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Abstract. In this paper we propose a novel method to compare RNA molecules.
We transform an RNA secondary structure into a linear structural sequence not
only differentiating paired bases from free bases but also considering the hydro-
gen bonds between paired bases. We also propose two suitable distance mea-
sures based on both the linear structural sequences and RNA primary sequences
using Lempel-Ziv complexity. The obtained pair distance matrix can be used
to construct phylogenetic trees. The proposed approach does not require se-
quence alignment. The algorithm has successfully constructed phylogenies for
nine 3’-terminal structures of viruses and three simulated second structures and
phylogenies for 15 species of protozoa.

1 Introduction

Comparison of biological sequences is an important research area of bioinformatics.

New methods are emerging for sequence comparison of nucleic acids and proteins [1–5].

The investigation of RNA secondary structures is a challenging task in molecular biology.

RNA molecules are integral components of the cellular machinery for protein synthesis

and transport, transcriptional regulation, chromosome replication, RNA processing and

modification, and other fundamental biological functions [6–8]. Due to the special role of

RNA in biological system, RNA has recently become the center of much attention because

of its functions as well as catalytic properties, leading to a substantially increased interest

in identifying new RNAs and obtaining their structural information.

There are many algorithms for computing the similarity of RNA molecules [9–13].

Previously, almost all such comparisons are based on the alignment, in which a distance

function or a score function is used to represent insertion, deletion, and substitution of

letters in the compared structures. Such approaches, which have been hitherto widely

∗Corresponding author: zhangys@sdu.edu.cn

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 67 (2012) 253-268  

                          
                                          ISSN 0340 - 6253  

 



used, are computer intensive. For a few years, several tree comparison algorithms have

been developed [14,15]. Nevertheless, these methods do not take into account the pseudo-

knots. Recently, some researchers presented different graphical representations for RNA

secondary structures, and used the invariants of matrices constructed from the graphs to

characterize and compare RNAs [16–19]. The advantage of graphical representations is

that they allow visual inspection of data, helping in recognizing major differences among

RNA secondary structures. However, in literatures, almost all the schemes merely re-

garded the free base (denoted as A,U,G,C) and paired base (denoted as A′, U ′, G′, C ′)

as different characters, then the RNA secondary structure is converted into a special se-

quence and the comparison of RNA molecules is reduced to compare the corresponding

strings of the letters (A,U,G,C,A′, U ′, G′, C ′) or other letters. It might lead to neglecting

the difference of their roles in determining RNA stability and by this way identical RNA

primary sequences with different secondary structures will have identical special sequences

that cannot characterize the corresponding RNA secondary structures effectively (Fig. 1).

Fig. 1: Two simulated RNA secondary structures with similar RNA sequence.

Complexity is one of the most basic properties of a symbolic sequence. In respect that

DNA sequences can be treated as finite-length symbol strings over a four-letter alphabet

(A, C, T, G), DNA sequence complexity is much attractive to many researchers. Kol-

mogorov complexity, the first formal theoretical description of sequence complexity, was

proposed by Kolmogorov from the view of algorithm information theory [20]. The au-

thors [21] first introduced Kolmogorov complexity to DNA sequence analysis and proposed
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a DNA sequence distance matrix based on it. Because Kolmogorov complexity is not com-

putable, the authors [22] made use of data compression gain to approximate Kolmogorov

complexity. However, the generalization of the approximate method is greatly limited

because the data compression gain varies evidently with the object to be compressed and

the algorithm that a certain compressor uses [23]. In contrary, LZ complexity, another

significant complexity measure proposed by Lempel and Ziv [24], is easily computable

and is also a universal depiction of sequence complexity. Otu et al [25] have used the

Lempel-Ziv algorithm to successfully construct phylogenetic trees from DNA sequences,

which verifies the efficiency of Lempel-Ziv algorithm in analyzing the similarity of linear

biological sequences. Motivated by this work, Some authors develop a method to compare

RNA secondary structures and analyze their similarities [26, 27]. The key idea is that to

transform the RNA secondary structures into a linear characteristic sequences (It is called

shadow sequences in [27]), these linear sequences are decomposed according to the rule of

Lempel-Ziv algorithm to evaluate the LZ complexity. But we find that sometimes these

characteristic sequences transformed from RNA secondary structures cannot characterize

the corresponding RNA secondary structures effectively. That will result in quit different

RNA secondary structures with identical RNA sequence having identical characteristic

sequences. For example, the different RNA secondary structures with identical sequences

shown in Fig. 1a and Fig. 1b will have identical characteristic sequences according to

the method in [27]. We [4] proposed an algorithm to compare RNA secondary structures

which can avoid such problems. However, the stacks in RNA molecule structure must be

first labeled.

