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Abstract

Cubane derivatives with chiral and achiral proligands are counted as 3D structural iso-

mers and as steric isomers in the light of the markaracter method developed by us (S. Fujita,

Theor. Chim. Acta, 91, 291–314 (1995), 91, 315–332 (1995)). The results are further ap-

plied to count achiral derivatives as well as enantiomeric pairs of chiral derivatives. The

markaracter tables of the point groups Oh and O, their inverse tables, the dominant USCI-

CF (unit subduced cycle indices with chirality fittingness) tables, and the non-dominant

USCI-CF tables are prepared for the purpose of further applications of combinatorial enu-

meration. A Maple program source for calculating non-dominant USCI-CF tables is given

as an example of practical calculation.

1 Introduction
In group theory, there are two predominant methodologies which are based on characters and on

marks, respectively. They have respective territories, i.e., continuous phenomena for the char-

acters (linked with linear representations [1, 2]) and discrete phenomena for the marks (linked

with permutation representations [3, 4]). As a result, they have been studied separately and

rather independently in widespread group theory.
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Thus, on one hand, the concepts of character and character tables have been main reper-

toire of most textbooks on group theory [5, 6], on chemical applications [7–10], on physical

applications [11–14], and so on. This is because chemical and physical applications have been

concerned with continuous models.

On the other hand, the concepts of marks and mark tables were early introduced by Burnside

[3]. Although they are concerned with permutation groups for specifying discrete phenomena,

they have long been neglected in most textbooks on group theory, even on permutation groups

[15, 16]. Before and during the 1980s, there had sporadically appeared pioneering articles on

the enumeration of graphs and chemical structures by using marks and mark tables [17–19].

After that, the concepts of marks and mark tables were linked with coset representations of

point groups and subductions of such coset representations were formulated [20], so that the

concept of USCI (Unit Subduced Cycle Index) was proposed by Fujita [20, 21] for the purpose

of combinatorial enumeration. After the concepts of sphericity and chirality fittingness had

been introduced by Fujita [22], the concept of USCI was extended into the concept of USCI-
CF (Unit Subduced Cycle Index with Chirality Fittingness) [23, 24], which has been widely

applied to enumeration of three-dimensional structures [21, 25]. In spite of these advances,

independent approaches to characters and to marks remained to be unchanged during the first

half of the 1990s. This means that the relationship between them were not clarified, so as to be

incapable of integrating them from a common viewpoint.

As for the integration of marks and characters, the concept of markaracters was proposed

later by us [26]. The markaracters are clarified to correspond to dominant representations, which

are concerned with cyclic subgroups. Such dominant representations are subduced to give dom-

inant subduction tables. Thereby, dominant USCI tables and non-dominant USCI tables have

been generated to be applied to combinatorial enumeration of isomers [27]. The markaracter

tables have been correlated to the Q-conjugacy character tables, which have been further corre-

lated to character tables [28]. The correlation procedures have been discussed without chirality

fittingness, although the method described in [29] could be applied to realize the introduction

of chirality fittingness. When both chiral and achiral proligands are incorporated in the enu-

meration of cubane derivatives as discussed in the present series, chirality fittingness is highly

desirable to be taken into consideration.

The purpose of the present series is to compare various methods of combinatorial enumera-

tion, where we use the cubane skeleton of high symmetry (Oh) as a common starting structure

and we emphasize three-dimensional structures of enumerated isomers as well as those of lig-

ands to be substituted. In this paper, the markaracter approach is applied to isomer enumera-

tions of cubane derivatives, where both achiral and chiral ligands (more abstractly, proligands)

are taken into consideration after introducing chirality fittingness. Thereby, the versatility of the

markaracter approach is emphasized even in the cubane skeleton of high symmetry (Oh).

2 Tables for the Point Group Oh

2.1 Markaracter Table of the Point Group Oh

2.1.1 Non-Redundant Set of Cyclic Subgroups

To investigate combinatorial enumeration by starting a cubane skeleton of the point group Oh,

we first prepare various tables necessary to the markaracter method [26, 27]. The Oh-point
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group is of order 48 and contains the following elements:

Oh =
{

I,C2(1),C2(2),C2(3);C3(1),C3(3),C3(2),C3(4),C
2
3(1),C

2
3(4),C

2
3(3),C

2
3(2),

C′
2(6),C

′
2(1),C

′
2(4),C

′
2(2),C

′
2(5),C

′
2(3),C

3
4(3),C4(3),C

3
4(1),C4(1),C4(2),C

3
4(2);

i,σh(3),σh(2),σh(1),S
5
6(1),S

5
6(3),S

5
6(2),S

5
6(4),S6(1),S6(4),S6(3),S6(2),

σd(1),σd(6),σd(2),σd(4),σd(3),σd(5),S4(3),S
3
4(3),S4(1),S

3
4(1),S

3
4(2),S4(2)

}
. (1)

The point group Oh has 33 subgroups up to conjugacy, which have been discussed in detail

in terms of a non-redundant set of subgroups (SSG) [30]:

SSGOh =
{

C1,C2,C′
2,Cs,C′

s,Ci,C3,C4,S4,D2,D′
2,C2v,C′

2v,C
′′
2v,C2h,C′

2h,

D3,C3v,C3i,D4,C4v,C4h,D2d,D′
2d,D2h,D′

2h,T,D3d,D4h,O,Th,Td,Oh
}

, (2)

where the subgroups are aligned in the ascending order of their orders. According to the for-

mulation of the USCI approach [21], the respective subgroups correspond to the coset repre-

sentations Oh(/Gi) (Gi ∈ SSGOh), which generate the corresponding mark table, as reported

in Table 1 of [30]. The resulting mark table and its inverse are further used for the subduction

of Oh(/Gi) ↓ G j (Gi,G j ∈ SSGOh), which results in the generation of the USCI table and the

USCI-CF table according to the USCI approach for combinatorial enumeration [21].

Among these subgroups, cyclic subgroups are collected to give a non-redundant set of cyclic

subgroups (SCSG) according to [26] as follows:

SCSGOh =
{

C1,C2,C′
2,Cs,C′

s,Ci,C3,C4,S4,C3i
}

. (3)

The respective subgroups correspond to the coset representations Oh(/Gi) (Gi ∈ SCSGOh),

which are selected from the full set of coset representations for Oh(/Gi) (Gi ∈ SSGOh). The

restricted set of coset representation, e.g., Oh(/Gi) (Gi ∈ SCSGOh), is called dominant repre-
sentations.

2.1.2 Markaracter Table of Oh and Its Inverse

Each mark (for Oh(/Gi) (Gi ∈ SSGOh)) can be regarded as a vector of 33 elements (cf. Eq. 2),

e.g.,

MOh(/C3v) = (8,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) (4)

for the coset representation Oh(/C3v), which appears in the mark table of the point group Oh
(Table 1 of [30]). In accord with the formulation of markaracters [26], such a mark can be

reduced into a markaracter by selecting the values corresponding to the SCSG, e.g., Eq. 3:

M̃Oh(/C3v) = (8,0,0,0,4,0,2,0,0,0), (5)

which is regarded as a vector of 10 elements for the coset representation Oh(/C3v).
In the present paper, our attention is first focused on markaracters corresponding to SCSG,

e.g., SCSGOh (Eq. 3). The markaracters for every coset representations of Oh(/Gi) (for Gi ∈
SCSGOh , cf. Eq. 3) are collected to give a markaracter table shown in Table 1.

In general, a mark table can be converted into a modified mark table by collecting the el-

ements for cyclic subgroups in the upper left part, where the resulting upper left part of the
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Table 1: Markaracter Table of Oh

M̃Oh C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 C3i

Oh(/C1) 48 0 0 0 0 0 0 0 0 0

Oh(/C2) 24 8 0 0 0 0 0 0 0 0

Oh(/C′
2) 24 0 4 0 0 0 0 0 0 0

Oh(/Cs) 24 0 0 8 0 0 0 0 0 0

Oh(/C′
s) 24 0 0 0 4 0 0 0 0 0

Oh(/Ci) 24 0 0 0 0 24 0 0 0 0

Oh(/C3) 16 0 0 0 0 0 4 0 0 0

Oh(/C4) 12 4 0 0 0 0 0 4 0 0

Oh(/S4) 12 4 0 0 0 0 0 0 4 0

Oh(/C3i) 8 0 0 0 0 8 2 0 0 2

Table 2: Inverse Markaracter Table of Oh

M̃−1
Oh

Oh Oh Oh Oh Oh Oh Oh Oh Oh Oh ∑(/C1) (/C2) (/C′
2) (/Cs) (/C′

s) (/Ci) (/C3) (/C4) (/S4) (/C3i)
C1

1
48 0 0 0 0 0 0 0 0 0 1

48

C2 − 1
16

1
8 0 0 0 0 0 0 0 0 1

16

C′
2 −1

8 0 1
4 0 0 0 0 0 0 0 1

8

Cs − 1
16 0 0 1

8 0 0 0 0 0 0 1
16

C′
s −1

8 0 0 0 1
4 0 0 0 0 0 1

8

Ci − 1
48 0 0 0 0 1

24 0 0 0 0 1
48

C3 − 1
12 0 0 0 0 0 1

4 0 0 0 1
6

C4 0 −1
8 0 0 0 0 0 1

4 0 0 1
8

S4 0 −1
8 0 0 0 0 0 0 1

4 0 1
8

C3i
1
12 0 0 0 0 −1

6 −1
4 0 0 1

2
1
6
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modified mark table indicates the corresponding markaracter table [26]. By applying this pro-

cedure to the present case, the mark table of Oh reported in [30] (Table 1) is converted into

the corresponding modified mark table, in which the markaracter table (Table 1) appears in its

upper left part.

2.1.3 Dominant USCI-CF Table of Oh

In general, dominant representations such as Oh(/Gi) (Gi ∈ SCSGOh) (corresponding to the

SCSG (Eq. 3)) can be subduced into a cyclic subgroup, where the resulting subductions gen-

erate dominant USCIs [27]. Although the reference [27] has solely discussed dominant USCIs

without chirality fittingness, the corresponding USCI-CFs (with chirality fittingness) can be

derived by referring to the formulation of the USCI approach (cf. Chapter 19 of [21]).

As an example, let us consider the subductions of Oh(/Gi) (Gi ∈ SCSGOh) into the cyclic

subgroup S4. According to the procedure described in Example 4 of [27], a subduced markar-

acter table is generated by selecting necessary columns (C1-, C2-, and S4-columns) from the

markaracter table (Table 1). The resulting matrix (the subduced markaracter table for Oh(/Gi) ↓
S4 (Gi ∈ SCSGOh)) is multiplied by the inverse (M̃−1

S4
, the same as the inverse of the mark table

M−1
S4

, cf. Table B.4 of Appendix B in [21]) to give a subduction-multiplicity matrix as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 S4

Oh(/C1) 48 0 0

Oh(/C2) 24 8 0

Oh(/C′
2) 24 0 0

Oh(/Cs) 24 0 0

Oh(/C′
s) 24 0 0

Oh(/Ci) 24 0 0

Oh(/C3) 16 0 0

Oh(/C4) 12 4 0

Oh(/S4) 12 4 4

Oh(/C3i) 8 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝
1
4 0 0

−1
4

1
2 0

0 −1
2 1

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 S4

Oh(/C1) ↓ S4 12 0 0

Oh(/C2) ↓ S4 4 4 0

Oh(/C′
2) ↓ S4 6 0 0

Oh(/Cs) ↓ S4 6 0 0

Oh(/C′
s) ↓ S4 6 0 0

Oh(/Ci) ↓ S4 6 0 0

Oh(/C3) ↓ S4 4 0 0

Oh(/C4) ↓ S4 2 2 0

Oh(/S4) ↓ S4 2 0 4

Oh(/C3i) ↓ S4 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c12
4

c4
2c4

4

c6
4

c6
4

c6
4

c6
4

c4
4

c2
2c2

4

a4
1c2

4

c2
4

, (6)

where the first matrix in the left-hand side is the the subduced markaracter table at issue, the

second one is M̃−1
S4

, and the matrix in the right-hand side is the subduction-multiplicity matrix

at issue.

