)(7 8) b4

2 σd(3) (3)(4)(5)(6)(1 8)(2 7) a4
1c2

2

C′
2(3) (1 4)(2 8)(3 5)(6 7) b4

2 σd(5) (1)(2)(7)(8)(3 6)(4 5) a4
1c2

2

C3
4(3) (1 2 3 4)(5 6 7 8) b2

4 S4(3) (1 8 3 6)(2 5 4 7) c2
4

C4(3) (1 4 3 2)(5 8 7 6) b2
4 S3

4(3) (1 6 3 8)(2 7 4 5) c2
4

C3
4(1) (1 2 6 5)(3 7 8 4) b2

4 S4(1) (1 8 6 3)(2 4 5 7) c2
4

C4(1) (1 5 6 2)(3 4 8 7) b2
4 S3

4(1) (1 3 6 8)(2 7 5 4) c2
4

C4(2) (1 5 8 4)(2 6 7 3) b2
4 S3

4(2) (1 3 8 6)(2 4 7 5) c2
4

C3
4(2) (1 4 8 5)(2 3 7 6) b2

4 S4(2) (1 6 8 3)(2 5 7 4) c2
4
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fittingness CI-CF(Oh,$d) where $d is assigned as ad , bd , or cd:

CI-CF(Oh,$d) =
1

48

{
b8

1 +3b4
2 +8b2

1b2
3 +6b4

2 +6b2
4 +4c4

2 +8c2c6 +6a4
1c2

2 +6c2
4

}
=

1

48
b8

1 +
3

16
b4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 +
1

12
c4

2 +
1

6
c2c6 +

1

8
a4

1c2
2 +

1

8
c2

4 (2)

For the term chirality fittingness which specifies modes of packing orbits (or coset representa-

tions) with proligands, see [31, 32]. The same term is used here to specify packing-modes of

cycles according to Section 2.3 of [14].

When sd (= ad = bd = cd) is introduced into Eq. 2 as an extreme case, Eq. 2 is degenerated

to give the following equation without chirality fittingness:

CI(Oh,sd) =
1

48
s8

1 +
3

16
s4

2 +
1

6
s2

1s2
3 +

1

8
s2

4 +
1

12
s4

2 +
1

6
s2s6 +

1

8
s4

1s2
2 +

1

8
s2

4 (3)

which is equivalent to Polya’s cycle index [12, 33].

2.2 Enumeration of Cubane Derivatives as 3D-structural Isomers
2.2.1 With Achiral Proligands Only

As a degenerate case, let us consider an inventory of proligands:

L = {H,A,B,C,W,X,Y,Z} (4)

where H, A, B, C, W, X, Y, and Z are achiral proligands in isolation. An appropriate set of

achiral proligands is selected from the inventory L so as to be placed on the vertices of 1b.

Equations 5–7 of in Theorem 1 of [14] are applied to this case to give the following inventory

functions:

ad = Hd +Ad +Bd +Cd +Wd +Xd +Yd +Zd (5)

bd = Hd +Ad +Bd +Cd +Wd +Xd +Yd +Zd (6)

cd = Hd +Ad +Bd +Cd +Wd +Xd +Yd +Zd (7)

In order to enumerate cubane derivatives as 3D-structural isomers in this case, these ligand-

inventory functions are introduced into the right-hand side of Eq. 2. The expansion of the

resulting function gives the following generating function:

f = H8 +H7A+H7B+H7C+H7W+H7X+H7Y+H7Z

+3H6A2 +3H6AB+3H6AC+3H6AW+3H6AX+3H6AY+3H6AZ+3H6B2

+3H6BC+3H6BW+3H6BX+3H6BY+3H6BZ+3H6C2 +3H6CW+3H6CX

+3H6CY+3H6CZ+3H6W2 +3H6WX+3H6WY+3H6WZ+3H6X2 +3H6XY

+3H6XZ+3H6Y2 +3H6YZ+3H6Z2

+3H5A3 +6H5A2B+6H5A2C+6H5A2W+6H5A2X+6H5A2Y+6H5A2Z

+6H5AB2 +10H5ABC+10H5ABW+10H5ABX+10H5ABY+10H5ABZ

+6H5AC2 +10H5ACW+10H5ACX+10H5ACY+ · · · (8)

The coefficient of each term HhAaBbCcWwXxYyZz in the generating function f (Eq. 8)

represents the number of cubane derivatives as 3D-structural isomers having h of H, a of A, b

-9-



Table 2: Numbers of Cubane Derivatives with Achiral Proligands

pattern 3D S A E pattern 3D S A E

[8,0,0,0,0,0,0,0] 1 1 1 0

[7,1,0,0,0,0,0,0] 1 1 1 0

[6,2,0,0,0,0,0,0] 3 3 3 0 [6,1,1,0,0,0,0,0] 3 3 3 0

[5,3,0,0,0,0,0,0] 3 3 3 0 [5,2,1,0,0,0,0,0] 6 7 5 1

[5,1,1,1,0,0,0,0] 10 14 6 4

[4,4,0,0,0,0,0,0] 6 7 5 1 [4,3,1,0,0,0,0,0] 10 13 7 3

[4,2,2,0,0,0,0,0] 16 22 10 6 [4,2,1,1,0,0,0,0] 22 35 9 13

[4,1,1,1,1,0,0,0] 38 70 6 32

[3,3,2,0,0,0,0,0] 17 24 10 7 [3,3,1,1,0,0,0,0] 30 48 12 18

[3,2,2,1,0,0,0,0] 42 70 14 28 [3,2,1,1,1,0,0,0] 76 140 12 64

[3,1,1,1,1,1,0,0] 140 280 0 140

[2,2,2,2,0,0,0,0] 68 114 22 46 [2,2,2,1,1,0,0,0] 114 210 18 96

[2,2,1,1,1,1,0,0] 216 420 12 204 [2,1,1,1,1,1,1,0] 420 840 0 420

[1,1,1,1,1,1,1,1] 840 1680 0 840

These data appear as the coefficients of monomials in respective generating functions:

column 3D (Eq. 8), column S (Eq. 15), column A (Eq. 18), and column E (Eq. 21)

of B, c of C, w of W, x of X, y of Y, and z of Z, which can be represented by a substitution

pattern [h,a,b,c,w,x,y,z]. Note that the term HhAaBbCcWwXxYyZz is used as being equivalent

to molecular formulas. Because the generating function f (Eq. 8) contains these proligands

equally, any proligands can be exchanged to give the same coefficient, where, for example, the

terms H5A2B, H5B2C, A5B2C, and so on have the same coefficient (6) in f (Eq. 8). Hence,

we can presume h ≥ a ≥ b ≥ c ≥ w ≥ x ≥ y ≥ z without loosing generality. For example, the

substitution pattern [5,2,1,0,0,0,0,0] corresponds to H5A2B, H5B2C, A5B2C, and so on. The

coefficients appearing in f (Eq. 8) are collected in a tabular form (column 3D of Table 2).