In this paper we propose a novel method for the similarity analysis of RNA secondary

structures. In our approach, each secondary structure is transformed into a linear struc-

tural sequence by a novel idea that need not label the stacks. We not only differentiate

paired bases from free bases but also consider the hydrogen bonds between paired bases.

So both the RNA primary sequence and its linear structural sequence contains all the in-

formation corresponding RNA molecules. Furthermore, standard and famous Lempel-Ziv

algorithm [24] is employed for the similarity analysis. Of course, we have tested the valid-

ity of our method by analyzing nine 3’-terminal structures of viruses and three simulated

second structures. The results obtained by our method are reasonable and are generally

in agreement with the previous studies.
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2 Methods and algorithms

2.1 Structural sequence of RNA secondary structures

Because of the complexity of RNA secondary structures, many efficient operations

used for the analysis of DNA sequences cannot be applied to the analysis of RNA sec-

ondary structures. In order to facilitate the analysis of RNA secondary structures, we

proposed a coding algorithm to transform a complex secondary structure into a linear

sequence, containing the information on primary sequence and paired bases. The coding

algorithm is designed in this section.

The primary sequence of RNAmolecule R, reading from 5′-terminal to the 3′-terminal,

can be represented by L(R) = R[1]R[2]...R[n], where R[i] represents the ith nucleotide

of R. The secondary structure of an RNA molecule is the collection of free bases and

stacks that consist of series of consecutive base pairs. In RNA molecule, guanine and

cytosine pair (G-C) forms a triple hydrogen bond, and adenine and uracil pair (A-U)

forms a double hydrogen bond. Additionally, guanine and uracil (G-U) can form a single

hydrogen bond base pair [28].

We use R[i...i + p] denotes the consecutive bases R[i], R[i + 1], ... and R[i + p], then

we can use R[i...i+p] and R[j...j−p] express the two strands of the stack that consists of

consecutive bases R[i], R[i + 1], ... and R[i + p] with their corresponding pairing partner

R[j], R[j − 1], ... and R[j − p], respectively.

For example, the primary sequences of the RNA secondary structures Ra (Fig. 1a)

and Rb (Fig. 1b) are identical sequence, that is,

L(Ra) = L(Rb) = AAAGGGCCCCCCUUUCCCAAAGGGCCCCCCUUU .

R[1...6] and R[33...28], R[10...15] and R[24...19] construct two stacks in Fig.1b.

For a given RNA secondary structure R, we construct its structural sequence S(R)

by the following rules:

(1) If R[i] is a free base, that means R[i] doesn’t form hydrogen bond with other base,

0 appended to S(R).

(2) If R[i] is a paired base, ri appended to S(R), where ri denotes the number of

hydrogen bonds between R[i] and its pairing partner.

(3) If consecutive bases R[i], R[i+ 1], ... and R[i+ p] form one strand of a stack, then

·riri+1...ri+p· appended to S(R), where ri, ri+1, ..., ri+p denote the numbers of hydrogen

bonds between R[i], R[i + 1], ... and R[i + p] with their corresponding pairing partner,
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respectively.

For example, in Fig. 1, the structural sequence Ra is different from that of Rb.

S(Ra) = ·222 · ·333 · 000 · 333 · ·222 · 000 · 222 · ·333 · 000 · 333 · ·222· (Fig. 1a)
S(Rb) = ·222333 · 000 · 333222 · 000 · 222333 · 000 · 333222· (Fig. 1b)
The RNA primary sequence R and its structural sequence S(R) contain all the infor-

mation that the RNA secondary structure contains.