The subduction-multiplicity matrix (the right-hand side of Eq. 6) contains the multiplicities

for the respective subductions. For example, the 9-th row indicates:

Oh(/S4) ↓ S4 = 2S4(/C1)+4S4(/S4). (7)

Equation 7 generates a USCI s4
1s2

4, because the subscripts are calculated by using |S4|/|C1| =
4/1 = 4 and |S4|/|S4| = 4/4 = 1, where the coefficients appearing in the right-hand side are

used as the powers of the respective components of the USCI. Because the S4(/C1) is enan-

tiospheric and because the S4(/S4) is homospheric in accord with the USCI approach [21],

they are respectively characterized by the sphericity indices c4 and a1. Hence a USCI-CF is

calculated to be a4
1c2

4. This is symbolically denoted as follows:

Z(Oh(/S4) ↓ S4;$d jk) = a4
1c2

4. (8)
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Table 3: Dominant USCI-CF Table of Oh

C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 C3i

Oh(/C1) b48
1 b24

2 b24
2 c24

2 c24
2 c24

2 b16
3 b12

4 c12
4 c8

6

Oh(/C2) b24
1 b8

1b8
2 b12

2 c12
2 c12

2 c12
2 b8

3 b4
2b4

4 c4
2c4

4 c4
6

Oh(/C′
2) b24

1 b12
2 b4

1b10
2 c12

2 c12
2 c12

2 b8
3 b6

4 c6
4 c4

6

Oh(/Cs) b24
1 b12

2 b12
2 a8

1c8
2 c12

2 c12
2 b8

3 b6
4 c6

4 c4
6

Oh(/C′
s) b24

1 b12
2 b12

2 c12
2 a4

1c10
2 c12

2 b8
3 b6

4 c6
4 c4

6

Oh(/Ci) b24
1 b12

2 b12
2 c12

2 c12
2 a24

1 b8
3 b6

4 c6
4 a8

3

Oh(/C3) b16
1 b8

2 b8
2 c8

2 c8
2 c8

2 b4
1b4

3 b4
4 c4

4 c2
2c2

6

Oh(/C4) b12
1 b4

1b4
2 b6

2 c6
2 c6

2 c6
2 b4

3 b4
1b2

4 c2
2c2

4 c2
6

Oh(/S4) b12
1 b4

1b4
2 b6

2 c6
2 c6

2 c6
2 b4

3 b2
2b2

4 a4
1c2

4 c2
6

Oh(/C3i) b8
1 b4

2 b4
2 c4

2 c4
2 a8

1 b2
1b2

3 b2
4 c2

4 a2
1a2

3

∑ 1
48

1
16

1
8

1
16

1
8

1
48

1
6

1
8

1
8

1
6

On similar lines, the other subductions are characterized by USCI-CFs collected in the rightmost

part of Eq. 6.

The subduction procedure described in the preceding paragraphs is repeated for each cyclic

subgroup by selecting the columns necessary to the cyclic subgroup from the markaracter table

(Table 1). Thereby, we are able to obtain a dominant USCI-CF table of Oh (Table 3). Note that

the USCI-CFs shown in Eq. 6 appear in the S4-column of Table 3.

Let a point group G be characterized by an SCSG:

SCSGG = {G1,Gs, . . . ,Gs}, (9)

where G1 = C1 (an identity group). In general, Eq. 7 is represented as follows:

G(/Gi) ↓ G j =
r

∑
k=1

β (i j)
k G j(/Gk), (10)

which has been reported in [27] (Eq. 48). Thereby, Eq. 8 is generally represented as follows:

Z(G(/Gi) ↓ G j;$d jk) =
r

∏
k=1

$
β (i j)

k
d jk

, (11)

which represents a USCI-CF appearing at the intersection of the G(/Gi)-row and G j column of

the dominant USCI-CF table of G, where k is concerned with G j(/Gk) (d jk = |G j|/|Gk|). The

symbol $ is a (for homospheric), b (for hemispheric), or c (for enantiospheric) according to the

sphericity of G j(/Gk) (cf. Eq. 50 of [27] without chirality fittingness).

2.2 Markaracters and USCI-CFs for Non-Dominant Representations
2.2.1 Multiplicity Vectors

A markaracter table such as Table 1 is regarded as a square matrix, e.g., M̃Oh . Thereby, we are

able to calculate the corresponding inverse matrix, e.g., M̃−1
Oh

, as shown in Table 2 [26]. As for
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the present case, we obtain the following relationship:

M̃OhM̃−1
Oh

= I10×10, (12)

where the symbol I10×10 represents an identity matrix of 10×10.

Each row of a markaracter table (e.g., Table 1) can be regarded as a row vector according to

Theorem 1 of [26]. From this viewpoint, the set of row vectors (i.e., markaracters) can work as

the bases of a vector space, where Eq. 12 indicates the multiplicities of respective row vectors.

For example, the Oh(/C2)-row of Table 1 as a vector is multiplied by the inverse (Table 2) to

give the following multiplicity vector:

M̃Oh(/C2)M̃
−1
Oh

= (24,8,0,0,0,0,0,0,0,0)M̃−1
Oh

= (0,1,0,0,0,0,0,0,0,0), (13)

which corresponds to the Oh(/C2)-rows of M̃Oh and I10×10 appearing in Eq. 12. This means

that the base M̃Oh(/C2) contains the representation Oh(/C2) once and no other dominant rep-

resentations. On similar lines, the base M̃Oh(/Gi) (Gi ∈ SCSGOh)) corresponding to each row

of Table 1 (Oh(/Gi) (Gi ∈ SCSGOh) as dominant representations) contains the representation

Oh(/Gi) once and no other dominant representations in the light of Eq. 12.

Now, the discussions described above for such dominant representations as Oh(/Gi) (Gi ∈
SCSGOh) allows us to apply Theorem 1 of of [26] and then Subsection 3.2 of of [27] in order

to examine non-dominant representations, e.g., Oh(/C3v) whose markaracter has been shown

in Eq. 5. The markaracter shown in Eq. 5 is regarded as a vector and multiplied by the inverse

M̃−1
Oh

, so as to give the following multiplicity vector:

M̃Oh(/C3v)M̃
−1
Oh

= (8,0,0,0,4,0,2,0,0,0)M̃−1
Oh

= (−1

2
,0,0,0,1,0,

1

2
,0,0,0). (14)

This means the following equation:

M̃Oh(/C3v) = −1

2
M̃Oh(/C1) + M̃Oh(/C′

s) +
1

2
M̃Oh(/C3), (15)

which is verified by the data of Table 1 as follows:

−1
2× (48, 0, 0, 0, 0, 0, 0, 0, 0, 0)

+1× (24, 0, 0, 0, 4, 0, 0, 0, 0, 0)
+ 1

2× (16, 0, 0, 0, 0, 0, 4, 0, 0, 0)
( 8, 0, 0, 0, 4, 0, 2, 0, 0, 0)

. (16)

Non-dominant representations Oh(/Gi) (Gi ∈ SSGOh and Gi �∈ SCSGOh) can be similarly

treated to give respective multiplicity vectors, which are collected in Table 4.

2.2.2 Non-Dominant USCI-CF Table of Oh

Via Multiplicity Vectors Such multiplicity vectors as collected in Table 4, which are initially

linked to such a markaracter table as Table 1, can be applied to such a dominant USCI table (or

dominant USCI-CF table) as Table 3 according to Theorem 4 of [27]. Thus, the multiplicity

vectors (e.g., Table 4) are capable of calculating USCIs (or USCI-CFs) for non-dominant rep-

resentations by starting from the data of such a dominant USCI (or USCI-CF) table (e.g., Table

3).
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Table 4: Markaracters and Multiplicity Vectors for Non-Dominant Representations

markaracter ×M̃−1
Oh

multiplicity vectors

M̃Oh(/D2) = (12,12,0,0,0,0,0,0,0,0) =⇒ (−1
2 , 3

2 ,0,0,0,0,0,0,0,0)
M̃Oh(/D′

2)
= (12,4,4,0,0,0,0,0,0,0) =⇒ (−1

2 , 1
2 ,1,0,0,0,0,0,0,0)

M̃Oh(/C2v) = (12,4,0,8,0,0,0,0,0,0) =⇒ (−1
2 , 1

2 ,0,1,0,0,0,0,0,0)
M̃Oh(/C′

2v)
= (12,4,0,0,4,0,0,0,0,0) =⇒ (−1

2 , 1
2 ,0,0,1,0,0,0,0,0)

M̃Oh(/C′′
2v)

= (12,0,2,4,2,0,0,0,0,0) =⇒ (−1
2 ,0, 1

2 , 1
2 , 1

2 ,0,0,0,0,0)
M̃Oh(/C2h) = (12,4,0,4,0,12,0,0,0,0) =⇒ (−1

2 , 1
2 ,0, 1

2 ,0, 1
2 ,0,0,0,0)

M̃Oh(/C′
2h)

= (12,0,2,0,2,12,0,0,0,0) =⇒ (−1
2 ,0, 1

2 ,0, 1
2 , 1

2 ,0,0,0,0)
M̃Oh(/D3) = (8,0,4,0,0,0,2,0,0,0) =⇒ (−1

2 ,0,1,0,0,0, 1
2 ,0,0,0)

M̃Oh(/C3v) = (8,0,0,0,4,0,2,0,0,0) =⇒ (−1
2 ,0,0,0,1,0, 1

2 ,0,0,0)
M̃Oh(/D4) = (6,6,2,0,0,0,0,2,0,0) =⇒ (−1

2 , 1
2 , 1

2 ,0,0,0,0, 1
2 ,0,0)

M̃Oh(/C4v) = (6,2,0,4,2,0,0,2,0,0) =⇒ (−1
2 ,0,0, 1

2 , 1
2 ,0,0, 1

2 ,0,0)
M̃Oh(/C4h) = (6,2,0,2,0,6,0,2,2,0) =⇒ (−1

4 ,−1
4 ,0, 1

4 ,0, 1
4 ,0, 1

2 , 1
2 ,0)

M̃Oh(/D2d) = (6,6,0,0,2,0,0,0,2,0) =⇒ (−1
2 , 1

2 ,0,0, 1
2 ,0,0,0, 1

2 ,0)
M̃Oh(/D′

2d) = (6,2,2,4,0,0,0,0,2,0) =⇒ (−1
2 ,0, 1

2 , 1
2 ,0,0,0,0, 1

2 ,0)
M̃Oh(/D2h) = (6,6,0,6,0,6,0,0,0,0) =⇒ (−3

4 ,3/4,0,3/4,0, 1
4 ,0,0,0,0)

M̃Oh(/D′
2h)

= (6,2,2,2,2,6,0,0,0,0) =⇒ (−3
4 , 1

4 , 1
2 , 1

4 , 1
2 , 1

4 ,0,0,0,0)
M̃Oh(/T) = (4,4,0,0,0,0,4,0,0,0) =⇒ (−1

2 , 1
2 ,0,0,0,0,1,0,0,0)

M̃Oh(/D3d) = (4,0,2,0,2,4,1,0,0,1) =⇒ (−1
2 ,0, 1

2 ,0, 1
2 ,0,0,0,0, 1

2)
M̃Oh(/D4h) = (3,3,1,3,1,3,0,1,1,0) =⇒ (−5

8 , 1
8 , 1

4 , 3
8 , 1

4 ,1/8,0, 1
4 , 1

4 ,0)
M̃Oh(/O) = (2,2,2,0,0,0,2,2,0,0) =⇒ (−1

2 ,0, 1
2 ,0,0,0, 1

2 , 1
2 ,0,0)

M̃Oh(/Th) = (2,2,0,2,0,2,2,0,0,2) =⇒ (−1
4 , 1

4 ,0, 1
4 ,0,−1

4 ,0,0,0,1)
M̃Oh(/Td) = (2,2,0,0,2,0,2,0,2,0) =⇒ (−1

2 ,0,0,0, 1
2 ,0, 1

2 ,0, 1
2 ,0)

M̃Oh(/Oh) = (1,1,1,1,1,1,1,1,1,1) =⇒ (−3
8 ,−1

8 , 1
4 , 1

8 , 1
4 ,−1

8 ,0, 1
4 , 1

4 , 1
2)

For example, the multiplicity vector of Eq. 14 (for the markaracter M̃Oh(/C3v)) is concerned

with the Oh(/C1)-, Oh(/C′
s)-, and Oh(/C3)-rows of the dominant USCI-CF table (Table 3),

as implied by Eq. 15. From the data of the S4-column shown in Table 3 as an example, we

select c12
4 for Oh(/C1)-row, c6

4 for Oh(/C′
s)-row, and c4

4 for Oh(/C3)-row, to which we apply

the multiplicity vector shown in Eq. 14, giving the following USCI-CF:

c12×(−1/2)
4 × c6×1

4 × c4×(1/2)
4 = c2

4. (17)

Similarly, the multiplicity vector of Eq. 14 is applied to the other columns of Table 3 so as to

give a vector of USCI-CFs for the markaracter M̃Oh(/C3v), as collected in the Oh(/C3v)-row of

Table 5.