The data for giving Table 2 were calculated by using the Maple system [34], where a maple

file named “cubaneA8-Total.mpl” (extension .mpl), whose source list is shown in Appendix,

was used for calculation. After the file was stored in a working directory named “c:/fujita0/”,

the following commands were input from the display of the Maple system:

>restart;
>read "c:/fujita0/cubaneA8-Total.mpl";

It is worthwhile here to mention that the data of Table 2 can be alternatively obtained by

Pólya’s theorem, because we take account of achiral proligand only. From the present point of

view, the calculation based on Pólya’s theorem is regarded as a degenerate case of the calcu-

lation based on the proligand method, where chiral proligands in isolation are not taken into

consideration. Thus, Equations 5–7 of in Theorem 1 of [14] give degenerate inventory func-

tions, as found in Eqs. 5–7, which are equal to each other. After we place sd = ad = bd = cd ,

the resulting sd is introduced into Eq. 3, which is an expression equivalent to the cycle index

due to Pólya’s theorem.
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2.2.2 With Achiral and Chiral Proligands

As an illustrative case of more general features, let us consider an inventory of proligands:

L′ = {H,A,W,X,Y,Z; p,p; q,q} (9)

where H, A, W, X, Y, and Z are achiral proligands in isolation, while p, q, p, and q are chiral

proligands in isolation. Note that the pair of a letter (e.g., p) and its overlined counterpart (e.g.,

p) represents an enantiomeric pair.

According to Eqs. 5–7 of in Theorem 1 of [14], we use the following inventory functions:

ad = Hd +Ad +Wd +Xd +Yd +Zd (10)

bd = Hd +Ad +Wd +Xd +Yd +Zd +pd +pd +qd +qd (11)

cd = Hd +Ad +Wd +Xd +Yd +Zd +2pd/2pd/2 +2qd/2qd/2 (12)

It should be noted that the power d/2 appearing in Eq. 12 is an integer because the subscript d
of cd is always even in the light of the enantiosphericity of the corresponding cycle.

In order to enumerate cubane derivatives as 3D-structural isomers in this case, these ligand-

inventory functions (Eqs. 10–12) are introduced into the right-hand side of Eq. 2. The expansion

of the resulting function gives the following generating function:

g = H8 +H7A+H7W+H7X+H7Y+H7Z+
1

2
(H7p+H7p)

+
1

2
(H7q+H7q)+3H6A2 +3H6AW+3H6AX+3H6AY+3H6AZ

+
3

2
(H6Ap+H6Ap)+

3

2
(H6Aq+H6Aq)+3H6W2 +3H6WX

+3H6WY+3H6WZ+
3

2
(H6Wp+H6Wp)+

3

2
(H6Wq+H6Wq)

+3H6X2 +3H6XY+3H6XZ+
3

2
(H6Xp+H6Xp)+

3

2
(H6Xq+H6Xq)

+3H6Y2 +3H6YZ+
3

2
(H6Yp+H6Yp)+

3

2
(H6Yq+H6Yq)

+3H6Z2 +
3

2
(H6Zp+H6Zp)+

3

2
(H6Zq+H6Zq)

+
3

2
(H6p2 +H6p2)+3H6pp+

3

2
(H6pq+H6pq)

+
3

2
(H6pq+H6pq)+

3

2
(H6q2 +H6q2)+3H6qq+ · · · (13)

The coefficient of each term HhAaWwXxYyZzppppqqqq in the generating function g (Eq.

13) represents the number of cubane derivatives as 3D-structural isomers having h of H, a
of A, w of W, x of X, y of Y, z of Z, p of p, p of p q of q, and q of q. Such a mode of

substitution can be represented by a substitution pattern [h,a,w,x,y,z; p, p,q,q], where we can

presume h ≥ a ≥ w ≥ x ≥ y ≥ z; p ≥ q, p ≥ p, and q ≥ q without loosing generality. For

example, the substitution pattern [5,0,0,0,0,0;2,1,0,0] corresponds to H5p2p, H5pp2, H5q2q,

H5qq2, and so on. The coefficients appearing in g (Eq. 13) are collected in a tabular form

(column 3D of Tables 3 and 4).
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It is to be noted that a coefficient should be duplicated if there is a pair of terms which

corresponds to a pair of enantiomers (each substitution pattern with an asterisk). This is be-

cause a pair of enantiomers is counted once in 3D-structural-isomer enumeration. For example,

the coefficient (1/2) of the term H7p (or H7p) should be duplicated to give 1 (i.e., 2× (1/2)),
because there is a pair of terms 1

2(H7p + H7p). This treatment is rationalized by considering

that H7p and H7p have the same molecular formula when p and p are reduced into their con-

stitutions. Each substitution pattern marked by an asterisk (e.g., [7,0,0,0,0,0;1,0,0,0]* for H7p)

has the counterpart of opposite chirality sense (e.g., [7,0,0,0,0,0;0,1,0,0]* for H7p) so that the

corresponding coefficient should be duplicated to generate the number of cubane derivatives.

The data for giving Tables 3 and 4 were calculated by using the Maple system [34], where a

maple file (extension .mpl) was prepared in a similar way to the maple file shown in Appendix.

3 Cubane Derivatives as Steric Isomers

3.1 Cycle Index with Chirality Fittingness of the O Group
According to Def. 3 of [30], the term steric isomers is used to refer to a set of inequivalent steric

entities which are characterized by the same molecular formula, where each steric entity coin-

cides with itself under proper rotations, while improper rotations (reflections and inversions) are

not taken into consideration. This means that an chiral molecule and its enantiomer are counted

separately. Then, the number of steric isomers per molecular formula (or equivalent) is referred

to the size of such a set of steric isomers.

Equation 2 reported in [14] is calculated to specify the present case of cubane derivatives as

steric isomers, where the product of SIs for the point group O (selected from Table 1) are added

and divided by the order of the point group O (|O|= 24), so as to give the following cycle index

with chirality fittingness CI-CF(O,bd):

CI-CF(O,bd) =
1

24

{
b8

1 +3b4
2 +8b2

1b2
3 +6b4

2 +6b2
4

}
=

1

24
b8

1 +
3

8
b4

2 +
1

3
b2

1b2
3 +

1

4
b2

4 (14)

Note that Eq. 14 contains the SI bd only, so that each achiral derivative, one chiral derivative

of each enantiomeric pair, and the other chiral derivative of the enantiomeric pair are counted

separately.