2.2 Sequence LZ complexity

Let R,R′ and Q be sequences defined over an alphabet A, �(R) be the length of R, R(i)

denote the ith element of R and R(i, j) define the substring of R composed of the elements

of R between positions i and j (inclusive). An extension R′ = RQ of R is reproducible

from R (denoted R → R′) if there exists an integer p ≤ �(R) such that Q(k) = R′(p+k−1)

for k = 1, ..., �(Q). For example AACGT → AACGT CGT CG with p = 3 and AACGT

→ AACGT AC with p = 2. Another way of looking at this is to say that R′ can be

obtained from R by copying elements from the pth location in R to the end of R. As each

copy extends the length of the new sequence beyond �(R), the number of elements copied

can be greater than �(R)− p+ 1. Thus, this is a simple copying procedure of R starting

from position p, which can carry over to the added part, Q. A sequence R is producible

from its prefix R(1, j) (denoted R(1, j)⇒ R), if R(1, j) →R(1, �(R) − 1). For example,

AACGT ⇒ AACGTAC and AACGT ⇒ AACGTACC both with pointers p = 2. Note

that production allows for an extra different symbol at the end of the copying process

which is not permitted in reproduction. Therefore, an extension which is reproducible is

always producible but the reverse may not always be true.

Any sequence R can be built using a production process where at its ith step R(1, hi−1)

⇒ R(1, hi) [note that ε = R(1, 0) ⇒ R(1, 1)]. An m-step production process of R results

in a parsing of R in which H(R) = R(1, h1) · R(h1 + 1, h2), ..., R(hm−1 + 1, hm) is called

the history of R and Hi(R) = R(hi−1 + 1, hi) is called the ith component of H(R). For

example for R = AACGTACC, A· A· C · G· T · A· C · C, A · AC · G · T · A · C · C and

A · AC · G · T · ACC are three different (production) histories of R. If R(1, hi) is not

reproducible from R(1, hi−1), thenHi(R) is called exhaustive. In other words, forHi(R) to

be exhaustive the ith step in the production process must be a production only, meaning

that the copying process cannot be continued and the component should be halted with
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a single letter innovation. A history is called exhaustive if each of its components (except

maybe the last one) is exhaustive. For example the third history given in the preceding

paragraph is an exhaustive history of R = AACGTACC. Moreover, every sequence R has

a unique exhaustive history [24].

Let c(R) be the number of components in the exhaustive history of R. It is the

least possible number of steps needed to generate R according to the whole Lempel-Ziv

algorithm, so c(R) becomes an important complexity indicator. For example, c(L(Ra)) =

c(L(Rb)) = 6, c(S(Ra)) = 10 and c(S(Rb)) = 9.

2.3 Proposed distance and pairwise distance matrix

Lempel et al have proposed that, for any given sequences R2 and R1, c(R2R1) ≤ c(R2) +

c(R1) always holds. This formula shows that the steps required to extend R2 to R2R1

are always less than the steps required to build R1 from empty string φ. Recently, Otu

et al [25] concluded that the more similar the sequence R1 is to sequence R2, the smaller

c(R2R1) − c(R2) is. That is c(R2R1) − c(R2) depends on how much R1 is similar to R2.

Based on this hypothesis, we use following relative distance measures between sequences

R2 and R1.

d1(R1, R2) =
max{c(R1R2)− c(R1), c(R2R1)− c(R2)}

max{c(R1), c(R2)} (1)

d2(R1, R2) =
max{c(R1R2)− c(R1), c(R2R1)− c(R2)}

max{c(R2R1), c(R1R2)} (2)

The first formula belongs to [25]. The second one is slightly different from the formulas

in [25]. We choose to use these formulas mainly because the results are more precise when

short RNA primary sequences are compared and analyzed.

Given RNA molecules R1 and R2, we have di(L(R1), L(R2)) and di(S(R1), S(R2)),

then the distance measure between RNA molecules R1 and R2 is defined as

di(R1, R2) =
√
di(L(R1), L(R2))2 + di(S(R1), S(R2))2, (3)

where i = 1, 2.