The full data of Table 5 can be obtained by repeatedly applying this procedure to the markar-

acters and the multiplicity vectors collected in Table 4. They were calculated by using the Maple

system [31], where a maple file named “markarac04.mpl” (extension .mpl), whose source list
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Table 5: Non-Dominant USCI-CF Table of Oh

C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 C3i

Oh(/D2) b12
1 b12

1 b6
2 c6

2 c6
2 c6

2 b4
3 b6

2 c6
2 c2

6

Oh(/D′
2) b12

1 b4
1b4

2 b4
1b4

2 c6
2 c6

2 c6
2 b4

3 b2
2b2

4 c2
2c2

4 c2
6

Oh(/C2v) b12
1 b4

1b4
2 b6

2 a8
1c2

2 c6
2 c6

2 b4
3 b2

2b2
4 c2

2c2
4 c2

6

Oh(/C′
2v) b12

1 b4
1b4

2 b6
2 c6

2 a4
1c4

2 c6
2 b4

3 b2
2b2

4 c2
2c2

4 c2
6

Oh(/C′′
2v) b12

1 b6
2 b2

1b5
2 a4

1c4
2 a2

1c5
2 c6

2 b4
3 b3

4 c3
4 c2

6

Oh(/C2h) b12
1 b4

1b4
2 b6

2 a4
1c4

2 c6
2 a12

1 b4
3 b2

2b2
4 c2

2c2
4 a4

3

Oh(/C′
2h) b12

1 b6
2 b2

1b5
2 c6

2 a2
1c5

2 a12
1 b4

3 b3
4 c3

4 a4
3

Oh(/D3) b8
1 b4

2 b4
1b2

2 c4
2 c4

2 c4
2 b2

1b2
3 b2

4 c2
4 c2c6

Oh(/C3v) b8
1 b4

2 b4
2 c4

2 a4
1c2

2 c4
2 b2

1b2
3 b2

4 c2
4 c2c6

Oh(/D4) b6
1 b6

1 b2
1b2

2 c3
2 c3

2 c3
2 b2

3 b2
1b2

2 c3
2 c6

Oh(/C4v) b6
1 b2

1b2
2 b3

2 a4
1c2 a2

1c2
2 c3

2 b2
3 b2

1b4 c2c4 c6

Oh(/C4h) b6
1 b2

1b2
2 b3

2 a2
1c2

2 c3
2 a6

1 b2
3 b2

1b4 a2
1c4 a2

3

Oh(/D2d) b6
1 b6

1 b3
2 c3

2 a2
1c2

2 c3
2 b2

3 b3
2 a2

1c2
2 c6

Oh(/D′
2d) b6

1 b2
1b2

2 b2
1b2

2 a4
1c2 c3

2 c3
2 b2

3 b2b4 a2
1c4 c6

Oh(/D2h) b6
1 b6

1 b3
2 a6

1 c3
2 a6

1 b2
3 b3

2 c3
2 a2

3

Oh(/D′
2h) b6

1 b2
1b2

2 b2
1b2

2 a2
1c2

2 a2
1c2

2 a6
1 b2

3 b2b4 c2c4 a2
3

Oh(/T) b4
1 b4

1 b2
2 c2

2 c2
2 c2

2 b4
1 b2

2 c2
2 c2

2

Oh(/D3d) b4
1 b2

2 b2
1b2 c2

2 a2
1c2 a4

1 b1b3 b4 c4 a1a3

Oh(/D4h) b3
1 b3

1 b1b2 a3
1 a1c2 a3

1 b3 b1b2 a1c2 a3

Oh(/O) b2
1 b2

1 b2
1 c2 c2 c2 b2

1 b2
1 c2 c2

Oh(/Th) b2
1 b2

1 b2 a2
1 c2 a2

1 b2
1 b2 c2 a2

1

Oh(/Td) b2
1 b2

1 b2 c2 a2
1 c2 b2

1 b2 a2
1 c2

Oh(/Oh) b1 b1 b1 a1 a1 a1 b1 b1 a1 a1

∑ 1
48

1
16

1
8

1
16

1
8

1
48

1
6

1
8

1
8

1
6

is shown in Appendix, was used for calculation. After the file was stored in a working directory

named “c:/fujita0/”, the following commands were input from the display of the Maple system:

>restart;
>read "c:/fujita0/markarac04.mpl";

The USCI-CF shown in Eq. 17 can be alternatively obtained by multiplying the multiplicity

vector of Eq. 14 and the subduction-multiplicity matrix shown in the right-hand side of Eq. 6 as
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follows:

(−1

2
,0,0,0,1,0,

1

2
,0,0,0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 S4

Oh(/C1) ↓ S4 12 0 0

Oh(/C2) ↓ S4 4 4 0

Oh(/C′
2) ↓ S4 6 0 0

Oh(/Cs) ↓ S4 6 0 0

Oh(/C′
s) ↓ S4 6 0 0

Oh(/Ci) ↓ S4 6 0 0

Oh(/C3) ↓ S4 4 0 0

Oh(/C4) ↓ S4 2 2 0

Oh(/S4) ↓ S4 2 0 4

Oh(/C3i) ↓ S4 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (2,0,0). (18)

The resulting vector corresponds to 2S4(/C1). Because the S4(/C1) is enantiospheric as well

as |S4| = 4 and |C1| = 1, Eq. 18 results in a USCI-CF c2
4, which is equal to Eq. 17.

The result of Eq. 18 is rationalized by considering the respective vectors contained in the

matrix of the right-hand side. Note that the vector (12,0,0) for Oh(/C1) ↓ S4 means 12S4(/C1),
the vector (6,0,0) for Oh(/C′

s) ↓ S4 means 6S4(/C1), and the vector (4,0,0) for Oh(/C3) ↓
S4 means 4S4(/C1). Hence, the multiplicity vector appearing in the left-hand side of Eq. 18

indicates:

−1

2
×12S4(/C1)+1×6S4(/C1)+

1

2
×4S4(/C1) = 2S4(/C1), (19)

which corresponds to the vector of Eq. 18.

Via Direct Subductions The procedure for the subductions of dominant representations (e.g.,

Eq. 6 for Oh) can be also applied to non-dominant representations according to Subsection 3.2

of [27]. This provides us with an alternative method of calculating USCI-CFs for non-dominant

representations. For example, several markaracters listed in the left part of Table 4 are subduced

into S4 (i.e., by selecting the values corresponding to C1, C2, and S4) and multiplied by the

inverse (M̃−1
S4

) so as to give the following result:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 S4

Oh(/D2) 12 12 0

Oh(/D′
2) 12 4 0

Oh(/C2v) 12 4 0

Oh(/C′
2v) 12 4 0

Oh(/C′′
2v) 12 0 0

Oh(/C2h) 12 4 0

Oh(/C′
2h) 12 0 0

Oh(/D3) 8 0 0

Oh(/C3v) 8 0 0

Oh(/D4) 6 6 0

Oh(/C4v) 6 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝
1
4 0 0

−1
4

1
2 0

0 −1
2 1

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 S4

Oh(/D2) ↓ S4 0 6 0

Oh(/D′
2) ↓ S4 2 2 0

Oh(/C2v) ↓ S4 2 2 0

Oh(/C′
2v) ↓ S4 2 2 0

Oh(/C′′
2v) ↓ S4 3 0 0

Oh(/C2h) ↓ S4 2 2 0

Oh(/C′
2h) ↓ S4 3 0 0

Oh(/D3) ↓ S4 2 0 0

Oh(/C3v) ↓ S4 2 0 0

Oh(/D4) ↓ S4 0 3 0

Oh(/C4v) ↓ S4 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c6
2

c2
2c2

4

c2
2c2

4

c2
2c2

4

c3
4

c2
2c2

4

c3
4

c2
4

c2
4

c3
2

c2c4

. (20)

The Oh(/C3v) ↓ S4-row in the matrix of the right-hand side of Eq. 20 is identical with the

vector of Eq. 18, which corresponds to 2S4(/C1). The corresponding USCI-CF c2
4 is collected

along with the other USCI-CFs in the rightmost part of Eq. 20. These USCI-CFs have appeared

as part of the S4-column in Table 5.
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3 Tables for the Point Group O

3.1 Mark Table, Inverse Mark Table, and USCI-CF Table of O
From the elements of Oh collected in Eq. 1, all of the proper rotations are selected to give the

point group O of order 24:

O =
{

I,C2(1),C2(2),C2(3);C3(1),C3(3),C3(2),C3(4),C
2
3(1),C

2
3(4),C

2
3(3),C

2
3(2),

C′
2(6),C

′
2(1),C

′
2(4),C

′
2(2),C

′
2(5),C

′
2(3),C

3
4(3),C4(3),C

3
4(1),C4(1),C4(2),C

3
4(2)

}
. (21)

The point group O has 11 subgroups up to conjugacy, which is selected as a non-redundant

set of subgroups (SSG):

SSGO =
{

C1,C2,C′
2,C3,C4,D2,D′

2,D3,D4,T,O
}

, (22)

where the subgroups are aligned in the ascending order of their orders. The respective subgroups

correspond to the coset representations O(/Gi) (Gi ∈ SSGO) according to the formulation of

the USCI approach [21]. The coset representations are characterized by their marks as collected

in respective rows of the mark table of O, as shown in Table 6. The inverse of the mark table

of O is shown in Table 7. Because the O group is isomorphic with the point group Td , Tables 6

and 7 contain the same values as found in the respective counterparts of Td , i.e., the mark table

of Td (Table A.10 of Appendix A in [21]) and its inverse (Table B.10 of Appendix B in [21]).

On the other hand, the USCI-CF table of O (Table 8), which has been obtained according to

Chapter 9 of [21], is different from the counterpart of of Td shown in Table E.10 of Appendix

E of [21], because the sphericity of each SI is hemispheric to be bd for O. For example, the

subduction O(/T) ↓ C4 corresponds to C4(/C2) (hemispheric) so as to give a USCI-CF b2,

while the corresponding subduction Td(/T) ↓ S4 corresponds to S4(/C2) (enantiospheric) so

as to give a USCI-CF c2 (note that the USCI-CF a2 of Table E.10 of Appendix E in [21] is

erroneous and should be corrected).

3.2 Considering Cyclic Subgroups of O
3.2.1 Markaracter Table and Inverse Markaracter Table of O

By selecting cyclic subgroups from the subgroups shown in Eq. 21 according to [26], we obtain

a non-redundant set of cyclic subgroups (SCSG) as follows:

SCSGO =
{

C1,C2,C′
2,C3,C4

}
. (23)

The respective subgroups correspond to the coset representations O(/Gi) (Gi ∈ SCSGO) called

dominant representations, which can be restricted to a set of elements corresponding to SCSGO.