3.2 Enumeration of Cubane Derivatives as Steric Isomers
3.2.1 With Achiral Proligands Only

Let us consider an appropriate set of achiral proligands selected from L (Eq. 4). Such an appro-

priate set is placed on the eight substitution positions of the skeleton (1b). To enumerate cubane

derivatives as steric isomers in this case, the ligand-inventory function bd (Eq. 6) is introduced

into the right-hand side of Eq. 14. The resulting function is expanded to give the following

generating function:

f ′ = H8 +H7A+H7B+H7C+H7W+H7X+H7Y+H7Z

+3H6A2 +3H6AB+3H6AC+3H6AW+3H6AX+3H6AY+3H6AZ+3H6B2
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Table 3: Numbers of Cubane Derivatives with Proligands Selected from Six Achiral Proligands

and Two Enantiomorphic Pairs of Chiral Proligands (Part I)

pattern 3D S A E pattern 3D S A E

[8,0,0,0,0,0;0,0,0,0] 1 1 1 0
[7,1,0,0,0,0;0,0,0,0] 1 1 1 0 [7,0,0,0,0,0;1,0,0,0]* 1/2 1 0 1/2
[6,2,0,0,0,0;0,0,0,0] 3 3 3 0 [6,0,0,0,0,0;2,0,0,0]* 3/2 3 0 3/2
[6,1,1,0,0,0;0,0,0,0] 3 3 3 0 [6,1,0,0,0,0;1,0,0,0]* 3/2 3 0 3/2
[6,0,0,0,0,0;1,1,0,0] 3 3 3 0 [6,0,0,0,0,0;1,0,1,0]* 3/2 3 0 3/2
[5,3,0,0,0,0;0,0,0,0] 3 3 3 0 [5,0,0,0,0,0;3,0,0,0]* 3/2 3 0 3/2
[5,2,1,0,0,0;0,0,0,0] 6 7 5 1 [5,2,0,0,0,0;1,0,0,0]* 7/2 7 0 7/2
[5,1,0,0,0,0;2,0,0,0]* 7/2 7 0 7/2 [5,0,0,0,0,0;2,1,0,0]* 7/2 7 0 7/2
[5,0,0,0,0,0;2,0,1,0]* 7/2 7 0 7/2 [5,1,1,1,0,0;0,0,0,0] 10 14 6 4
[5,1,1,0,0,0;1,0,0,0]* 7 14 0 7 [5,1,0,0,0,0;1,1,0,0] 9 14 4 5
[5,1,0,0,0,0;1,0,1,0]* 7 14 0 7 [5,0,0,0,0,0;1,1,1,0]* 7 14 0 7
[4,4,0,0,0,0;0,0,0,0] 6 7 5 1 [4,0,0,0,0,0;4,0,0,0]* 7/2 7 0 7/2
[4,3,1,0,0,0;0,0,0,0] 10 13 7 3 [4,3,0,0,0,0;1,0,0,0]* 13/2 13 0 13/2
[4,1,0,0,0,0;3,0,0,0]* 13/2 13 0 13/2 [4,0,0,0,0,0;3,1,0,0]* 13/2 13 0 13/2
[4,0,0,0,0,0;3,0,1,0]* 13/2 13 0 13/2 [4,2,1,1,0,0;0,0,0,0] 22 35 9 13
[4,2,1,0,0,0;1,0,0,0]* 35/2 35 0 35/2 [4,2,0,0,0,0;1,1,0,0] 23 35 11 12
[4,2,0,0,0,0;1,0,1,0]* 35/2 35 0 35/2 [4,1,1,0,0,0;2,0,0,0]* 35/2 35 0 35/2
[4,1,0,0,0,0;2,1,0,0]* 35/2 35 0 35/2 [4,1,0,0,0,0;2,0,1,0]* 35/2 35 0 35/2
[4,0,0,0,0,0;2,1,1,0]* 35/2 35 0 35/2 [4,1,1,1,1,0;0,0,0,0] 38 70 6 32
[4,1,1,1,0,0;1,0,0,0]* 35 70 0 35 [4,1,1,0,0,0;1,1,0,0] 41 70 12 29
[4,1,0,0,0,0;1,1,1,0]* 35 70 0 35 [4,0,0,0,0,0;1,1,1,1] 40 70 10 30
[3,3,2,0,0,0;0,0,0,0] 17 24 10 7 [3,3,0,0,0,0;2,0,0,0]* 12 24 0 12
[3,2,0,0,0,0;3,0,0,0]* 12 24 0 12 [3,0,0,0,0,0;3,2,0,0]* 12 24 0 12
[3,0,0,0,0,0;3,0,2,0]* 12 24 0 12 [3,3,1,1,0,0;0,0,0,0] 30 48 12 18
[3,3,1,0,0,0;1,0,0,0]* 24 48 0 24 [3,3,0,0,0,0;1,1,0,0] 28 48 8 20
[3,3,0,0,0,0;1,0,1,0]* 24 48 0 24 [3,1,1,0,0,0;3,0,0,0]* 24 48 0 24
[3,1,0,0,0,0;3,1,0,0]* 24 48 0 24 [3,1,0,0,0,0;3,0,1,0]* 24 48 0 24
[3,0,0,0,0,0;3,1,1,0]* 24 48 0 24 [3,0,0,0,0,0;3,0,1,1]* 24 48 0 24
[3,2,2,1,0,0;0,0,0,0] 42 70 14 28 [3,2,2,0,0,0;1,0,0,0]* 35 70 0 35
[3,2,0,0,0,0;2,1,0,0]* 35 70 0 35 [3,2,0,0,0,0;2,0,1,0]* 35 70 0 35
[3,0,0,0,0,0;2,2,1,0]* 35 70 0 35 [3,0,0,0,0,0;2,1,2,0]* 35 70 0 35
[3,2,1,1,1,0;0,0,0,0] 76 140 12 64 [3,2,1,1,0,0;1,0,0,0]* 70 140 0 70
[3,2,1,0,0,0;1,1,0,0] 78 140 16 62 [3,2,1,0,0,0;1,0,1,0]* 70 140 0 70
[3,2,0,0,0,0;1,1,1,0]* 70 140 0 70 [3,0,0,0,0,0;2,1,1,1]* 70 140 0 70
[3,1,1,1,1,1;0,0,0,0] 140 280 0 140 [3,1,1,1,1,0;1,0,0,0]* 140 280 0 140
[3,1,1,1,0,0;1,1,0,0] 152 280 24 128 [3,1,1,1,0,0;1,0,1,0]* 140 280 0 140
[3,1,1,0,0,0;1,1,1,0]* 140 280 0 140 [3,1,0,0,0,0;1,1,1,1] 144 280 8 136
[2,2,2,2,0,0;0,0,0,0] 68 114 22 46 [2,2,2,0,0,0;2,0,0,0]* 57 114 0 57
[2,2,0,0,0,0;2,2,0,0] 64 114 14 50 [2,2,0,0,0,0;2,0,2,0]* 57 114 0 57
[2,0,0,0,0,0;2,2,2,0]* 57 114 0 57 [2,2,2,1,1,0;0,0,0,0] 114 210 18 96
[2,2,2,1,0,0;1,0,0,0]* 105 210 0 105 [2,2,2,0,0,0;1,1,0,0] 118 210 26 92
[2,2,1,1,0,0;2,0,0,0]* 105 210 0 105 [2,2,1,0,0,0;2,1,0,0]* 105 210 0 105
[2,2,1,0,0,0;2,0,1,0]* 105 210 0 105 [2,2,0,0,0,0;2,1,1,0]* 105 210 0 105
[2,1,1,0,0,0;2,2,0,0] 111 210 12 99 [2,1,1,0,0,0;2,0,2,0]* 105 210 0 105
[2,1,0,0,0,0;2,2,1,0]* 105 210 0 105 [2,1,0,0,0,0;2,1,2,0]* 105 210 0 105
[2,0,0,0,0,0;2,2,1,1] 113 210 16 97 [2,0,0,0,0,0;2,1,2,1]* 105 210 0 105
[2,2,1,1,1,1;0,0,0,0] 216 420 12 204 [2,2,1,1,1,0;1,0,0,0]* 210 420 0 210
[2,2,1,1,0,0;1,1,0,0] 222 420 24 198 [2,2,1,1,0,0;1,0,1,0]* 210 420 0 210
[2,2,1,0,0,0;1,1,1,0]* 210 420 0 210 [2,2,0,0,0,0;1,1,1,1] 224 420 28 196
[2,1,1,1,1,0;2,0,0,0]* 210 420 0 210 [2,1,1,1,0,0;2,1,0,0]* 210 420 0 210
[2,1,1,1,0,0;2,0,1,0]* 210 420 0 210 [2,1,1,0,0,0;2,1,1,0]* 210 420 0 210
[2,1,1,0,0,0;2,0,1,1]* 210 420 0 210 [2,1,0,0,0,0;2,1,1,1]* 210 420 0 210
[2,1,1,1,1,1;1,0,0,0]* 420 840 0 420 [2,1,1,1,1,0;1,1,0,0] 432 840 24 408
[2,1,1,1,1,0;1,0,1,0]* 420 840 0 420 [2,1,1,1,0,0;1,1,1,0]* 420 840 0 420
[2,1,1,0,0,0;1,1,1,1] 432 840 24 408
[1,1,1,1,1,1;1,1,0,0] 840 1680 0 840 [1,1,1,1,1,1;1,0,1,0]* 840 1680 0 840
[1,1,1,1,1,0;1,1,1,0]* 840 1680 0 840 [1,1,1,1,0,0;1,1,1,1] 864 1680 48 816