Generally, given n RNA molecules R1, R2,..., Rn, the primary sequences are L(R1),

L(R2),..., L(Rn) and the structural sequences are S(R1), S(R2),..., S(Rn). They are linear

sequences defined over alphabet {A,C,G, U} and {0, 1, 2, 3}, respectively, and carry the
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information on RNA molecules. By using Lempel-Ziv algorithm, the distances di(Rk, Rj)

(k, j = 1, 2, ..., n) between any pair of structures may be rapidly computed. By arranging

them into a matrix, a pairwise distance matrix is obtained, denoted by PDM . PDMkj =

(di(Rk, Rj)) contains the information on the similarity/dissimilarity between any pair of

RNA secondary structures.
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Fig. 2: Secondary structure at the 3’-terminus of RNA 3 of alfalfa mosaic virus (AMV-3),

citrus leaf rugose virus (CRV-3 ), tobacco streak virus(TSV-3), citrus variegation virus

(CVV-3 ), apple mosaic virus (APMV-3), lettuce mosaic virus (LMV-3), prune dwarf ilarvirus

(PDV-3), elm mottle virus (EMV-3) and asparagus virus II (AVII). S1CV, S2CV and S3CV

are simulated secondary structures which are similar with CVV-3.

3 Comparing RNA secondary structures

Phylogenetic relationships among different organisms are of fundamental importance in bi-

ology, and one of the prime objectives of RNA secondary structure is phylogeny reconstruc-

tion for understanding evolutionary history of organisms. The goal of our study is to com-

pare RNA secondary structures and analyze their similarity. The utility of our approach

in similarity analysis is illustrated by the examination of the similarities/dissimilarities of

two sets of the secondary structures.

3.1 Experiment No.1

The utility of our approach in similarity analysis is illustrated by the examination of the

similarities/dissimilarities of the RNA secondary structures at the 3’-terminus belonging

to nine different viruses, which is used to indicate the validation of their method by many

authors [26–28]. In Fig. 2, the nine secondary structures are listed, which were reported

by Reusken and Bol [29]. Three simulated secondary structures also are shown in Fig. 2.

Given a set of RNA molecules, our method requires the following main operations for

the similarity analysis:

1. The non-linear complex RNA secondary structures are transformed into linear
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structural sequences.

2. The primary sequences and structural sequences are decomposed according to the

rule of Lempel-Ziv algorithm to evaluate the LZ complexity, respectively.

3. The similarity degree between any two RNA molecules is measured by the distance

formulas di(R1, R2), i = 1, 2.

4. After computing the pair distances, we arrange all the values into a matrix for

clear and systematical display. This pairwise distance matrix (PDM) is listed in the form

of table. It contains the information on the similarity of these RNA molecules.

Table 1: The part of the PDM based on distance measure d1(R1, R2) for 12 RNA secondary structures

Species CRV-3 TSV-3 CVV-3 APMV-3 LMV-3 PDV-3 EMV-3 AVII S1CV S2CV S3CV

AMV-3 0.9735 1.0152 0.9914 0.9566 1.0207 0.8746 0.9947 0.9638 1.0317 0.9771 1.0328

CRV-3 0 0.7790 0.8201 1.1199 0.7023 1.0135 0.7151 0.6365 0.7023 0.7720 0.8022

TSV-3 0 1.0440 1.1157 0.8940 1.0237 0.9091 0.9253 0.8966 1.0237 0.8781

CVV-3 0 0.9092 0.8018 1.0357 0.7197 0.5943 0.2847 0.2847 0.4359

APMV-3 0 1.0743 0.8109 1.0472 0.9638 0.9327 0.8794 0.8303

LMV-3 0 1.0743 0.7929 0.5908 0.7787 0.8004 0.8771

PDV-3 0 0.9073 0.9638 1.0743 0.9261 0.9667

EMV-3 0 0.5198 0.6938 0.6839 0.7125

AVII 0 0.5943 0.5943 0.5451

S1CV 0 0.4359 0.4956

S2CV 0 0.4093

We have used our method to analyze the similarity of the 3’-terminus belonging to

nine different viruses and three simulated secondary structure. The pairwise distance

matrix (PDM) based on distance measure d1(R1, R2) for them is listed in Table 1.