They are collected to give the markaracter table of O (Table 9). The task of generating such a

markaracter table can be illustrated by the conversion of a mark table into a modified mark table,

where the elements for cyclic subgroups are collected in the upper left part [26]. Fortunately,

the mark table of O shown in Table 6 can be regarded as a modified mark table as it is. The

resulting upper left part of the modified mark table (divided by a horizontal and a vertical line)

indicates the corresponding markaracter table, which is shown separately in Table 9. Similarly,

the inverse (Table 7) is regarded as a modified form, from which the upper left part is separated

to give the corresponding inverse of the markaracter table (Table 10).
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Table 6: (Modified) Mark Table of O

MO C1 C2 C′
2 C3 C4 D2 D′

2 D3 D4 T O
O(/C1) 24 0 0 0 0 0 0 0 0 0 0

O(/C2) 12 4 0 0 0 0 0 0 0 0 0

O(/C′
2) 12 0 2 0 0 0 0 0 0 0 0

O(/C3) 8 0 0 2 0 0 0 0 0 0 0

O(/C4) 6 2 0 0 2 0 0 0 0 0 0

O(/D2) 6 6 0 0 0 6 0 0 0 0 0

O(/D′
2) 6 2 2 0 0 0 2 0 0 0 0

O(/D3) 4 0 2 1 0 0 0 1 0 0 0

O(/D4) 3 3 1 0 1 3 1 0 1 0 0

O(/T) 2 2 0 2 0 2 0 0 0 2 0

O(/O) 1 1 1 1 1 1 1 1 1 1 1

Table 7: (Modified) Inverse Mark Table of O

M−1
O

O O O O O O O O O O O
∑(/C1) (/C2) (/C′

2) (/C3) (/C4) (/D2) (/D′
2) (/D3) (/D4) (/T) (/O)

C1
1
24 0 0 0 0 0 0 0 0 0 0 1

24

C2 −1
8

1
4 0 0 0 0 0 0 0 0 0 1

8

C′
2 −1

4 0 1
2 0 0 0 0 0 0 0 0 1

4

C3 −1
6 0 0 1

2 0 0 0 0 0 0 0 1
3

C4 0 −1
4 0 0 1

2 0 0 0 0 0 0 1
4

D2
1
12 −1

4 0 0 0 1
6 0 0 0 0 0 0

D′
2

1
4 −1

4 −1
2 0 0 0 1

2 0 0 0 0 0

D3
1
2 0 −1 −1

2 0 0 0 1 0 0 0 0

D4 0 1
2 0 0 −1

2 −1
2 −1

2 0 1 0 0 0

T 1
6 0 0 −1

2 0 −1
6 0 0 0 1

2 0 0

O −1
2 0 1 1

2 0 1
2 0 −1 −1 −1

2 1 0
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Table 8: USCI-CF Table of O

C1 C2 C′
2 C3 C4 D2 D′

2 D3 D4 T O
O(/C1) b24

1 b12
2 b12

2 b8
3 b6

4 b6
4 b6

4 b4
6 b3

8 b2
12 b24

O(/C2) b12
1 b4

1b4
2 b6

2 b4
3 b2

2b2
4 b6

2 b2
2b2

4 b2
6 b3

4 b2
6 b12

O(/C′
2) b12

1 b6
2 b2

1b5
2 b4

3 b3
4 b3

4 b2
2b2

4 b2
3b6 b4b8 b12 b12

O(/C3) b8
1 b4

2 b4
2 b2

1b2
3 b2

4 b2
4 b2

4 b2b6 b8 b2
4 b8

O(/C4) b6
1 b2

1b2
2 b3

2 b2
3 b2

1b4 b3
2 b2b4 b6 b2b4 b6 b6

O(/D2) b6
1 b6

1 b3
2 b2

3 b3
2 b6

1 b3
2 b6 b3

2 b2
3 b6

O(/D′
2) b6

1 b2
1b2

2 b2
1b2

2 b2
3 b2b4 b3

2 b2
1b4 b2

3 b2b4 b6 b6

O(/D3) b4
1 b2

2 b2
1b2 b1b3 b4 b4 b2

2 b1b3 b4 b4 b4

O(/D4) b3
1 b3

1 b1b2 b3 b1b2 b3
1 b1b2 b3 b1b2 b3 b3

O(/T) b2
1 b2

1 b2 b2
1 b2 b2

1 b2 b2 b2 b2
1 b2

O(/O) b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1

∑ 1/24 1/8 1/4 1/3 1/4 0 0 0 0 0 0

Table 9: Markaracter Table of O

M̃O C1 C2 C′
2 C3 C4

O(/C1) 24 0 0 0 0

O(/C2) 12 4 0 0 0

O(/C′
2) 12 0 2 0 0

O(/C3) 8 0 0 2 0

O(/C4) 6 2 0 0 2

Table 10: Inverse Markaracter Table of O

M̃−1
O

O O O O O
∑(/C1) (/C2) (/C′

2) (/C3) (/C4)
C1

1
24 0 0 0 0 1

24

C2 −1
8

1
4 0 0 0 1

8

C′
2 −1

4 0 1
2 0 0 1

4

C3 −1
6 0 0 1

2 0 1
3

C4 0 −1
4 0 0 1

2
1
4
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3.2.2 Dominant USCI-CF Table of O

On a similar line to 2.1.3 (e.g., Eq. 6), a part of Table 9 specified for a given cyclic subgroup is

selected to generate a subduced markaracter, which is multiplied by the inverse of the markar-

acter of the cyclic subgroup so as to give the corresponding subduction-multiplicity matrix. The

resulting matrix generates a set of products of SIs in a similar way to the rightmost part of Eq.

6. This procedure is repeated for every cyclic subgroups so as to give the data for a dominant

USCI-CF table, e.g., Table 11 of the present case. Because the point group O is isomorphic with

the point group Td , the dominant USCI table of Td , which has been obtained by this procedure

[26, 28], can be converted into the dominant USCI-CF table of O by substituting the SI bd for

sd .

Table 11: Dominant USCI-CF Table of O

C1 C2 C′
2 C3 C4

O(/C1) b24
1 b12

2 b12
2 b8

3 b6
4

O(/C2) b12
1 b4

1b4
2 b6

2 b4
3 b2

2b2
4

O(/C′
2) b12

1 b6
2 b2

1b5
2 b4

3 b3
4

O(/C3) b8
1 b4

2 b4
2 b2

1b2
3 b2

4

O(/C4) b6
1 b2

1b2
2 b3

2 b2
3 b2

1b4

∑ 1/24 1/8 1/4 1/3 1/4

Table 12: Non-Dominant USCI-CF Table of O

C1 C2 C′
2 C3 C4

O(/D2) b6
1 b6

1 b3
2 b2

3 b3
2

O(/D′
2) b6

1 b2
1b2

2 b2
1b2

2 b2
3 b2b4

O(/D3) b4
1 b2

2 b2
1b2 b1b3 b4

O(/D4) b3
1 b3

1 b1b2 b3 b1b2

O(/T) b2
1 b2

1 b2 b2
1 b2

O(/O) b1 b1 b1 b1 b1

∑ 1/24 1/8 1/4 1/3 1/4

Alternatively, the dominant USCI-CF Table (e.g., Table 11) appears in the corresponding

USCI-CF Table (e.g., Table 8), as illustrated in the upper left part of Table 8.

3.2.3 Non-Dominant USCI-CF Table of O

Via Multiplicity Vectors Each row of Table 6, M̃O(/Gi) (Gi �∈ SCSGO), other than the dom-

inant representations is multiplied by the inverse M̃−1
O (Table 10) to give a multiplicity vec-

tor. The resulting multiplicity vector is capable of calculating USCIs (or USCI-CFs) for non-

dominant representations according to Theorem 4 of [27]. In a similar way to the case described
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for Oh, a maple program akin to the one listed in Appendix is written to obtain the full data of

Table 12 by starting from the dominant USCI-CF table (Table 11).

Obviously, the non-dominant USCI-CF table of O (Table 12) is contained as a part of the

USCI-CF table of O (Table 8).

Via Direct Subductions Each row of Table 6 other than the dominant representations, i.e.,

M̃O(/Gi) (Gi �∈ SCSGO), is also subduced into a cyclic subgroup G j. The resulting vector is

multiplied by the inverse M̃−1
G j

(e.g., for the S4 shown in Eq. 20) on a similar line to Eq. 20. The

resulting USCI-CFs are collected to give Table 12.

4 Enumeration Based on the Markaracter Method
The markaracter method proposed by us [26, 27] uses the concept of markaracters and related

concepts such as markaracter tables, their inverse, dominant USCI tables, multiplicity vectors,

and so on. Because these concepts were formulated without considering chirality fittingness

[26, 27], they have been extended into more general concepts with chirality fittingness, e.g.,

dominant USCIs into dominant USCI-CFs, by using the point groups Oh and O as examples

in the preceding sections. In this section, we first extend the previous formulation of the enu-

meration procedure (without chirality fittingness) adopted in the markaracter method [26, 27]

into a more general version with chirality fittingness. Then, the extended version is applied to

enumeration of cubanes of the Oh-symmetry.

4.1 Subduced Cycle Indices via Multiplicity Vectors
In combinatorial enumeration based on the USCI approach [21], such a non-dominant USCI-

CF as collected in Table 5 can be regarded as referring to a single orbit governed by a coset

representation G(/Gi) (e.g., Oh(/Gi) for Gi ∈ SSGOh and Gi �∈ SCSGOh). In other words,

the non-dominant USCI-CF can be in turn regarded as a subduced cycle index with chirality

fittingness (SCI-CF) for such a single orbit. As found by a careful examination, the method

of preparing non-dominant USCI-CFs (described in 2.2.2) can be applied to generate SCI-CF

for cases having two or more orbits (two or more coset representations), where a vector of

markaracters is a sum of vectors of markaracters at issue. It should be noted that the present

SCI-CFs are concerned with monomials for the SCSG (cf. Table 11), while the SCI-CFs defined

generally in the USCI approach [21] are concerned with monomials for the SSG (cf. Table 8).

They are not differentiated so long as such usage causes no confusion.

Suppose that a given markaracter M̃P is concerned with a permutation representation P of

the point group G:

M̃P = (δ1,δ2, . . . ,δs), (24)

where δi denotes the number of fixed objects of P on the action of the cyclic subgroup Gi
(∈ SCSGG). The markaracter M̃P is regarded as a vector, which is multiplied by the inverse

markaracter table of the group G, i.e., M̃−1
G (= (m ji)), so as to generate a multiplicity vector, Ã:

Ã = M̃PM̃−1
G = (α̃1, α̃2, . . . , α̃s), (25)
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which corresponds to the following sum of coset representations:

P =
s

∑
i=1

α̃sG(/Gi), (26)

where Gi ∈ SCSGG.

By referring to the subduction (Eq. 10) and the corresponding USCI-CF (Eq. 11), the for-

mulation described in Subsection of 3.3 of [27] is extended by considering chirality fittingness

so as to give the following subduced cycle index with chirality fittingness (SCI-CF):

SCI-CF(P ↓ G j;$d jk) =
s

∏
i=1

(
Z(G(/Gi) ↓ G j;$d jk)

)α̃i

=
s

∏
i=1

(
r j

∏
k=1

$
β (i j)

k
d jk

)α̃i

=
r j

∏
k=1

$
β ( j)

k
d jk

, (27)

where P ↓ G j ( j = 1,2, . . . ,s) represents a sum of G(/Gi) ↓ G j (corresponding to Eq. 26) and

β ( j)
k =

s

∑
i=1

α̃iβ
(i j)
k . (28)

In general, SCI-CFs are calculated by using Eq. 27, where such a Maple program as listed

in Appendix can be also used. For example, suppose that a vector of markaracters is given to

be (14,2,0,4,6,0,2,2,0,0), which is the sum of the M̃Oh(/C3v)- and M̃Oh(/C4v)-rows of Table 4.

Then, the following line:

m:= vector([14,2,0,4,6,0,2,2,0,0]); ndUSCIcf(m);

is added at the last of the Maple program listed in Appendix. Thereby, we obtain the following

SCI-CF for this case:

SCI-CF = (b14
1 ,b2

1b6
2,b

7
2,a

4
1c5

2,a
6
1c4

2,c
7
2,b

2
1b4

3,b
2
1b3

4,c2c3
4,c2c2

6), (29)

which is recognized to be calculated from the data of the dominant USCI-CF table (Table 3) via

a multiplicity vector. Obviously, this SCI-CF is also obtained from the data of the Oh(/C3v)-
and Oh(/C3v)-rows of Table 5.