These data appear as the coefficients of monomials in respective generating functions: column 3D (Eq.
13), column S (Eq. 16), column A (Eq. 19), and column E (Eq. 22). Each substitution pattern marked by
an asterisk has the counterpart of opposite chirality sense so that the corresponding coefficient should be
duplicated to generate the number of cubane derivatives.
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Table 4: Numbers of Cubane Derivatives with Proligands Selected from Six Achiral Proligands

and Two Enantiomorphic Pairs of Chiral Proligands (Part II)

pattern 3D S A E pattern 3D S A E

[0,0,0,0,0,0;8,0,0,0]* 1/2 1 0 1/2
[0,0,0,0,0,0;7,1,0,0]* 1/2 1 0 1/2 [0,0,0,0,0,0;7,0,1,0]* 1/2 1 0 1/2
[1,0,0,0,0,0;7,0,0,0]* 1/2 1 0 1/2
[0,0,0,0,0,0;6,2,0,0]* 3/2 3 0 3/2 [0,0,0,0,0,0;6,0,2,0]* 3/2 3 0 3/2
[2,0,0,0,0,0;6,0,0,0]* 3/2 3 0 3/2 [0,0,0,0,0,0;6,1,1,0]* 3/2 3 0 3/2
[1,0,0,0,0,0;6,1,0,0]* 3/2 3 0 3/2 [1,0,0,0,0,0;6,0,1,0]* 3/2 3 0 3/2
[1,1,0,0,0,0;6,0,0,0]* 3/2 3 0 3/2
[0,0,0,0,0,0;5,3,0,0]* 3/2 3 0 3/2 [0,0,0,0,0,0;5,0,3,0]* 3/2 3 0 3/2
[3,0,0,0,0,0;5,0,0,0]* 3/2 3 0 3/2 [0,0,0,0,0,0;5,2,1,0]* 7/2 7 0 7/2
[0,0,0,0,0,0;5,1,2,0]* 7/2 7 0 7/2 [1,0,0,0,0,0;5,2,0,0]* 7/2 7 0 7/2
[1,0,0,0,0,0;5,0,2,0]* 7/2 7 0 7/2 [2,0,0,0,0,0;5,1,0,0]* 7/2 7 0 7/2
[2,0,0,0,0,0;5,0,1,0]* 7/2 7 0 7/2 [2,1,0,0,0,0;5,0,0,0]* 7/2 7 0 7/2
[0,0,0,0,0,0;5,1,1,1]* 7 14 0 7 [1,0,0,0,0,0;5,1,1,0]* 7 14 0 7
[1,0,0,0,0,0;5,0,1,1]* 7 14 0 7 [1,1,0,0,0,0;5,1,0,0]* 7 14 0 7
[1,1,0,0,0,0;5,0,1,0]* 7 14 0 7 [1,1,1,0,0,0;5,0,0,0]* 7 14 0 7
[0,0,0,0,0,0;4,4,0,0] 6 7 5 1 [0,0,0,0,0,0;4,0,4,0]* 7/2 7 0 7/2
[0,0,0,0,0,0;4,3,1,0]* 13/2 13 0 13/2 [0,0,0,0,0,0;4,1,3,0]* 13/2 13 0 13/2
[1,0,0,0,0,0;4,3,0,0]* 13/2 13 0 13/2 [1,0,0,0,0,0;4,0,3,0]* 13/2 13 0 13/2
[0,0,0,0,0,0;4,2,2,0]* 11 22 0 11 [2,0,0,0,0,0;4,2,0,0]* 11 22 0 11
[2,0,0,0,0,0;4,0,2,0]* 11 22 0 11 [2,2,0,0,0,0;4,0,0,0]* 11 22 0 11
[0,0,0,0,0,0;4,2,1,1]* 35/2 35 0 35/2 [0,0,0,0,0,0;4,1,2,1]* 35/2 35 0 35/2
[1,0,0,0,0,0;4,2,1,0]* 35/2 35 0 35/2 [1,0,0,0,0,0;4,2,0,1]* 35/2 35 0 35/2
[1,1,0,0,0,0;4,2,0,0]* 35/2 35 0 35/2 [1,1,0,0,0,0;4,0,2,0]* 35/2 35 0 35/2
[2,0,0,0,0,0;4,1,1,0]* 35/2 35 0 35/2 [2,1,0,0,0,0;4,1,0,0]* 35/2 35 0 35/2
[2,1,0,0,0,0;4,0,1,0]* 35/2 35 0 35/2 [2,1,1,0,0,0;4,0,0,0]* 35/2 35 0 35/2
[1,0,0,0,0,0;4,1,1,1]* 35 70 0 35 [1,1,0,0,0,0;4,1,1,0]* 35 70 0 35
[1,1,0,0,0,0;4,0,1,1]* 35 70 0 35 [1,1,1,0,0,0;4,1,0,0]* 35 70 0 35
[1,1,1,0,0,0;4,0,1,0]* 35 70 0 35 [1,1,1,1,0,0;4,0,0,0]* 35 70 0 35
[0,0,0,0,0,0;3,3,2,0]* 12 24 0 12 [2,0,0,0,0,0;3,3,0,0] 15 24 6 9
[0,0,0,0,0,0;3,3,1,1]* 30 48 12 18 [1,0,0,0,0,0;3,3,1,0]* 24 48 0 24
[1,1,0,0,0,0;3,3,0,0] 24 48 0 24 [0,0,0,0,0,0;3,2,2,1]* 35 70 0 35
[1,0,0,0,0,0;3,2,2,0]* 35 70 0 35 [2,0,0,0,0,0;3,2,1,0]* 35 70 0 35
[2,1,0,0,0,0;3,2,0,0]* 35 70 0 35 [2,1,0,0,0,0;3,0,2,0]* 35 70 0 35
[2,2,1,0,0,0;3,0,0,0]* 35 70 0 35 [1,0,0,0,0,0;3,2,1,1]* 70 140 0 70
[1,1,0,0,0,0;3,2,1,0]* 70 140 0 70 [1,1,1,0,0,0;3,2,0,0]* 70 140 0 70
[1,1,1,0,0,0;3,0,2,0]* 70 140 0 70 [2,0,0,0,0,0;3,1,1,1]* 70 140 0 70
[2,1,0,0,0,0;3,1,1,0]* 70 140 0 70 [2,1,0,0,0,0;3,0,1,1]* 70 140 0 70
[2,1,1,0,0,0;3,1,0,0]* 70 140 0 70 [2,1,1,0,0,0;3,0,1,0]* 70 140 0 70
[2,1,1,1,0,0;3,0,0,0]* 70 140 0 70
[1,1,0,0,0,0;3,1,1,1]* 140 280 0 140 [1,1,1,0,0,0;3,1,1,0]* 140 280 0 140
[1,1,1,0,0,0;3,0,1,1]* 140 280 0 140 [1,1,1,1,0,0;3,1,0,0]* 140 280 0 140
[1,1,1,1,0,0;3,0,1,0]* 140 280 0 140 [1,1,1,1,1,0;3,0,0,0]* 140 280 0 140
[0,0,0,0,0,0;2,2,2,2] 66 114 18 48 [1,0,0,0,0,0;2,2,2,1]* 105 210 0 105
[1,1,0,0,0,0;2,2,2,0]* 105 210 0 105 [1,1,0,0,0,0;2,2,1,1] 210 420 0 210
[1,1,1,0,0,0;2,2,1,0]* 210 420 0 210 [1,1,1,0,0,0;2,1,2,0]* 210 420 0 210
[1,1,1,1,0,0;2,2,0,0] 222 420 24 198 [1,1,1,1,0,0;2,0,2,0]* 210 420 0 210
[1,1,1,0,0,0;2,1,1,1]* 420 840 0 420 [1,1,1,1,0,0;2,1,1,0]* 420 840 0 420
[1,1,1,1,0,0;2,0,1,1]* 420 840 0 420 [1,1,1,1,1,0;2,1,0,0]* 420 840 0 420
[1,1,1,1,1,0;2,0,1,0]* 420 840 0 420 [1,1,1,1,1,1;2,0,0,0]* 420 840 0 420
[1,1,1,1,0,0;1,1,1,1] 864 1680 48 816 [1,1,1,1,1,0;1,1,1,0]* 840 1680 0 840
[1,1,1,1,1,1;1,1,0,0] 840 1680 0 840 [1,1,1,1,1,1;1,0,1,0]* 840 1680 0 840