We know that S3CV are obtained by deleting four bases in CVV-3 and S1CV and

S2CV are obtained by deleting two different bases in CVV-3 secondary structures, re-

spectively. table 1 show us the smaller entries are d1(CV V − 3, S1CV ) = 0.2847,

d1(CV V − 3, S2CV ) = 0.2847 and d1(CV V − 3, S3CV ) = 0.4359, which is consistent

with the fact above mentioned. Except for S1CV, S2CV and S3CV, we find that the

smaller entries (d1 < 0.6) are associated with AVII and CVV-3 [d1 = 0.5943], AVII and

LMV-3 [d1 = 0.5908], AVII and EMV-3 [d1 = 0.5198]. All these secondary structures,

AVII, CVV-3, LMV-3 and EMV-3, have three base-paired regions and three loop regions.

Observing the row corresponding to the EMV-3, we also can find that the smaller entries

(d1 < 0.8) are CRV-3, CVV-3, LRMV-3 and AVII which have the similar characterization
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Table 2: The part of the PDM based on distance measure d2(R1, R2) for 12 RNA secondary structures

Species CRV-3 TSV-3 CVV-3 APMV-3 LMV-3 PDV-3 EMV-3 AVII S1CV S2CV S3CV

AMV-3 0.6090 0.6423 0.6455 0.5833 0.6435 0.5644 0.6105 0.6326 0.6609 0.6290 0.6384

CRV-3 0 0.5147 0.5200 0.6466 0.4906 0.6285 0.4742 0.4496 0.4906 0.5315 0.5372

TSV-3 0 0.5938 0.6632 0.5579 0.6550 0.5534 0.5670 0.5487 0.5938 0.5524

CVV-3 0 0.5763 0.4906 0.6325 0.4964 0.4184 0.2368 0.2368 0.3617

APMV-3 0 0.6514 0.5150 0.6294 0.6267 0.5920 0.5858 0.5217

LMV-3 0 0.6690 0.5159 0.4143 0.5021 0.5207 0.5979

PDV-3 0 0.5808 0.6450 0.6690 0.6021 0.5741

EMV-3 0 0.3955 0.4638 0.4730 0.5025

AVII 0 0.4299 0.4184 0.4333

S1CV 0 0.3305 0.3860

S2CV 0 0.3381

that the first hairpin has long stack and second hairpin has similar stack. The row corre-

sponding to the PDV-3 shows us that the smaller entries (d1 < 0.9) associated with PDV-3

are AMV-3 and APMV-3. These three secondary structures have two base-paired regions

and two loop regions that are different from above mentioned four secondary structures

in topology.

In Table 2, we present the pairwise distance matrix (PDM) based on distance mea-

sure d2(R1, R2) for the nine RNA secondary structures and three simulated secondary

structures.

Comparing Table 1 and 2, we can find that there exists an overall qualitative agree-

ment among similarities although there is small difference.

To further demonstrate the interrelationships of the 12 secondary structures, we use

pairwise distancematrix (PDM) to construct the hierarchical clustering of these secondary

structures because the quality of a clustering analysis may verify whether our method

of abstracting information from RNA molecules is efficient. in Fig. 3, we present the

phylogenetic tree based on linkage cluster analysis using the pairwise distance matrix

(PDM) based on distance measure d1(R1, R2).

The relationship of nine 3’-terminal structures of viruses and three simulated second

structures is shown reasonably: All the 12 second structures are clustered into two group:

AMV-3, PDV-3 and APMV-3 are clustered into one group closely. AVII, CVV-3, LMV-3,

EMV-3, CRV-3, TSV-3, S1CV, S2CV and S3CV are clustered into another group. S1CV,

S2CV, S3CV and CVV-3 are grouped very closely, which is consistent with the fact that
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S1CV, S2CV and S3CV are obtained by deleting two or four bases from CVV-3. But

they are less closely with CRV-3 and TSV-3, which is consistent with the fact that the

former and latter have some different loop and stem regions. It is not difficult to see that

the similarity obtained by our method is coincident with that implicated in the tree.

Fig. 3: Phylogenetic tree of the hierarchical clustering of nine 3’-terminal structures of viruses

and three simulated second structures which are very similar with CVV-3.