4.2 Cycle Indices Based on Dominant USCI-CF Tables
The markaracter method formulated in Subsection 3.3 of [27] is concerned with dominant USCI

tables without chirality fittingness. This treatment is here extended to provide the markaracter

method with considering chirality fittingness in the light of the USCI approach [21].

Let a skeleton with n positions belong to a point group G, which is characterized by the

SCSG represented by Eq. 9. The n positions of the skeleton are governed by a permutation

representation P, which has a markaracter M̃P (Eq. 24). The markaracter M̃P is regarded as a

vector, which is multiplied by the inverse markaracter table of the group G, i.e., M̃−1
G (= (m ji))

so as to generate the corresponding multiplicity vector Ã (Eq. 25). Thereby, the corresponding

SCI-CF is obtained as shown in Eq. 27. The formulation (Eq. 74) described in Subsection of 3.3
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of [27] is extended by considering chirality fittingness so as to give the following cycle index

with chirality fittingness (CI-CF):

CI-CF(P;$d jk) =
s

∑
j=1

((
s

∑
i=1

m ji

)
SCI-CF(P ↓ G j;$d jk)

)

=
s

∑
j=1

((
s

∑
i=1

m ji

)
s

∏
i=1

(
Z(G(/Gi) ↓ G j;$d jk)

)α̃i

)

=
s

∑
j=1

⎛⎝(
s

∑
i=1

m ji

)
s

∏
i=1

(
r j

∏
k=1

$
β (i j)

k
d jk

)α̃i
⎞⎠

=
s

∑
j=1

((
s

∑
i=1

m ji

)
r j

∏
k=1

$
β ( j)

k
d jk

)
, (30)

where

β ( j)
k =

s

∑
i=1

α̃iβ
(i j)
k . (31)

Note that the summation of ∑s
i=1 m ji represents the sum of each G j-row (cf. the rightmost ∑-

column of Table 2).

It should be noted here that the CI-CF shown in Eq. 30 is identical with Def. 19.7 of [21],

because the monomials concerning non-cyclic subgroups vanish in the previous formulation for

Def. 19.7 of [21].

On the basis of the CI-CF shown in Eq. 30, Theorem 5 of [27], which is concerned with a CI

without chirality fittingness, can be extended to take account of chirality fittingness as follows:

Theorem 1 Suppose that the n positions of the above skeleton belonging to a point group G
accommodate n proligands selected from the following proligand inventory:

X = {x1,x2, . . . ,xv;p1,p2, . . .pv;p1,p2, . . . ,pv} (32)

where each x� represents an achiral proligand and each pair of p� and p� represents an

enantiomeric pair of chiral proligands. Consider isomers having θ� of x�, θ ′
� of p�, and θ ′′

�

of p�, which are characterized by the formula:

Wθ =
v

∏
� = 1

x
θ�
�

v

∏
� = 1

p
θ ′
�

�

v

∏
� = 1

p
θ ′′
�

� , (33)

where [θ ] represents a partition:

[θ ] :
v

∑
� = 1

θ� +
v

∑
� = 1

θ ′
� +

v

∑
� = 1

θ ′′
� = n. (34)

Let the symbol Aθ denote the number of such isomers as having [θ ]. Then a generating

function for the gross number of isomers is represented by:

∑
[θ ]

AθWθ = CI-CF(P;$d jk), (35)

-41-



where the CI-CF is represented by Eq. 30 and each $d jk (ad jk , bd jk , or cd jk) is substituted

by either one of the following ligand-inventory functions:

ad jk =
v

∑
� = 1

x
d jk
� (36)

bd jk =
v

∑
� = 1

x
d jk
� +

v

∑
� = 1

p
d jk
� +

v

∑
� = 1

p
d jk
� (37)

cd jk =
v

∑
� = 1

x
d jk
� +2

v

∑
� = 1

p
d jk/2

� p
d jk/2

� . (38)

It should be noted here that Theorem 1 is equivalent to Theorem 1 of [32] (the proligand

method), although they are different in the fact that the former theorem is concerned with con-

jugate cyclic subgroups, while the latter theorem is concerned with conjugacy classes.

4.3 Enumeration of Cubane Derivatives
4.3.1 Cubane Derivatives as Three-Dimensional Structural Isomers

The numbering of a cubane skeleton belonging to the Oh-point group is shown in 1 (Figure 1).

The 8 positions generates 48 permutations on the action of the 48 elements of Oh (Eq. 1), where

1 2

34

5

8

6

7

1

Figure 1: Numbering of the eight positions of cubane (1)

they construct a permutation representation P. The markaracter for characterizing P is obtained

by counting fixed positions on the action of each cyclic subgroup. For example, let us examine

the point group C3 = {I,C3(1),C2
3(1)}, which is concerned with the three-fold axis through the

positions 4 and 6 in the cubane skeleton (1). Permutations (as products of cycles) corresponding

to the C3 group are selected from P as follows:

I (1)(2)(3)(4)(5)(6)(7)(8)
C3(1) (4)(6)(1 8 3)(2 5 7)
C2

3(1) (4)(6)(1 3 8)(2 7 5)

fixed positions (4) and (6)

Because two positions 4 and 6 are fixed as designated by one-cycles, the value 2 is placed as

the C3-component of the markaracter M̃P. This procedure is repeated to cover all of the cyclic

subgroups of the SCSGOh (Eq. 3) so as to give the markaracter:

M̃P = (8,0,0,0,4,0,2,0,0,0), (39)
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which is identical with M̃Oh(/C3v) (Eq. 5). The corresponding multiplicity vector, which has

been calculated as shown in the M̃Oh(/C3v)-row of Table 4, is further applied to calculate the

corresponding non-dominant USCI-CF (the Oh(/C3v)-row of Table 5). Because the permuta-

tion representation P consists of a single orbit corresponding to Oh(/C3v), the USCI-CF itself

can be regarded as its SCI-CF. Hence, by using the data shown in the Oh(/C3v)-row and the

∑-row of Table 5, Eq. 30 is applied to this case so as to generate the following CI-CF:

CI-CF(P,$d) =
1

48
b8

1 +
1

16
b4

2 +
1

8
b4

2 +
1

16
c4

2 +
1

8
a4

1c2
2 +

1

48
c4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 +
1

8
c2

4 +
1

6
c2c6

=
1

48
b8

1 +
3

16
b4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 +
1

12
c4

2 +
1

6
c2c6 +

1

8
a4

1c2
2 +

1

8
c2

4. (40)

Let us consider an inventory of proligands:

L = {H,X,Y,Z; p,p; q,q}, (41)

where H, X, Y, and Z are achiral proligands in isolation, while p, q, p, and q are chiral proligands

in isolation. The pair of a letter (e.g., p) and its overlined counterpart (e.g., p) represents an

enantiomeric pair.

According to Eqs. 36–38 of Theorem 1, we use the following inventory functions:

ad = Hd +Xd +Yd +Zd (42)

bd = Hd +Xd +Yd +Zd +pd +pd +qd +qd (43)

cd = Hd +Xd +Yd +Zd +2pd/2pd/2 +2qd/2qd/2. (44)

In order to enumerate cubane derivatives as 3D-structural isomers, these ligand-inventory

functions (Eqs. 42–44) are introduced into the right-hand side of Eq. 40. The expansion of the

resulting function gives the following generating function:

g = H8 +H7X+H7Y+H7Z+
1

2
(H7p+H7p)+

1

2
(H7q+H7q)

+3H6X2 +3H6XY+3H6XZ+
3

2
(H6Xp+H6Xp)+

3

2
(H6Xq+H6Xq)

+3H6Y2 +3H6YZ+
3

2
(H6Yp+H6Yp)+

3

2
(H6Yq+H6Yq)+3H6Z2

+
3

2
(H6Zp+H6Zp)+

3

2
(H6Zq+H6Zq)+

3

2
(H6p2 +H6p2)+3H6pp

+
3

2
(H6pq+H6pq)+

3

2
(H6pq+

3

2
H6pq)+

3

2
(H6q2 +H6q2)+3H6qq

+3H5X3 +6H5X2Y+6H5X2Z+
7

2
(H5X2p+H5X2p)+

7

2
(H5X2q+H5X2q)

+6H5XY2 +10H5XYZ+ · · · (45)

The coefficient of each term HhXxYyZzppppqqqq in the generating function g (Eq. 45) rep-

resents the number of cubane derivatives as 3D-structural isomers having h of H, x of X, y of

Y, z of Z, p of p, p of p q of q, and q of q. Such a mode of substitution can be represented by

a substitution pattern [h,x,y,z; p, p,q,q], where we can presume h ≥ x ≥ y ≥ z; p ≥ q, p ≥ p,

and q ≥ q without loosing generality. For example, the substitution pattern [5,0,0,0;2,1,0,0]
corresponds to H5p2p, H5pp2, H5q2q, H5qq2, X5p2p, X5pp2, X5q2q, X5qq2, and so on. The

-43-



coefficients appearing in g (Eq. 45) are collected in a tabular form (column 3D of Tables 13 and

14). Each substitution pattern marked by an asterisk (e.g., [7,0,0,0;1,0,0,0]* for H7p) has the

counterpart of opposite chirality sense (e.g., [7,0,0,0;0,1,0,0]* for H7p) so that the correspond-

ing coefficient should be duplicated to generate the number of cubane derivatives.

4.3.2 Cubane Derivatives as Steric Isomers

To count cubane derivatives as steric isomers, the cubane skeleton (1) is considered to belong to

the point group O. The 8 positions of 1 generates 24 permutations on the action of the 24 ele-

ments of O (Eq. 21), where they construct a permutation representation P′. The markaracter for

characterizing P′ is obtained by counting fixed positions on the action of each cyclic subgroup:

M̃P′ = (8,0,0,2,0), (46)

which is identical of the O(/C3)-row of Table 9. Because the permutation representation P′
consists of a single orbit corresponding to O(/C3), the dominant USCI-CF itself can be re-

garded as its SCI-CF. Hence, by using the data shown in the O(/C3)-row and the ∑-row of

Table 11, Eq. 30 is applied to this case so as to generate the following CI-CF:

CI-CF(P′,bd) =
1

24
b8

1 +
1

8
b4

2 +
1

4
b4

2 +
1

3
b2

1b2
3 +

1

4
b2

4

=
1

24
b8

1 +
3

8
b4

2 +
1

3
b2

1b2
3 +

1

4
b2

4. (47)

Note that Eq. 47 contains the SI bd only. When the ligand inventory L (Eq. 41) is adopted to

count cubane derivatives as steric isomers, the ligand-inventory function bd (Eq. 43) is intro-

duced into the right-hand side of Eq. 47. Then, the expansion of the resulting function gives the

following generating function:

g′ = H8 +H7X+H7Y+H7Z+(H7p+H7p)+(H7q+H7q)+3H6X2 +3H6XY+3H6XZ

+(3H6Xp+3H6Xp)+(3H6Xq+3H6Xq)+3H6Y2 +3H6YZ+(3H6Yp+3H6Yp)
+(3H6Yq+3H6Yq)+3H6Z2 +(3H6Zp+3H6Zp)+(3H6Zq+3H6Zq)
+(3H6p2 +3H6p2)+3H6pp+(3H6pq+3H6pq)+(3H6pq+3H6pq)
+(3H6q2 +3H6q2)+3H6qq+3H5X3 +7H5X2Y+7H5X2Z+(7H5X2p+7H5X2p)
+(7H5X2q+7H5X2q)+7H5XY2 +14H5XYZ+ · · · (48)

where the coefficient of each term HhXxYyZzppppqqqq represents the number of cubane deriva-

tives as steric isomers having h of H, x of X, y of Y, z of Z, p of p, p of p q of q, and q of q. The

coefficients appearing in g′ (Eq. 48) are collected in a tabular form (column S in Tables 13 and

14). Each substitution pattern marked by an asterisk (e.g., [7,0,0,0;1,0,0,0]* for H7p) has the

counterpart (enantiomer) of opposite chirality sense (e.g., [7,0,0,0;0,1,0,0]* for H7p). The two

enantiomers are counted separately as steric isomers, as shown in Tables 13 and 14 (the column

S), which have been obtained by using Eq. 47.

