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Abstract

An algorithm is given in this paper for the computation of dynamically equivalent
weakly reversible realizations with the maximal number of reactions, for chemical
reaction networks (CRNs) with mass action kinetics. The original problem state-
ment can be traced back at least 30 years ago. The algorithm uses standard linear
and mixed integer linear programming, and it is based on elementary graph the-
ory and important former results on the dense realizations of CRNs. The proposed
method is also capable of determining if no dynamically equivalent weakly reversible
structure exists for a given reaction network with a previously fixed complex set.

1 Introduction

Chemical reaction networks (CRNs) are widely used for modeling chemical and biochem-

ical processes in laboratory, industrial or natural environments [35]. Despite their sim-

ple mathematical structure, CRN models are capable of describing complex dynamical

phenomena such as multiple steady states or oscillating behaviour that can be of key

importance in understanding the operation of the modeled technological or living mecha-

nisms [26,30]. From the point of view of mathematical sciences and systems theory, CRN

models and the related analysis methods are also interesting and well-utilizable in the
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study of the characteristic features of nonlinear dynamical systems [1]. A special class of

CRNs is the set of networks whose dynamics is governed by the mass action law (MAL).

In this paper, we will deal with such systems.

The foundations of chemical reaction network theory (CRNT) defining the basic no-

tions and properties of reaction networks, were laid in the early papers and lecture

notes [12, 13, 19]. Since then, the development in the field has been continuous with

significant contributions such as in [5, 6, 16,20,28,29].

It has been known for long that CRNs with different structures and even with different

set of chemical complexes may give rise to exactly the same set of differential equations

describing the time-evolution of specie concentrations [19]. This fact is called macro-

equivalence in [19] and it is sometimes referred to as the ”fundamental dogma of chemical

kinetics”. Different CRNs producing the same ODEs will be called dynamically equivalent

in this paper. Despite of the usefulness of dynamic equivalence in the analysis of CRNs,

this property has only been studied to a rather limited extent in the literature. In [7],

the authors gave necessary and sufficient conditions for the dynamic equivalence (also

called confoundability) of CRNs that was completed with a special case in [31]. In [21],

the notion of dynamical equivalence was significantly extended by the introduction of

conjugate networks that mean CRNs with qualitatively the same dynamics where there

is a well-defined mapping that takes trajectories of one system to into trajectories of the

other.

In [32] the terms dense and sparse realizations were introduced for dynamically equiv-

alent reaction networks containing the maximal or minimal number of reactions with a

fixed set of complexes. Additionally, a computational method based on mixed integer

linear programming (MILP) was proposed to compute such realizations. In [34], impor-

tant properties of dense realizations were described: it was shown that the structure (i.e.

the unweighted directed graph) of a dense realization of a given CRN is unique, and the

unweighted directed reaction graph of any other realization is the subgraph of the dense

realization if the set of complexes is fixed. This is a key result that forms the basis of the

algorithm presented in this paper. Furthermore, additional MILP based methods were

also given in [34] for computing reversible CRN realizations, and realizations with the

minimal number of complexes. It was shown in [33] that the computation of dynamically

equivalent detailed balanced and complex balanced CRNs can be traced back to simple
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linear programming (LP).

Many strong results of Chemical Reaction Network Theory apply to weakly reversible

networks. The most well-known examples are probably the Deficiency Zero and Defi-

ciency One Theorems relating complex composition, network structure and the quali-

tative properties of CRN dynamics [13]. Furthermore, it is known that for any weakly

reversible network structure, there always exists such a parametrization of the reaction

rate coefficients that gives a complex balanced system [18]. Finally, the famous persis-

tency conjecture, says that the dynamics of weakly reversible networks is persistent in the

sense that no trajectory that starts in the positive orthant has an ω-limit point on the

boundary of Rn
+
.