3.2 Experiment No.2

In order to verify the generality of our method, we apply it to the second set. The

15 complex RNA secondary structures of second set are from [30, 31]. These 5S rRNA

are: Crithidia fasciculata, Bresslaua vorax, Paramecium tetraurelia, Tetrahymena ther-

mophila, Euplotes woodruffi, Acanthamoeba castellanii, Scenedesmus obliquus, Chlamy-

domonas sp., Chlorella sp., Spinach (a representative of vascular plants), Aspergillus nidu-

lans (a representative of fungi), Euglena gracilis, Chilomonas paramecium, Physarum

polycephalum and Animals (a representative of multicellular animals). The nucleotide

sequences of 5S rRNAs from three protozoa, Bresslaua vorax, Euplotes woodruffi and

Chlarnydomonas sp. have been determined and aligned together with the sequences of

12 protozoa species including unicellular green algae. Using this alignment, a phylogenic

tree of the 15 species of protozoa has been constructed. That can be found in [30].

After computing the pair distances by using d1(R1, R2), we obtain the pair-wise dis-

tance matrix (PDM). We present the phylogenetic tree based on linkage cluster analysis
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using these pairwise distance matrices and construct two phylogenic trees of these proto-

zoa (Fig.4).

We omit the corresponding results for the distance measure d2(R1, R2) as they are

identical to the ones obtained by using d1(R1, R2).

Fig. 4: phylogenetic tree of the hierarchical clustering of 15 5S rRNA . It is obtained by the

pair-wise distance matrix based on distance measure d1(R1, R2)(d2(R1, R2)) and drawn by

Phytreetool.

The phylogenetic tree in Fig.4 shows that Bresslaua, Paramecium, tetraurelia and

Euplotes are grouped closely, which is consistent with the fact that they belong to Cil-

iophora; Physarum, Acanthamoeba, Crithidia and Euglena are intimately related to one

another, which is consistent with the fact that they belong to Sarcomastigophora.

In the subphylum Sarcodina, Acanthamoeba and a true-slime mold Physantm are

also close to each other from the 5S rRNA sequence data. The slime molds have been

often classified in old textbooks as members of fungi, but the 5S rRNA data support the

classification system that the slime molds, at least Physarum, and amoeba are placed

in the same subphylum Sarcodina. In spite of such a partial consistency, the phylum

Sarcomastigophora appears to be, as a whole, composed of a number ofmutually unrelated

species and thus seems to be quite artificial. Green algae Chlorella, Scenedesmus and

plants belong to the same branch in the tree. This view is consistent with the notion that

the plants originated from some type of green-flagellated protists.

Corliss (1979) has suggested that in the ciliates the class I species are the ”most
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primitive” and firstly separated from the ancestor common to ”more advanced” class

II and the ”most advanced” class III species, followed by the separation of these two

classes. However, the 5S rRNA tree [30] suggests that the class III (Blepharisma and

Euplotes) separated first from the ancestor common to the class I (Bresslaua) and the

class II species (Paramecium and Tetrahymena), followed by the separation of the class I

and class II more recently. Our result is consistent with the last view. The topology of

the tree, except for the positions of the Chilomonas, is generally in agreement with the

classification by taxonomic criteria [30].

4 Conclusions

The famous Lempel-Ziv algorithm can efficiently extract the information on repeated

patterns encoded in DNA sequence and be used to analyze the similarity of DNA se-

quence. In order to numerically characterize RNA molecules using these techniques, it

is necessary to transform an RNA molecules into linear sequence. As we know that the

RNA molecule basically can be described by its primary sequence and secondary struc-

ture. Unlike most existing methods, we transform an RNA secondary structure into linear

sequences not only differentiating paired bases from free bases but also considering the

numbers of hydrogen bonds between paired bases. So the linear sequence contains all the

information that contained in the secondary structure. Then comparison of two RNA

molecules is now transformed into a comparison of both the RNA primary sequences and

linear structural sequences of the corresponding RNA secondary structures. When these

linear sequences are obtained, we can use the Lempel-Ziv algorithm to analyze the RNA

molecules and build the phylogenetic tree. The proposed method does not require gene

identification nor any prior biology knowledge such as an accurate alignment score matrix.

To show the utility of the method, we use it to examine the similarities and construct the

corresponding phylogenic tree for two data sets.
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