4.3.3 Achiral Cubane Derivatives

Let A be the number of achiral derivatives and C be the number of enantiomeric pairs (a pair of

enantiomers is separately counted once). Then CI-CF(P,$d) (Eq. 40) is equal to A + C, while
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Table 13: Numbers of Cubane Derivatives with Proligands Selected from Four Achiral Proli-

gands and Two Enantiomorphic Pairs of Chiral Proligands (Part I)

pattern 3D S A E pattern 3D S A E

[8,0,0,0;0,0,0,0] 1 1 1 0
[7,1,0,0;0,0,0,0] 1 1 1 0 [7,0,0,0;1,0,0,0]* 1/2 1 0 1/2
[6,2,0,0;0,0,0,0] 3 3 3 0 [6,0,0,0;2,0,0,0]* 3/2 3 0 3/2
[6,1,1,0;0,0,0,0] 3 3 3 0 [6,1,0,0;1,0,0,0]* 3/2 3 0 3/2
[6,0,0,0;1,1,0,0] 3 3 3 0 [6,0,0,0;1,0,1,0]* 3/2 3 0 3/2
[5,3,0,0;0,0,0,0] 3 3 3 0 [5,0,0,0;3,0,0,0]* 3/2 3 0 3/2
[5,2,1,0;0,0,0,0] 6 7 5 1 [5,2,0,0;1,0,0,0]* 7/2 7 0 7/2
[5,1,0,0;2,0,0,0]* 7/2 7 0 7/2 [5,0,0,0;2,1,0,0]* 7/2 7 0 7/2
[5,0,0,0;2,0,1,0]* 7/2 7 0 7/2 [5,1,1,1;0,0,0,0] 10 14 6 4
[5,1,1,0;1,0,0,0]* 7 14 0 7 [5,1,0,0;1,1,0,0] 9 14 4 5
[5,1,0,0;1,0,1,0]* 7 14 0 7 [5,0,0,0;1,1,1,0]* 7 14 0 7
[4,4,0,0;0,0,0,0] 6 7 5 1 [4,0,0,0;4,0,0,0]* 7/2 7 0 7/2
[4,3,1,0;0,0,0,0] 10 13 7 3 [4,3,0,0;1,0,0,0]* 13/2 13 0 13/2
[4,1,0,0;3,0,0,0]* 13/2 13 0 13/2 [4,0,0,0;3,1,0,0]* 13/2 13 0 13/2
[4,0,0,0;3,0,1,0]* 13/2 13 0 13/2 [4,2,1,1;0,0,0,0] 22 35 9 13
[4,2,1,0;1,0,0,0]* 35/2 35 0 35/2 [4,2,0,0;1,1,0,0] 23 35 11 12
[4,2,0,0;1,0,1,0]* 35/2 35 0 35/2 [4,1,1,0;2,0,0,0]* 35/2 35 0 35/2
[4,1,0,0;2,1,0,0]* 35/2 35 0 35/2 [4,1,0,0;2,0,1,0]* 35/2 35 0 35/2
[4,0,0,0;2,1,1,0]* 35/2 35 0 35/2 [4,1,1,1;1,0,0,0]* 35 70 0 35
[4,1,1,0;1,1,0,0] 41 70 12 29 [4,1,0,0;1,1,1,0]* 35 70 0 35
[4,0,0,0;1,1,1,1] 40 70 10 30
[3,3,2,0;0,0,0,0] 17 24 10 7 [3,3,0,0;2,0,0,0]* 12 24 0 12
[3,2,0,0;3,0,0,0]* 12 24 0 12 [3,0,0,0;3,2,0,0]* 12 24 0 12
[3,0,0,0;3,0,2,0]* 12 24 0 12 [3,3,1,1;0,0,0,0] 30 48 12 18
[3,3,1,0;1,0,0,0]* 24 48 0 24 [3,3,0,0;1,1,0,0] 28 48 8 20
[3,3,0,0;1,0,1,0]* 24 48 0 24 [3,1,1,0;3,0,0,0]* 24 48 0 24
[3,1,0,0;3,1,0,0]* 24 48 0 24 [3,1,0,0;3,0,1,0]* 24 48 0 24
[3,0,0,0;3,1,1,0]* 24 48 0 24 [3,0,0,0;3,0,1,1]* 24 48 0 24
[3,2,2,1;0,0,0,0] 42 70 14 28 [3,2,2,0;1,0,0,0]* 35 70 0 35
[3,2,0,0;2,1,0,0]* 35 70 0 35 [3,2,0,0;2,0,1,0]* 35 70 0 35
[3,0,0,0;2,2,1,0]* 35 70 0 35 [3,0,0,0;2,1,2,0]* 35 70 0 35
[3,2,1,1;1,0,0,0]* 70 140 0 70 [3,2,1,0;1,1,0,0] 78 140 16 62
[3,2,1,0;1,0,1,0]* 70 140 0 70 [3,2,0,0;1,1,1,0]* 70 140 0 70
[3,0,0,0;2,1,1,1]* 70 140 0 70 [3,1,1,1;1,1,0,0] 152 280 24 128
[3,1,1,1;1,0,1,0]* 140 280 0 140 [3,1,1,0;1,1,1,0]* 140 280 0 140
[3,1,0,0;1,1,1,1] 144 280 8 136
[2,2,2,2;0,0,0,0] 68 114 22 46 [2,2,2,0;2,0,0,0]* 57 114 0 57
[2,2,0,0;2,2,0,0] 64 114 14 50 [2,2,0,0;2,0,2,0]* 57 114 0 57
[2,0,0,0;2,2,2,0]* 57 114 0 57 [2,2,2,1;1,0,0,0]* 105 210 0 105
[2,2,2,0;1,1,0,0] 118 210 26 92 [2,2,1,1;2,0,0,0]* 105 210 0 105
[2,2,1,0;2,1,0,0]* 105 210 0 105 [2,2,1,0;2,0,1,0]* 105 210 0 105
[2,2,0,0;2,1,1,0]* 105 210 0 105 [2,1,1,0;2,2,0,0] 111 210 12 99
[2,1,1,0;2,0,2,0]* 105 210 0 105 [2,1,0,0;2,2,1,0]* 105 210 0 105
[2,1,0,0;2,1,2,0]* 105 210 0 105 [2,0,0,0;2,2,1,1] 113 210 16 97
[2,0,0,0;2,1,2,1]* 105 210 0 105 [2,2,1,1;1,1,0,0] 222 420 24 198
[2,2,1,1;1,0,1,0]* 210 420 0 210 [2,2,1,0;1,1,1,0]* 210 420 0 210
[2,2,0,0;1,1,1,1] 224 420 28 196 [2,1,1,1;2,1,0,0]* 210 420 0 210
[2,1,1,1;2,0,1,0]* 210 420 0 210 [2,1,1,0;2,1,1,0]* 210 420 0 210
[2,1,1,0;2,0,1,1]* 210 420 0 210 [2,1,0,0;2,1,1,1]* 210 420 0 210
[2,1,1,1;1,1,1,0]* 420 840 0 420 [2,1,1,0;1,1,1,1] 432 840 24 408
[1,1,1,1;1,1,1,1] 864 1680 48 816

These data appear as the coefficients of monomials in respective generating functions: column 3D
(Eq. 45), column S (Eq. 48), column A (Eq. 49), and column E (Eq. 50). Each substitution pattern
marked by an asterisk has the counterpart of opposite chirality sense so that the corresponding
coefficient should be duplicated to generate the number of cubane derivatives.
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Table 14: Numbers of Cubane Derivatives with Proligands Selected from Four Achiral Proli-

gands and Two Enantiomorphic Pairs of Chiral Proligands (Part II)

pattern 3D S A E pattern 3D S A E

[0,0,0,0;8,0,0,0]* 1/2 1 0 1/2
[0,0,0,0;7,1,0,0]* 1/2 1 0 1/2 [0,0,0,0;7,0,1,0]* 1/2 1 0 1/2
[1,0,0,0;7,0,0,0]* 1/2 1 0 1/2
[0,0,0,0;6,2,0,0]* 3/2 3 0 3/2 [0,0,0,0;6,0,2,0]* 3/2 3 0 3/2
[2,0,0,0;6,0,0,0]* 3/2 3 0 3/2 [0,0,0,0;6,1,1,0]* 3/2 3 0 3/2
[1,0,0,0;6,1,0,0]* 3/2 3 0 3/2 [1,0,0,0;6,0,1,0]* 3/2 3 0 3/2
[1,1,0,0;6,0,0,0]* 3/2 3 0 3/2
[0,0,0,0;5,3,0,0]* 3/2 3 0 3/2 [0,0,0,0;5,0,3,0]* 3/2 3 0 3/2
[3,0,0,0;5,0,0,0]* 3/2 3 0 3/2 [0,0,0,0;5,2,1,0]* 7/2 7 0 7/2
[0,0,0,0;5,1,2,0]* 7/2 7 0 7/2 [1,0,0,0;5,2,0,0]* 7/2 7 0 7/2
[1,0,0,0;5,0,2,0]* 7/2 7 0 7/2 [2,0,0,0;5,1,0,0]* 7/2 7 0 7/2
[2,0,0,0;5,0,1,0]* 7/2 7 0 7/2 [2,1,0,0;5,0,0,0]* 7/2 7 0 7/2
[0,0,0,0;5,1,1,1]* 7 14 0 7 [1,0,0,0;5,1,1,0]* 7 14 0 7
[1,0,0,0;5,0,1,1]* 7 14 0 7 [1,1,0,0;5,1,0,0]* 7 14 0 7
[1,1,0,0;5,0,1,0]* 7 14 0 7 [1,1,1,0;5,0,0,0]* 7 14 0 7
[0,0,0,0;4,4,0,0] 6 7 5 1 [0,0,0,0;4,0,4,0]* 7/2 7 0 7/2
[0,0,0,0;4,3,1,0]* 13/2 13 0 13/2 [0,0,0,0;4,1,3,0]* 13/2 13 0 13/2
[1,0,0,0;4,3,0,0]* 13/2 13 0 13/2 [1,0,0,0;4,0,3,0]* 13/2 13 0 13/2
[0,0,0,0;4,2,2,0]* 11 22 0 11 [2,0,0,0;4,2,0,0]* 11 22 0 11
[2,0,0,0;4,0,2,0]* 11 22 0 11 [2,2,0,0;4,0,0,0]* 11 22 0 11
[0,0,0,0;4,2,1,1]* 35/2 35 0 35/2 [0,0,0,0;4,1,2,1]* 35/2 35 0 35/2
[1,0,0,0;4,2,1,0]* 35/2 35 0 35/2 [1,0,0,0;4,2,0,1]* 35/2 35 0 35/2
[1,1,0,0;4,2,0,0]* 35/2 35 0 35/2 [1,1,0,0;4,0,2,0]* 35/2 35 0 35/2
[2,0,0,0;4,1,1,0]* 35/2 35 0 35/2 [2,1,0,0;4,1,0,0]* 35/2 35 0 35/2
[2,1,0,0;4,0,1,0]* 35/2 35 0 35/2 [2,1,1,0;4,0,0,0]* 35/2 35 0 35/2
[1,0,0,0;4,1,1,1]* 35 70 0 35 [1,1,0,0;4,1,1,0]* 35 70 0 35
[1,1,0,0;4,0,1,1]* 35 70 0 35 [1,1,1,0;4,1,0,0]* 35 70 0 35
[1,1,1,0;4,0,1,0]* 35 70 0 35 [1,1,1,1;4,0,0,0]* 35 70 0 35
[0,0,0,0;3,3,2,0]* 12 24 0 12 [2,0,0,0;3,3,0,0] 15 24 6 9
[0,0,0,0;3,3,1,1] 30 48 12 18 [1,0,0,0;3,3,1,0]* 24 48 0 24
[1,1,0,0;3,3,0,0] 24 48 0 24 [0,0,0,0;3,2,2,1]* 35 70 0 35
[1,0,0,0;3,2,2,0]* 35 70 0 35 [2,0,0,0;3,2,1,0]* 35 70 0 35
[2,1,0,0;3,2,0,0]* 35 70 0 35 [2,1,0,0;3,0,2,0]* 35 70 0 35
[2,2,1,0;3,0,0,0]* 35 70 0 35 [1,0,0,0;3,2,1,1]* 70 140 0 70
[1,1,0,0;3,2,1,0]* 70 140 0 70 [1,1,1,0;3,2,0,0]* 70 140 0 70
[1,1,1,0;3,0,2,0]* 70 140 0 70 [2,0,0,0;3,1,1,1]* 70 140 0 70
[2,1,0,0;3,1,1,0]* 70 140 0 70 [2,1,0,0;3,0,1,1]* 70 140 0 70
[2,1,1,0;3,1,0,0]* 70 140 0 70 [2,1,1,0;3,0,1,0]* 70 140 0 70
[2,1,1,1;3,0,0,0]* 70 140 0 70 [1,1,0,0;3,1,1,1]* 140 280 0 140
[1,1,1,0;3,1,1,0]* 140 280 0 140 [1,1,1,0;3,0,1,1]* 140 280 0 140
[1,1,1,1;3,1,0,0]* 140 280 0 140 [1,1,1,1;3,0,1,0] * 140 280 0 140
[0,0,0,0;2,2,2,2] 66 114 18 48 [1,0,0,0;2,2,2,1]* 105 210 0 105
[1,1,0,0;2,2,2,0]* 105 210 0 105 [1,1,0,0;2,2,1,1] 210 420 0 210
[1,1,1,0;2,2,1,0]* 210 420 0 210 [1,1,1,0;2,1,2,0]* 210 420 0 210
[1,1,1,1;2,2,0,0] 222 420 24 198 [1,1,1,1;2,0,2,0]* 210 420 0 210
[1,1,1,0;2,1,1,1]* 420 840 0 420 [1,1,1,1;2,1,1,0]* 420 840 0 420
[1,1,1,1;2,0,1,1]* 420 840 0 420