Similarly to numerous other key CRN properties such as deficiency, full reversibility,

complex or detailed balance, weak reversibility is also not the property of the differential

equations of the CRN models, but it is a realization property. Among the concluding open

questions of [20] (where the authors gave necessary and sufficient conditions for polynomial

ODEs to be kinetic together with a constructive proof) we can read the following: ”We

may look for a mechanism in a class of mechanisms with a given - chemically relevant

- property. Such a property may be conservativity, (weak) reversibility, zero deficiency

or just structural stability as well.” Additionally, in [21] the following is written: ”The

development of algorithms and computer software which can efficiently check for viable

weakly reversible target networks . . . is a primary interest”. Therefore it is of significant

importance to work out a method that is able to construct a dynamically equivalent

weakly reversible realization for a given CRN if it exists.

Optimization tools based on e.g. linear/nonlinear programming or integer program-

ming have been widely and successfully used in solving scientific and engineering prob-

lems [8,9,14]. Optimization methods can be very useful tools for deciding the feasibility of

complex problems and give feasible solutions (if they exist), even if the original problem

is hard to treat analytically [4]. Additonally, graph theory and the associated effective

computation algorithms are naturally related to chemistry, biochemistry and systems bi-

ology through the graph representation of complex molecular and reaction structures (see,

e.g. [10, 11] and the corresponding reviews [15,17]).

The structure of the paper is the following. In section 2 the applied models and relevant

properties of CRNs will be summarized. Section 3 contains the main contribution, i.e. the
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algorithm for determining weakly reversible realizations of CRNs. Illustrative examples

are shown in section 4, while the conclusions can be found in section 5.

2 Models and properties of chemical reaction net-

works

2.1 Basic notions for the description of chemical reaction net-
works

Following [12] and several other works, we will characterize CRNs with the following three

sets.

1. S = {X1, . . . , Xn} is the set of species or chemical substances.

2. C = {C1, . . . , Cm} is the set of complexes. Formally, the complexes are represented

as linear combinations of the species, i.e.

Ci =
n∑

j=1

αijXj, i = 1, . . . ,m (1)

where αij are nonnegative integers and are called the stoichiometric coefficients.

3. R = {(Ci, Cj) | Ci, Cj ∈ C, and Ci is transformed to Cj in the CRN} is the set

of reactions. The relation (Ci, Cj) ∈ R will be denoted as Ci → Cj. Moreover,

a positive weight, the reaction rate coefficient denoted by kij is assigned to each

reaction Ci → Cj.

The above characterization naturally gives rise to the following graph structure (often

called ’Feinberg-Horn-Jackson graph’ or simply reaction graph) of a reaction network [13].

The weighted directed graphG = (V,E) of a reaction network consists of a finite nonempty

set V of vertices and a finite set E of ordered pairs of distinct vertices called directed edges.

The vertices correspond to the complexes, i.e. V = {C1, C2, . . . Cm}, while the directed

edges represent the reactions, i.e. (Ci, Cj) ∈ E if complex Ci is transformed to Cj in the

reaction network. The reaction rate coefficients kij are assigned as positive weights to the

corresponding directed edges Ci → Cj in the graph. A set of complexes {C1, . . . , Ck} is

called a linkage class of a CRN, if the complexes of the set are linked to each other in

the reaction graph but not to any other complex. It is remarked that loops (i.e. directed

edges that start and end at the same vertex) are not allowed in reaction graphs. A
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reaction network is called reversible, if whenever it contains the reaction Ci → Cj, then

the reverse reaction Cj ← Ci is also present in the CRN. A reaction network is called

weakly reversible, if each complex in the reaction graph lies on at least one directed cycle

(i.e. if complex Cj is reachable from complex Ci on a directed path in the reaction graph,

then Ci is reachable from Cj on a directed path).

A directed graph is called strongly connected if there exists a path from each vertex

of the graph to any other vertex. A strongly connected component or simply strong com-

ponent of a directed graph is a set of vertices such that the directed edges between them

provide a directed path from any vertex of the set to any other vertex, and to which no

additional vertex can be added (i.e. a maximal strongly connected subgraph). Since a

vertex is naturally reachable from itself through an empty path, strong components con-

taining only one vertex will be called trivial strong components. Clearly, the vertices of

the individual linkage classes of a weakly reversible CRN form the strong components of

the reaction graph.