See the table footnote of Table 3.
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+3H6BC+3H6BW+3H6BX+3H6BY+3H6BZ+3H6C2 +3H6CW+3H6CX

+3H6CY+3H6CZ+3H6W2 +3H6WX+3H6WY+3H6WZ+3H6X2 +3H6XY

+3H6XZ+3H6Y2 +3H6YZ+3H6Z2

+3H5A3 +7H5A2B+7H5A2C+7H5A2W+7H5A2X+7H5A2Y+7H5A2Z

+7H5AB2 +14H5ABC+14H5ABW+14H5ABX+14H5ABY+14H5ABZ

+7H5AC2 +14H5ACW+14H5ACX+14H5ACY+ · · · (15)

The coefficients appearing in f ′ (Eq. 15) are collected in a tabular form (column S of Table

2), where the substitution patterns are selected in the same way as column 3D.

3.2.2 With Achiral and Chiral Proligands

Let us next consider the case of selecting substituents from the ligand inventory L′ (Eq. 9),

which contains achiral (H, A, W, X, Y, and Z) and chiral proligands (p, p, q, and q). To enu-

merate cubane derivatives as steric isomers in this case, the ligand-inventory function Eq. 11

(among Eqs. 10–12) is introduced into the right-hand side of Eq. 14. Then, the expansion of the

resulting function gives the following generating function:

g′ = H8 +H7A+H7W+H7X+H7Y+H7Z+(H7p+H7p)
+(H7q+H7q)+3H6A2 +3H6AW+3H6AX+3H6AY+3H6AZ

+(3H6Ap+3H6Ap)+(3H6Aq+3H6Aq)+3H6W2 +3H6WX

+3H6WY+3H6WZ+(3H6Wp+3H6Wp)+(3H6Wq+3H6Wq)
+3H6X2 +3H6XY+3H6XZ+(3H6Xp+3H6Xp)+(3H6Xq+3H6Xq)
+3H6Y2 +3H6YZ+(3H6Yp+3H6Yp)+(3H6Yq+3H6Yq)
+3H6Z2 +3H6Zp+3H6Zp+3H6Zq+3H6Zq

+(3H6p2 +3H6p2)+3H6pp+(3H6pq+3H6pq)
+(3H6pq+3H6pq)+(3H6q2 +3H6q2)+3H6qq+ · · · (16)

where the coefficient of each term HhAaWwXxYyZzppppqqqq represents the number of cubane

derivatives as steric isomers having h of H, a of A, w of W, x of X, y of Y, z of Z, p of p, p of p

q of q, and q of q.

The coefficients appearing in g′ (Eq. 16) are collected in a tabular form (column S in Tables

3 and 4). It should be noted that each coefficient collected for a substitution pattern with an

asterisk is concerned with one member of an enantiomeric pair. Thus, each substitution pattern

marked by an asterisk (e.g., [7,0,0,0,0,0;1,0,0,0]* for H7p) has the counterpart (enantiomer) of

opposite chirality sense (e.g., [7,0,0,0,0,0;0,1,0,0]* for H7p). The two enantiomers are counted

separately as steric isomers, as shown in Tables 3 and 4 (the column S), which have been

obtained by using Eq. 14.

4 Achiral Cubane Derivatives

4.1 Cycle Index with Chirality Fittingness for Counting Achiral Cubane
Derivatives

The CI-CF(Oh,$d) (Eq. 2) for counting cubane derivatives as 3D-structural isomers is con-

cerned with the number of achiral derivatives plus the number of enantiomeric pairs, while the
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CI-CF(O,bd) (Eq. 14) for counting cubane derivatives as steric isomers is concerned with the

number of achiral derivatives plus the number of chiral derivatives (i.e., two times of the num-

ber of enantiomeric pairs). As a result, the CI-CF(a)(Oh,$d) for obtaining the number of achiral

derivatives is evaluated to be 2CI-CF(Oh,$d)−CI-CF(O,bd) on a similar line to Eq. 31 of [35],

so as to give the following equation:

CI-CF(a)(Oh,$d) = 2CI-CF(Oh,$d)−CI-CF(O,bd)

=
1

6
c4

2 +
1

3
c2c6 +

1

4
a4

1c2
2 +

1

4
c2

4 (17)

As found by comparing between Eq. 2 and Eq. 17, only the terms for improper rotations appear-

ing in Eq. 2 are adopted and multiplied by two to give Eq. 17. In other words, Eq. 17 contains

no bd . This feature holds true generally.