See the table footnote of Table 13.
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the CI-CF(P′,bd) (Eq. 47) is equal to A + 2C. As a result, the CI-CF(a)(P,$d) for obtaining

the number of achiral derivatives is evaluated to be 2CI-CF(P,$d)− CI-CF(P′,bd) because

2(A+C)− (A+2C) = A. Hence, we obtain the following equation:

CI-CF(a)(P,$d) = 2CI-CF(P,$d)−CI-CF(P′,bd)

=
1

6
c4

2 +
1

3
c2c6 +

1

4
a4

1c2
2 +

1

4
c2

4. (49)

As found by comparing between Eq. 40 and Eq. 49, only the terms for improper rotations

appearing in Eq. 40 are adopted and multiplied by two to give Eq. 49. In other words, Eq. 49

contains no bd . This feature holds true generally.

When the ligand inventory L (Eq. 41) is adopted to count achiral cubane derivatives, the

ligand-inventory functions ad and cd (Eqs. 42 and 44) are introduced into the right-hand side of

Eq. 49. Then, the expansion of the resulting function gives a generating function, from which

the coefficient of each term is collected to give column A in Tables 13 and 14. The column A is

also obtained from 2 times column 3D minus column S, i.e., 2g−g′ (cf. Eqs. 45 and 48).

4.3.4 Enantiomeric Pairs of Cubane Derivatives

On a similar line to the preceding paragraphs, the CI-CF(c)(P,$d) for obtaining the number of

enantiomeric pairs is evaluated to be CI-CF(P′,bd)−CI-CF(P,$d) because (A + 2C)− (A +
C) = C. Hence, we obtain the following equation:

CI-CF(e)(P,$d) = CI-CF(P′,bd)−CI-CF(P,$d)

=
1

48
b8

1 +
3

16
b4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 −
1

12
c4

2 −
1

6
c2c6 − 1

8
a4

1c2
2 −

1

8
c2

4. (50)

As found by comparing between Eq. 40 and Eq. 50, the plus signs of the terms for improper

rotations appearing in Eq. 40 are all changed into minus signs in Eq. 50. As found easily, this

feature holds true generally.

When the ligand inventory L (Eq. 41) is adopted to count enantiomeric pairs of chiral cubane

derivatives, the ligand-inventory functions ad , bd , and cd (Eqs. 42–44) are introduced into the

right-hand side of Eq. 50. Then, the expansion of the resulting function gives a generating

function, from which the coefficient of each term is collected to give column E in Tables 13 and

14. The column E is also obtained from column S minus column 3D, i.e., g′ − g (cf. Eq. 48

minus Eq. 45).

4.3.5 Cubane Derivatives with Ligands as Graphs

When chiral proligands p/p and q/q are regarded as graphs p̂ and q̂, the ligand inventory L (Eq.

41) is reduced into

L′ = {H,X,Y,Z, p̂, q̂} (51)

Eq. 40 is degenerated to give:

CI(P,sd) =
1

48
s8

1 +
3

16
s4

2 +
1

6
s2

1s2
3 +

1

8
s2

4 +
1

12
s4

2 +
1

6
s2c6 +

1

8
s4

1s2
2 +

1

8
s2

4. (52)

Eq. 47 is also degenerated to give:

CI(P′,sd) =
1

24
s8

1 +
3

8
s4

2 +
1

3
s2

1s2
3 +

1

4
s2

4. (53)
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Table 15: Numbers of Cubane Derivatives with Ligands as Graphs

pattern P-G P-S P-A P-E pattern P-G P-S P-A P-E

[8,0,0,0;0,0] 1 1 1 0
[7,1,0,0;0,0] 1 1 1 0 [7,0,0,0;1,0] 1 1 1 0
[6,2,0,0;0,0] 3 3 3 0 [6,0,0,0;2,0] 3 3 3 0
[6,1,1,0;0,0] 3 3 3 0 [6,1,0,0;1,0] 3 3 3 0
[6,0,0,0;1,1] 3 3 3 0
[5,3,0,0;0,0] 3 3 3 0 [5,0,0,0;3,0] 3 3 3 0
[5,2,1,0;0,0] 6 7 5 1 [5,2,0,0;1,0] 6 7 5 1
[5,1,0,0;2,0] 6 7 5 1 [5,0,0,0;2,1] 6 7 5 1
[5,1,1,1;0,0] 10 14 6 4 [5,1,1,0;1,0] 10 14 6 4
[5,1,0,0;2,0] 6 7 5 1 [5,1,0,0;1,1] 10 14 6 4
[4,4,0,0;0,0] 6 7 5 1 [4,0,0,0;4,0] 6 7 5 1
[4,3,1,0;0,0] 10 13 7 3 [4,3,0,0;1,0] 10 13 7 3
[4,1,0,0;3,0] 10 13 7 3 [4,0,0,0;3,1] 10 13 7 3
[4,2,1,1;0,0] 22 35 9 13 [4,2,1,0;1,0] 22 35 9 13
[4,2,0,0;1,1] 22 35 9 13 [4,1,1,0;2,0] 22 35 9 13
[4,1,0,0;2,1] 22 35 9 13 [4,1,1,1;1,0] 38 70 6 32
[4,1,1,0;2,0] 22 35 9 13 [4,1,0,0;2,1] 22 35 9 13
[4,0,0,0;2,2] 16 22 10 6

These data appear as the coefficients of monomials in respective generating functions:
column P-G for Eq. 52, column P-S for Eq. 53, column P-A for Eq. 54, and column
P-E for Eq. 55.

Eq. 49 is also degenerated to give:

CI(a)(P,sd) =
1

6
s4

2 +
1

3
s2s6 +

1

4
s4

1s2
2 +

1

4
s2

4. (54)

Eq. 50 is also degenerated to give:

CI(e)(P,sd) =
1

48
s8

1 +
3

16
s4

2 +
1

6
s2

1s2
3 +

1

8
s2

4 −
1
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s4

2 −
1

6
s2s6 − 1

8
s4

1s2
2 −

1

8
s2

4. (55)

In accord with Eq. 51, Eqs. 42–42 are replaced by the following ligand-inventory function:

sd = Hd +Xd +Yd +Zd + p̂d + q̂d. (56)

The ligand-inventory function represented by Eq. 56 is introduced into Eq. 52, Eq. 53, Eq.

54, and Eq. 55, respectively. The resulting equations are expanded to give respective functions,

whose coefficients are partly listed in Table 15, i.e., column P-G for Eq. 52, column P-S for Eq.

53, column P-A for Eq. 54, and column P-E for Eq. 55.

The coefficient of each term HhXxYyZzp̂ p̂q̂q̂ in each respective generating function repre-

sents the number of cubane derivatives having h of H, x of X, y of Y, z of Z, p̂ of p̂, and q̂ of q̂.

Such a mode of substitution can be represented by a substitution pattern [h,x,y,z; p̂, q̂], where

we can presume h ≥ x ≥ y ≥ z and p̂ ≥ q̂ without loosing generality.

5 Illustration of Enumerated Cubane Derivatives
The data collected in Tables 13 and 14 using the ligand inventory L = {H, X, Y, Z, p, p, q, q}
are parts of those collected in Tables 3 and 4 of Part I of the present series, which have been

calculating by using a ligand inventory {H, A, W, X, Y, Z, p, p, q, q}.

-48-



As examples of cubane derivatives without chiral proligands, cubane derivatives charac-

terized by [5,2,1,0;0,0,0,0] (H5A2B in place of the present H5X2Y) and by [4,3,1,0;0,0,0,0]

(H4A3B in place of the present H4X3Y) have been already illustrated in Part I of the present

series. As examples of cubane derivatives with chiral proligands, cubane derivatives character-

ized by [6,0,0,0;2,0,0,0] (H6p2) or [6,0,0,0;0,2,0,0] (H6p2) and by [6,0,0,0;1,1,0,0] (H6pp) have

been also illustrated in Part I of the present series.

Additional examples are useful to understand the methodology of stereochemistry. Figure 2

illustrates cubane derivatives with the formula H5XYZ, where each pair of cubane derivatives

linked by an underbrace indicates an enantiomeric pair. The corresponding [5,1,1,1;0,0,0,0]-row

of Table 13 indicates that there exist 10 derivatives as 3D-structural isomers and 14 derivatives

as Steric isomers; as well as 6 achiral derivatives and 4 enantiomeric pairs of chiral derivatives.

The value 10 for 3D-structural isomers is the sum of the value 4 for enantiomeric pairs (i.e., 2
(2a/2b), 3 (3a/3b), 4 (4a/4b), and 5 (5a/5b)) and the value 6 for achiral derivatives (i.e., 6, 7, 8,

9, 10, and 11). Each of the derivatives collected in Figure 2 is counted once as a steric isomer

so as to give the value 14, which is consistent to the column S of the [5,1,1,1;0,0,0,0]-row in

Table 13.

Let us next consider cubane derivatives with the formula H5Xpp, the results of which are

collected in the [5,1,0,0;1,1,0,0]-row of Table 13. In the conventional methodology of stereo-

chemistry, such ligands p and p as contained in H5Xpp are regarded as being different in the

same way as the ligands Y and Z of H5XYZ (cf. Figure 2). The methodology has been succes-

sively used in the priority rules of the Cahn-Ingold-Prelog (CIP) system [33, 34]. Because the

methodology is inconsistent with actual geometric phenomena, the concept of pseudoasymme-

try has been used to rationalize such inconsistency [35].

The present enumeration results collected in Figure 3 casts a new light on the inconsistency

between the conventional methodology and geometric phenomena. The [5,1,0,0;1,1,0,0]-row

of Table 13 indicates that there exist 9 derivatives as 3D-structural isomers and 14 derivatives

as Steric isomers; as well as 4 achiral derivatives and 5 enantiomeric pairs of chiral derivatives.

The value 9 for 3D-structural isomers is the sum of the value 5 for enantiomeric pairs (i.e., 16
(16a/16b), 17 (17a/17b), 18 (18a/18b), 19 (19a/19b), and 20 (20a/20b)) and the value 4 for

achiral derivatives (i.e., 12, 13, 14, and 15). Each of the derivatives collected in Figure 2 is

counted once as a steric isomer so as to give the value 14, which is consistent to the column S

of the [5,1,0,0;1,1,0,0]-row of Table 13.