Assuming mass-action kinetics, the following dynamical description will be used to

describe the time-evolution of specie concentrations [12,13]:

ẋ = Y · Ak · ψ(x) (2)

where xi denotes the concentration of specie Xi. The ith column of Y contains the

composition of complex Ci, i.e. [Y ]ij = αji. The structure and parameters of the reaction

graph are stored in the column conservation matrix Ak (also called the Kirchhoff matrix

of the CRN) as follows

[Ak]ij =

{ −∑m
l=1,l �=i kil, if i = j

kji, if i �= j
(3)

Finally, ψ : Rn �→ R
m is a monomial-type vector mapping defined by

ψj(x) =
n∏

i=1

x
[Y ]ij

i , j = 1, . . . ,m (4)

2.2 Dynamically equivalent realizations

As it has been mentioned in the introduction, reaction networks with different structures

and/or parametrizations can give rise to the same kinetic differential equations. Therefore,

we will call two reaction networks given by the matrix pairs (Y (1), A
(1)

k ) and (Y (2), A
(2)

k )
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dynamically equivalent, if

Y (1)A
(1)

k ψ(1)(x) = Y (2)A
(2)

k ψ(2)(x) = f(x), ∀x ∈ R̄
n
+

(5)

where for i = 1, 2, Y (i) ∈ R
n×mi have nonnegative integer entries, A

(i)
k are valid Kirchhoff

matrices, and

ψ
(i)
j (x) =

mi∏
k=1

x
[Y (i)

]kj

k , i = 1, 2, j = 1, . . . ,m. (6)

In this case, (Y (i)A
(i)
k ) for i = 1, 2 are called realizations of a kinetic vector field f (see,

e.g. [20, 33] for more details). It is also appropriate to call (Y (1), A
(1)

k ) a realization of

(Y (2), A
(2)

k ) and vica versa.

3 The algorithm for computing weakly reversible re-

alizations

We recall that a dense realization of a CRN contains the maximal number of reactions

(i.e. maximal number of nonzero off-diagonal elements in Ak) with a given stoichiometric

matrix Y [32]. Based on the fact that with a given Y , all possible reactions are contained

in the structurally unique dense realization [34], a straightforward idea is to try to find a

dynamically equivalent weakly reversible mechanism starting from this superstructure.

3.1 Basic principle of the algorithm

Very shortly, the underlying principle of the presented algorithm is that it only removes

(if possible) from the dense realization

(i) edges that cannot be parts of any weakly reversible realization,

(ii) edges the removal of which is necessarily implied by the deletion of edges belonging

to set (i).

The correct operation of the algorithm is based on the following two results.

R1 If each strongly connected component of a directed graph G is contracted to a single

vertex, the resulting directed graph is a directed acyclic graph [2]. (A directed graph

is called acyclic if it has no nontrivial strongly connected subgraphs.)
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R2 The structure of the dense realization of any CRN is unique, and the directed

unweighted graph of any CRN realization is a subgraph of the directed unweighted

graph of the dense realization, if the set of complexes is fixed [34].

From R2 it follows that for obtaining a CRN superstructure including all possible struc-

tures, a dense realization must be computed. Directed edges between different strong

components must be removed because they cannot lie on a directed cycle in any real-

ization (R1). If this is not possible, then there is no weakly reversible realization of the

CRN. However, if the deletion is possible, it may imply the removal of additional reactions

because of the linear kinetic constraints (see eqs. (9)-(12)). In general, this may impair

the weak reversibility of the obtained network. In such a case, a new dense realization

must be computed excluding the unnecessary edges identified in the previous step, and

the procedure must be repeated until either a weakly reversible realization is found, or the

deletion of undesired edges is no longer possible. In the latter case, no weakly reversible

realization of the initial CRN exists with the given stoichiometric matrix Y .