4.2 Enumeration of Achiral Cubane Derivatives
4.2.1 With Achiral Proligands Only

The numbers of achiral cubane derivatives under adopting the ligand inventory L (Eq. 4) are

calculated by introducing the ligand-inventory functions (Eqs. 5 and 7 among Eqs. 5–7) into

the right-hand side of Eq. 17 on a similar line to Theorem 5 of [35]. The resulting function is

expanded to give the following generating function:

f (a) = 2f − f ′

= H8 +H7A+H7B+H7C+H7W+H7X+H7Y+H7Z+3H6A2 +3H6AB

+3H6AC+3H6AW+3H6AX+3H6AY+3H6AZ+3H6B2 +3H6BC+3H6BW

+3H6BX+3H6BY+3H6BZ+3H6C2 +3H6CW+3H6CX+3H6CY

+3H6CZ+3H6W2 +3H6WX+3H6WY+3H6WZ+3H6X2 +3H6XY

+3H6XZ+3H6Y2 +3H6YZ+3H6Z2

+3H5A3 +5H5A2B+5H5A2C+5H5A2W+5H5A2X+5H5A2Y+ · · · (18)

This result can be alternatively obtained by calculating two times of f (Eq. 8) minus f ′ (Eq.

18). The coefficients appearing in f (a) (Eq. 18) are collected in a tabular form (column A of

Table 2), where the substitution patterns are selected in the same way as column 3D of Table 2.

Obviously, each value appearing in column A of Table 2 can be obtained by considering

column 3D and column S.

4.2.2 With Achiral and Chiral Proligands

As an example of enumerating achiral cubane derivatives by taking account of achiral and chiral

proligands, we adopt the ligand inventory L′ (Eq. 9), which contains achiral (H, A, W, X, Y,

and Z) and chiral proligands (p, p, q, and q). In this case, the ligand-inventory functions shown

in Eqs. 10 and 12 (among Eqs. 10–12) are introduced into the right-hand side of Eq. 17. The

expansion of the resulting function gives the following generating function:

g(a) = 2g−g′

= H8 +H7A+H7W+H7X+H7Y+H7Z+3H6A2 +3H6AW+3H6AX
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+3H6AY+3H6AZ+3H6W2 +3H6WX+3H6WY+3H6WZ

+3H6X2 +3H6XY+3H6XZ+3H6Y2 +3H6YZ+3H6Z2

+3H6pp+3H6qq+3H5A3 +5H5A2W+5H5A2X+5H5A2Y

+5H5A2Z+5H5AW2 +6H5AWX+6H5AWY+6H5AWZ+5H5AX2

+6H5AXY+6H5AXZ+5H5AY2 +6H5AYZ+5H5AZ2

+4H5App+4H5Aqq+3H5W3 +5H5W2X+5H5W2Y+5H5W2Z+ · · · (19)

where the coefficient of each term HhAaWwXxYyZzppppqqqq represents the number of achiral

cubane derivatives having h of H, a of A, w of W, x of X, y of Y, z of Z, p of p, p of p q of q,

and q of q.

This result can be alternatively obtained by calculating two times of g (Eq. 13) minus g′
(Eq. 16). The coefficients appearing in g(a) (Eq. 19) are collected in a tabular form (column A

of Tables 3 and 4).

5 Enantiomeric Pairs of Cubane Derivatives

5.1 Cycle Index with Chirality Fittingness for Counting Enantiomeric
Pairs of Cubane Derivatives

The relationships described in Subsection 4.1 show that the CI-CF(e)(Oh,$d) for obtaining the

number of enantiomeric pairs can be evaluated to be CI-CF(O,bd)−CI-CF(Oh,$d) on a similar

line to Eq. 27 of [35]. Thereby, we obtain the following equation:

CI-CF(e)(Oh,$d) = CI-CF(O,bd)−CI-CF(Oh,$d)

=
1

48
b8

1 +
3

16
b4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 −
1

12
c4

2 −
1

6
c2c6 − 1

8
a4

1c2
2 −

1

8
c2

4 (20)

As found by comparing between Eq. 2 and Eq. 20, the plus signs of the terms for improper

rotations appearing in Eq. 2 are all changed into minus signs in Eq. 20. As found easily, this

feature holds true generally.

5.2 Enumeration of Enantiomeric Pairs of Cubane Derivatives
5.2.1 With Achiral Proligands Only

To calculating the number of enantiomeric pairs of cubane derivatives under adopting the ligand

inventory L (Eq. 4), the ligand-inventory functions represented by Eqs. 5–7 are introduced into

the right-hand side of Eq. 20 on a similar line to Theorem 4 of [35]. The resulting function is

expanded to give the following generating function:

f (e) = f ′ − f
= H5A2B+H5A2C+H5A2W+H5A2X+H5A2Y+H5A2Z+H5AB2 +4H5ABC

+4H5ABW+4H5ABX+4H5ABY+4H5ABZ+H5AC2 +4H5ACW+4H5ACX

+4H5ACY+4H5ACZ+H5AW2 +4H5AWX+4H5AWY+4H5AWZ

+H5AX2 +4H5AXY+4H5AXZ+H5AY2 +4H5AYZ+H5AZ2

+H5B2C+H5B2W+H5B2X+H5B2Y+H5B2Z+H5BC2
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+4H5BCW+4H5BCX+4H5BCY+4H5BCZ+H5BW2 +4H5BWX

+4H5BWY+4H5BWZ+H5BX2 +4H5BXY+4H5BXZ+H5BY2 + · · · (21)

This generating function can be alternatively obtained by calculating f ′ (Eq. 15) minus f
(Eq. 8). The coefficients appearing in f (e) (Eq. 21) are collected in a tabular form (column E of

Table 2), where the substitution patterns are selected in the same way as the other columns of

Table 2.

Obviously, each value appearing in column E of Table 2 is obtained by subtracting the

corresponding value in column 3D from the corresponding value in column S.