Pseudesymmetry is observed in a pair of 12 and 13, which are both achiral derivatives.

When our attention is focused on the carbon atom attached by the proligand X, this carbon can

be regarded as exhibiting pseudoasymmetry. Thus, the permutation of p and p in 12 causes

isomerization into 13, where both 12 and 13 are achiral and they are diastereomeric (not enan-

tiomeric). Compare the diastereomeric pair of 12 and 13 (Figure 3) with the enantiomeric pair

of 2a and 2b (Figure 2) which are interchangeable by the permutation of Y and Z. The di-

astereomeric pair of 14 and 15 (Figure 3) and the enantiomeric pair of 3a and 3b (Figure 2)

can be discussed on a similar line. Obviously, the concept of pseudoasymmetry stems from an

implicit equalization of the permutations of two types (between p and p and between Y and Z),

although the geometric meanings of the permutations are different from each other. Geomet-

rically speaking, the proligands p and p in 12 (or 13) are equivalent under the point group Oh,

while the proligands Y and Z in 3a and 3b are non-equivalent under the the point group Oh.

The cubane derivatives collected in Figure 3 can be further categorized into stereoisomers,

which are categorized into a common graph (constitutional isomers), as surrounded by a frame,

i.e., a set of 12 and 13, a set of 14 and 15, a set of 16 (16a/16b) and 17 (17a/17b), a set of 18
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Figure 2: Cubane derivatives with H5XYZ ([5,1,1,1;0,0,0,0])

(18a/18b), a set of 19 (19a/19b), and a set of 20 (20a/20b). Because each set surrounded by a

frame corresponds to a common graph by putting p̂ = p = p, this feature is rationalized in the

[5,1,0,0;2,0]-column (H5Xp̂2) of Table 15. The value 6 of the P-G column is consistent with the

number of inequivalent stereoisomers, which is found as the number of frames corresponding

to the respective graphs.

6 Conclusions
The markaracter method proposed by us [26, 27] is applied to combinatorial enumeration of

cubane derivatives by staring from a cubane skeleton of the point group Oh. After the markar-

acter table of Oh, its inverse, the dominant USCI-CF (unit subduced cycle indices with chirality
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Figure 3: Cubane derivatives with H5Xpp ([5,1,0,0;1,1,0,0])

fittingness) table of Oh, and the non-dominant USCI-CF table of Oh are prepared, the markar-

acter method is applied to generate SCI-CFs (subduced cycle indices with chirality fittingness),

which are in turn used to prepare a CI-CF (cycle indices with chirality fittingness). Thereby,

cubane derivatives with chiral and achiral proligands are counted as 3D structural isomers. The

markaracter table and related tables for the point group O are prepared so as to count cubane

derivatives as steric isomers. These results are further used to count achiral cubane derivatives

and enantiomeric pairs.
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Appendix

Maple Program for Generating the Data of Table 5
#markarac04.mpl
#USCI-CFs for non-dominant part
#read "c:/fujita0/markarac04.mpl";

#with(linalg); #already loaded Maple 9.5
MOh := matrix(10,10,
[[48,0,0,0,0,0,0,0,0,0],[24,8,0,0,0,0,0,0,0,0],
[24,0,4,0,0,0,0,0,0,0],[24,0,0,8,0,0,0,0,0,0],
[24,0,0,0,4,0,0,0,0,0],[24,0,0,0,0,24,0,0,0,0],
[16,0,0,0,0,0,4,0,0,0],[12,4,0,0,0,0,0,4,0,0],
[12,4,0,0,0,0,0,0,4,0],[8,0,0,0,0,8,2,0,0,2]]);

InvMOh := matrix(10,10,
[[1/48,0,0,0,0,0,0,0,0,0],[-1/16,1/8,0,0,0,0,0,0,0,0],
[-1/8,0,1/4,0,0,0,0,0,0,0],[-1/16,0,0,1/8,0,0,0,0,0,0],
[-1/8,0,0,0,1/4,0,0,0,0,0],[-1/48,0,0,0,0,1/24,0,0,0,0],
[-1/12,0,0,0,0,0,1/4,0,0,0],[0,-1/8,0,0,0,0,0,1/4,0,0],
[0,-1/8,0,0,0,0,0,0,1/4,0],
[1/12,0,0,0,0,-1/6,-1/4,0,0,1/2]]);

ndUSCIcf := proc(m::vector)
local v, USCIcf;
v:=evalm(m &* InvMOh);
USCIcf:=vector(10);
USCIcf[1]:=sort(
(b1ˆ(48*v[1]))*(b1ˆ(24*v[2]))*(b1ˆ(24*v[3]))*(b1ˆ(24*v[4]))*
(b1ˆ(24*v[5]))*(b1ˆ(24*v[6]))*(b1ˆ(16*v[7]))*(b1ˆ(12*v[8]))*
(b1ˆ(12*v[9]))*(b1ˆ(8*v[10])),[b1,b2]);
USCIcf[2]:=sort(
(b2ˆ(24*v[1]))*(b1ˆ(8*v[2]))*(b2ˆ(8*v[2]))*(b2ˆ(12*v[3]))*
(b2ˆ(12*v[4]))*(b2ˆ(12*v[5]))*(b2ˆ(12*v[6]))*
(b2ˆ(8*v[7]))*(b1ˆ(4*v[8]))*(b2ˆ(4*v[8]))*
(b1ˆ(4*v[9]))*(b2ˆ(4*v[9]))*(b2ˆ(4*v[10])),[b1,b2]);
USCIcf[3]:=sort(
(b2ˆ(24*v[1]))*(b2ˆ(12*v[2]))*(b1ˆ(4*v[3]))*(b2ˆ(10*v[3]))*
(b2ˆ(12*v[4]))*(b2ˆ(12*v[5]))*(b2ˆ(12*v[6]))*
(b2ˆ(8*v[7]))*(b2ˆ(6*v[8]))*(b2ˆ(6*v[9]))*
(b2ˆ(4*v[10])),[b1,b2]);
USCIcf[4]:=sort(
(c2ˆ(24*v[1]))*(c2ˆ(12*v[2]))*(c2ˆ(12*v[3]))*
(a1ˆ(8*v[4]))*(c2ˆ(8*v[4]))*(c2ˆ(12*v[5]))*
(c2ˆ(12*v[6]))*(c2ˆ(8*v[7]))*(c2ˆ(6*v[8]))*
(c2ˆ(6*v[9]))*(c2ˆ(4*v[10])),[a1,c2]);
USCIcf[5]:=sort(
(c2ˆ(24*v[1]))*(c2ˆ(12*v[2]))*(c2ˆ(12*v[3]))*
(c2ˆ(12*v[4]))*(a1ˆ(4*v[5]))*(c2ˆ(10*v[5]))*
(c2ˆ(12*v[6]))*(c2ˆ(8*v[7]))*(c2ˆ(6*v[8]))*
(c2ˆ(6*v[9]))*(c2ˆ(4*v[10])),[a1,c2]);
USCIcf[6]:=sort(
(c2ˆ(24*v[1]))*(c2ˆ(12*v[2]))*(c2ˆ(12*v[3]))*
(c2ˆ(12*v[4]))*(c2ˆ(12*v[5]))*(a1ˆ(24*v[6]))*
(c2ˆ(8*v[7]))*(c2ˆ(6*v[8]))*
(c2ˆ(6*v[9]))*(a1ˆ(8*v[10])),[a1,c2]);
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USCIcf[7]:=sort(
(b3ˆ(16*v[1]))*(b3ˆ(8*v[2]))*(b3ˆ(8*v[3]))*
(b3ˆ(8*v[4]))*(b3ˆ(8*v[5]))*(b3ˆ(8*v[6]))*
(b1ˆ(4*v[7]))*(b3ˆ(4*v[7]))*
(b3ˆ(4*v[8]))*(b3ˆ(4*v[9]))*
(b1ˆ(2*v[10]))*(b3ˆ(2*v[10])),[b1,b2,b3]);
USCIcf[8]:=sort(
(b4ˆ(12*v[1]))*(b2ˆ(4*v[2]))*(b4ˆ(4*v[2]))*
(b4ˆ(6*v[3]))*(b4ˆ(6*v[4]))*(b4ˆ(6*v[5]))*
(b4ˆ(6*v[6]))*(b4ˆ(4*v[7]))*
(b1ˆ(4*v[8]))*(b4ˆ(2*v[8]))*
(b2ˆ(2*v[9]))*(b4ˆ(2*v[9]))*
(b4ˆ(2*v[10])),[b1,b2,b3,b4]);
USCIcf[9]:=sort(
(c4ˆ(12*v[1]))*(c2ˆ(4*v[2]))*(c4ˆ(4*v[2]))*
(c4ˆ(6*v[3]))*(c4ˆ(6*v[4]))*(c4ˆ(6*v[5]))*
(c4ˆ(6*v[6]))*(c4ˆ(4*v[7]))*
(c2ˆ(2*v[8]))*(c4ˆ(2*v[8]))*
(a1ˆ(4*v[9]))*(c4ˆ(2*v[9]))*
(c4ˆ(2*v[10])),[a1,c2,c4]);
USCIcf[10]:=sort(
(c6ˆ(8*v[1]))*(c6ˆ(4*v[2]))*(c6ˆ(4*v[3]))*
(c6ˆ(4*v[4]))*(c6ˆ(4*v[5]))*(a3ˆ(8*v[6]))*
(c2ˆ(2*v[7]))*(c6ˆ(2*v[7]))*
(c6ˆ(2*v[8]))*(c6ˆ(2*v[9]))*
(a1ˆ(2*v[10]))*(a3ˆ(2*v[10])),[a1,a3,c2,c6]);

printf("%a, %a, %a, %a, %a, %a, %a, %a, %a, %a",
USCIcf[1],USCIcf[2],USCIcf[3],USCIcf[4],
USCIcf[5],USCIcf[6],USCIcf[7],USCIcf[8],
USCIcf[9],USCIcf[10]);
end proc:

m:= vector([12,12,0,0,0,0,0,0,0,0]); ndUSCIcf(m);
m:= vector([12,4,4,0,0,0,0,0,0,0]); ndUSCIcf(m);
m:= vector([12,4,0,8,0,0,0,0,0,0]); ndUSCIcf(m);
m:= vector([12,4,0,0,4,0,0,0,0,0]); ndUSCIcf(m);
m:= vector([12,0,2,4,2,0,0,0,0,0]); ndUSCIcf(m);
m:= vector([12,4,0,4,0,12,0,0,0,0]); ndUSCIcf(m);
m:= vector([12,0,2,0,2,12,0,0,0,0]); ndUSCIcf(m);

m:= vector([8,0,4,0,0,0,2,0,0,0]); ndUSCIcf(m);
m:= vector([8,0,0,0,4,0,2,0,0,0]); ndUSCIcf(m);
m:= vector([6,6,2,0,0,0,0,2,0,0]); ndUSCIcf(m);
m:= vector([6,2,0,4,2,0,0,2,0,0]); ndUSCIcf(m);
m:= vector([6,2,0,2,0,6,0,2,2,0]); ndUSCIcf(m);
m:= vector([6,6,0,0,2,0,0,0,2,0]); ndUSCIcf(m);
m:= vector([6,2,2,4,0,0,0,0,2,0]); ndUSCIcf(m);
m:= vector([6,6,0,6,0,6,0,0,0,0]); ndUSCIcf(m);
m:= vector([6,2,2,2,2,6,0,0,0,0]); ndUSCIcf(m);

m:= vector([4,4,0,0,0,0,4,0,0,0]); ndUSCIcf(m);
m:= vector([4,0,2,0,2,4,1,0,0,1]); ndUSCIcf(m);

m:= vector([3,3,1,3,1,3,0,1,1,0]); ndUSCIcf(m);

m:= vector([2,2,2,0,0,0,2,2,0,0]); ndUSCIcf(m);
m:= vector([2,2,0,2,0,2,2,0,0,2]); ndUSCIcf(m);
m:= vector([2,2,0,0,2,0,2,0,2,0]); ndUSCIcf(m);

m:= vector([1,1,1,1,1,1,1,1,1,1]); ndUSCIcf(m);
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