5.2.2 With Achiral and Chiral Proligands

To take account of achiral and chiral proligands in the enumeration of enantiomeric pairs of

cubane derivatives, we adopt the ligand inventory L′ (Eq. 9), which contains achiral (H, A, W,

X, Y, and Z) and chiral proligands (p, p, q, and q). In this case, the ligand-inventory functions

shown in Eqs. 10–12 are introduced into the right-hand side of Eq. 20. The expansion of the

resulting function gives the following generating function:

g(e) = g′ −g

=
1

2
(H7p+H7p)+

1

2
(H7q+H7q)+

3

2
(H6Ap+H6Ap)

+
3

2
(H6Aq+H6Aq)+

3

2
(H6Wp+H6Wp)+

3

2
(H6Wq+H6Wq)

+
3

2
(H6Xp+H6Xp)+

3

2
(H6Xq+H6Xq)+

3

2
(H6Yp+H6Yp)

+
3

2
(H6Yq+H6Yq)+

3

2
(H6Zp+H6Zp)+

3

2
(H6Zq+H6Zq)

+
3

2
(H6p2 +H6p2)+

3

2
(H6pq+H6pq)+

3

2
(H6pq+H6pq)

+
3

2
(H6q2 +H6q2)+H5A2W+H5A2X+H5A2Y+H5A2Z

+
7

2
(H5A2p+H5A2p)+

7

2
(H5A2q+H5A2q)+H5AW2

+4H5AWX+4H5AWY+4H5AWZ+7(H5AWp+H5AWp)+ · · · (22)

where the coefficient of each term HhAaWwXxYyZzppppqqqq represents the number of cubane

derivatives as 3D-structural isomers having h of H, a of A, w of W, x of X, y of Y, z of Z, p of

p, p of p q of q, and q of q,

This result can be alternatively obtained by calculating g′ (Eq. 16) minus g (Eq. 13). The

coefficients appearing in g(e) (Eq. 22) are collected in a tabular form (column E of Tables 3

and 4). Each substitution pattern marked by an asterisk (e.g., [7,0,0,0,0,0;1,0,0,0]* for H7p) has

the counterpart of opposite chirality sense (e.g., [7,0,0,0,0,0;0,1,0,0]* for H7p) so that the same

comments described for the coefficients appearing in the generating function g (Eq. 13) hold

true for this case in which each pair of enantiomers is also counted once.
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6 Illustration of Enumerated Cubane Derivatives

6.1 Cubane Derivatives with Achiral Proligands Only
Figure 2 shows cubane derivatives with the formula H5A2B, which correspond to the substi-

tution pattern [5,2,1,0,0,0,0,0]). In accord with the [5,2,1,0,0,0,0,0]-row of Table 2 (or equiv-

alently the [5,2,1,0,0,0;0,0,0,0]-row of Table 3), there exist six 3D-structural isomers (the 3D

column), which are categorized into five achiral isomers (the A column) and one enantiomeric

pair (the E column). Because one enantiomeric pair contains two enantiomers, their exist seven

steric isomers (7 = 5+1×2), as collected in the S column of the row at issue. In Figure 2, the

five achiral isomers are illustrated to be 2–6 and one enantiomeric pair is illustrated to be a pair

of 7a and 7b.
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H H
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H H
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6 7a 7b
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(chiral)

Figure 2: Cubane derivatives with H5A2B ([5,2,1,0,0,0,0,0])

The [4,3,1,0,0,0,0,0]-row of Table 2 (or equivalently the [4,3,1,0,0,0;0,0,0,0]-row of Table

3) indicates that there exist ten 3D-structural isomers of H4A3B (the 3D column), which are

categorized into seven achiral isomers (the A column) and three enantiomeric pairs (the E col-

umn). The number of steric isomers is calculated to be 13 (= 7 + 2×3), which appears in the

S column at issue. These cubane derivatives are illustrated in Figure 3, where the seven achiral

isomers (8, 9, 10, 12, 15, 16, and 17) and the three enantiomeric pairs (11a/11b, 13a/13b, and

14a/14b) are depicted.

6.2 Cubane Derivatives with Achiral and Chiral Proligands
Incorporation of chiral proligands p and/or p exhibits complicated effects, as illustrated in Fig-

ure 4 and 5. The value 3/2 in the [6,0,0,0,0,0;2,0,0,0]-row (the 3D column and the E column)

of Table 3 implies the same value 3/2 in the [6,0,0,0,0,0;0,2,0,0]-row, although the latter is

omitted. This means that this value corresponds to the term 3
2(H6p2 +H6p2), which represents

three (2× 3
2) pairs of enantiomers (i.e., 18a/18b, 19a/19b, and 20a/20b for the pair H6p2/H6p2),
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Figure 3: Cubane derivatives with H4A3B ([4,3,1,0,0,0,0,0])

as illustrated in Figure 4. Note that H6p2 and H6p2 have the same molecular formula when p

and p are reduced into their constitutions. The value 3 in the S column at issue corresponds

to 3(H6p2 +H6p2) and should be duplicated to give 6, which corresponds six derivatives (18a,

18b, 19a, 19b, 20a, and 20b) regarded as steric isomers.

The value 3 in the [6,0,0,0,0,0;1,1,0,0]-row (the 3D column and the A column) of Table 3

means that there are three achiral derivatives with H6pp (21, 22, and 23), which are depicted in

Figure 5. These cases are akin to such meso cases as p—p (e.g., meso-tartaric acid) or to such

pseudoasymmetric cases as CH(OH)pp (e.g., 2,3,4-trihydroxyglutaric acids).

It should be noted that the cubane derivatives shown in Figure 4 and the counterparts shown

in Figure 5 (i.e., the set of 18a/18b vs. 21; the set of 19a/19b vs. 22; as well as the set of 20a/20b
vs. 23) are stereoisomeric, because each of the sets has the same constitution (or graph) when p

and p are reduced into their constitutions (graphs).

7 Conclusions
To demonstrate the versatility of the proligand method developed by us [14–16], cubane deriva-

tives with chiral and achiral proligands are counted as 3D structural isomers and as steric iso-

mers. The results are further applied to count achiral derivatives as well as enantiomeric pairs

of chiral derivatives. By taking account of the sphericities of cycles, the proligand method is
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Figure 4: Cubane derivatives with H6p2 or H6p2 ([6,0,0,0,0,0;2,0,0,0] or [6,0,0,0,0,0;0,2,0,0]),

where p and p represents a pair of enantiomeric proligands.
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Figure 5: Cubane derivatives with H6pp ([6,0,0,0,0,0;1,1,0,0]), where p and p represents a pair

of enantiomeric proligands.

capable of counting cubane derivatives with chiral and achiral proligands, where the chirality of

each proligand is judged in isolation. On the other hand, Pólya’s theorem lacks such sphericities

of cycles, so that it is capable of counting cubane derivatives with achiral proligands only, but

incapable of counting cubane derivatives with chiral and achiral proligands.
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[33] G. Pólya, Acta Math., 68, 145–254 (1937).

[34] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron,

and P. DeMarco, “Maple 9. Advanced Programming Guide”, Maplesoft, Waterloo (2003).

[35] S. Fujita, Bull. Chem. Soc. Jpn., 72, 13–20 (1999).

Appendix

Maple Program for Generating the Data of Table 2
#cubaneA8-Total.mpl
#restart;
#read "c:/fujita0/cubaneA8-Total.mpl";
#with Hˆk Aˆl Bˆm Cˆn Wˆkk Xˆll Yˆmm Zˆnn

CICF := (1/48)*b1ˆ8 + (1/16)*b2ˆ4 + (1/8)*b2ˆ4
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+(1/16)*c2ˆ4 + (1/8)*a1ˆ4*c2ˆ2 + (1/48)*c2ˆ4
+(1/6)*b1ˆ2*b3ˆ2 + (1/8)*b4ˆ2 +(1/8)*c4ˆ2 +(1/6)*c2*c6;

CICFo := (1/24)*b1ˆ8 + (1/8)*b2ˆ4 + (1/4)*b2ˆ4
+(1/3)*b1ˆ2*b3ˆ2 + (1/4)*b4ˆ2;

a1 := H + A + B + C + W + X + Y + Z;
a2 := Hˆ2 + Aˆ2 + Bˆ2 + Cˆ2 + Wˆ2 + Xˆ2 + Yˆ2 + Zˆ2;
a3 := Hˆ3 + Aˆ3 + Bˆ3 + Cˆ3 + Wˆ3 + Xˆ3 + Yˆ3 + Zˆ3;
a4 := Hˆ4 + Aˆ4 + Bˆ4 + Cˆ4 + Wˆ4 + Xˆ4 + Yˆ4 + Zˆ4;
a6 := Hˆ6 + Aˆ6 + Bˆ6 + Cˆ6 + Wˆ6 + Xˆ6 + Yˆ6 + Zˆ6;
b1 := H + A + B + C + W + X + Y + Z;
b2 := Hˆ2 + Aˆ2 + Bˆ2 + Cˆ2 + Wˆ2 + Xˆ2 + Yˆ2 + Zˆ2;
b3 := Hˆ3 + Aˆ3 + Bˆ3 + Cˆ3 + Wˆ3 + Xˆ3 + Yˆ3 + Zˆ3;
b4 := Hˆ4 + Aˆ4 + Bˆ4 + Cˆ4 + Wˆ4 + Xˆ4 + Yˆ4 + Zˆ4;
b6 := Hˆ6 + Aˆ6 + Bˆ6 + Cˆ6 + Wˆ6 + Xˆ6 + Yˆ6 + Zˆ6;
c2 := Hˆ2 + Aˆ2 + Bˆ2 + Cˆ2 + Wˆ2 + Xˆ2 + Yˆ2 + Zˆ2;
c4 := Hˆ4 + Aˆ4 + Bˆ4 + Cˆ4 + Wˆ4 + Xˆ4 + Yˆ4 + Zˆ4;
c6 := Hˆ6 + Aˆ6 + Bˆ6 + Cˆ6 + Wˆ6 + Xˆ6 + Yˆ6 + Zˆ6;

# Maple procedure for calculating the coefficient of
# the term Hˆk Aˆl Bˆm Cˆn Wˆkk Xˆll Yˆmm Zˆnn

cubaneHABCWXYZ := proc(k::integer,
l::integer, m::integer, n::integer, kk::integer, ll::integer,
mm::integer, nn::integer)
local N1g,N2g,N3g,N4g,N5g,N6g,N7g,N8g,
SN1g,SN2g,SN3g,SN4g,SN5g,SN6g,SN7g,SN8g,AN8g,CN8g;
if(k=0) then N1g := expand(coeff(H*CICF,H));
SN1g := expand(coeff(H*CICFo,H));
else N1g := expand(coeff(CICF,Hˆk));
SN1g := expand(coeff(CICFo,Hˆk));
end if;
if(l=0) then N2g := expand(coeff(A*N1g,A));
SN2g := expand(coeff(A*SN1g,A));
else N2g := expand(coeff(N1g,Aˆl));
SN2g := expand(coeff(SN1g,Aˆl));
end if;
if(m=0) then N3g := expand(coeff(B*N2g,B));
SN3g := expand(coeff(B*SN2g,B));
else N3g := expand(coeff(N2g,Bˆm));
SN3g := expand(coeff(SN2g,Bˆm));
end if;
if(n=0) then N4g := expand(coeff(C*N3g,C));
SN4g := expand(coeff(C*SN3g,C));
else N4g := expand(coeff(N3g,Cˆn));
SN4g := expand(coeff(SN3g,Cˆn));
end if;
if(kk=0) then N5g := expand(coeff(W*N4g,W));
SN5g := expand(coeff(W*SN4g,W));
else N5g := expand(coeff(N4g,Wˆkk));
SN5g := expand(coeff(SN4g,Wˆkk));
end if;
if(ll=0) then N6g := expand(coeff(X*N5g,X));
SN6g := expand(coeff(X*SN5g,X));
else N6g := expand(coeff(N5g,Xˆll));
SN6g := expand(coeff(SN5g,Xˆll));
end if;
if(mm=0) then N7g := expand(coeff(Y*N6g,Y));
SN7g := expand(coeff(Y*SN6g,Y));
else N7g := expand(coeff(N6g,Yˆmm));
SN7g := expand(coeff(SN6g,Yˆmm));
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end if;
if(nn=0) then N8g := expand(coeff(Z*N7g,Z));
SN8g := expand(coeff(Z*SN7g,Z));
else N8g := expand(coeff(N7g,Zˆnn));
SN8g := expand(coeff(SN7g,Zˆnn));
end if;

AN8g := 2*N8g - SN8g; CN8g := SN8g - N8g;

printf("[%d,%d,%d,%d,%d,%d,%d,%d] & ",
k, l, m, n, kk, ll, mm, nn);
printf("%a & %a & %a & %a YYYY Yn", N8g, SN8g, AN8g, CN8g);
end proc:

"Print H8";
cubaneHABCWXYZ(8,0,0,0,0,0,0,0);
"Print H7";
cubaneHABCWXYZ(7,1,0,0,0,0,0,0);
"Print H6";
cubaneHABCWXYZ(6,2,0,0,0,0,0,0);
cubaneHABCWXYZ(6,1,1,0,0,0,0,0);
"Print H5";
cubaneHABCWXYZ(5,3,0,0,0,0,0,0);
cubaneHABCWXYZ(5,2,1,0,0,0,0,0);
cubaneHABCWXYZ(5,1,1,1,0,0,0,0);
"Print H4";
cubaneHABCWXYZ(4,4,0,0,0,0,0,0);
cubaneHABCWXYZ(4,3,1,0,0,0,0,0);
cubaneHABCWXYZ(4,2,2,0,0,0,0,0);
cubaneHABCWXYZ(4,2,1,1,0,0,0,0);
cubaneHABCWXYZ(4,1,1,1,1,0,0,0);
"Print H3";
cubaneHABCWXYZ(3,3,2,0,0,0,0,0);
cubaneHABCWXYZ(3,3,1,1,0,0,0,0);
cubaneHABCWXYZ(3,2,2,1,0,0,0,0);
cubaneHABCWXYZ(3,2,1,1,1,0,0,0);
cubaneHABCWXYZ(3,1,1,1,1,1,0,0);
"Print H2";
cubaneHABCWXYZ(2,2,2,2,0,0,0,0);
cubaneHABCWXYZ(2,2,2,1,1,0,0,0);
cubaneHABCWXYZ(2,2,1,1,1,1,0,0);
cubaneHABCWXYZ(2,1,1,1,1,1,1,0);
"Print H1";
cubaneHABCWXYZ(1,1,1,1,1,1,1,1);
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