3.2 Definition of input data structure and the necessary addi-
tional procedures

We will assume that an initial CRN realization is given with the matrices (Y (0), A
(0)

k ), and

M = Y (0) · A(0)

k . The constraint set containing directed edges to be eliminated from the

current realization is denoted as

K = {(p1, q1), . . . , (ps, qs)}, s < r. (7)

where pi and qi denote the indices of the initial and terminal vertices of the ith edge,

respectively, and r is the number of reactions in the CRN.

Now, the following simple procedure will be defined for later use.

L = FindCrossComponentEdges(Ain
k ) (8)

The input of the procedure is the Kirchhoff matrix Ain
k of a CRN, and the output is a set

L containing the directed edges linking different strong components of the reaction graph.

The strongly connected components of a directed graph can be determined in linear time

using e.g. Kosaraju’s, Tarjan’s or Gabow’s algorithm [2, 24]. Moreover, the examined

CRN is weakly reversible if and only if it contains at least 2 reactions, and the output L

of FindCrossComponentEdges is empty.
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In the following part of this subsection, appropriate modifications of the algorithm

described in [32] are given, adapted to the current problem.

3.2.1 Constraints corresponding to mass action dynamics

The main characteristics of mass action dynamics are taken into consideration in the

form of the following constraints (see also [32] for more details) in both of the procedures

presented in subsections 3.2.2 and 3.2.3.

Y · Ak = M (9)
m∑
i=1

[Ak]ij = 0, j = 1, . . . ,m (10)

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i �= j (11)

[Ak]ii ≤ 0, i = 1, . . . ,m (12)

where Y and M are known, and the decision variables are the off-diagonal elements of

Ak. It’s easy to see that constraints (10)-(12) represent the fact that we are searching for

a valid Kirchhoff matrix.

3.2.2 Checking whether a set of reactions is removable from a CRN realiza-
tion

We call a set of reactionsK removable from a CRN realization, if there exists a dynamically

equivalent CRN realization that does not contain the directed edges in K. To check this,

it is worth separately defining the following LP-based and thus polynomial time procedure

to avoid unnecessary MILP computations that are known to be NP-hard.

The constraints (9)-(12) are completed with the following ones

[Ak]qi,pi = 0 for i = 1, . . . , s (13)

where (pi, qi) ∈ K as it is written in eq. (7). The feasibility of the linear constraints

(9)-(12) and (13) can be checked by adding e.g. the following linear objective function to

be minimized:

GLP (Ak) =
m∑

i, j = 1
i �= j, (j, i) /∈ K

[Ak]ij (14)

Clearly, eqs. (9)-(14) form a standard linear programming problem, the feasibility of

which can be checked in polynomial time [8].
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Based on the above, we will define the procedure to check whether a set K of directed

edges is removable from a CRN realization or not in the following way:

Fout = IsRemovable(Y (i), A
(i)
k ,K), (15)

where the input data are as follows: (Y (i), A
(i)
k ) is a CRN realization, and K is a constraint

set of the form (7) containing the tail and head index pairs of the directed edges to be

removed from (Y (i), A
(i)
k ). The output Fout is a boolean variable: its value is true if there

exists a dynamically equivalent realization to (Y (i), A
(i)
k ) not containing the edges listed

in K, and it is false if there does not exist such realization.

3.2.3 Computing the dense realization excluding given directed edges

For the solution of this subtask, the well-known results on the combination of propo-

sitional logic with mixed integer programming are applied [3, 25]. According to these,

a propositional logic problem, where a statement must be proved to be true if a set of

compound statements are also given, can be solved through a linear integer problem.

If the procedure IsRemovable returns a true value, the dense realization of the CRN

can be computed subject to the constraint that the edges listed in K are excluded from

it. To define the corresponding MILP problem, first we add exactly the same linear

constraints contained in eqs. (9)-(13) as in the previous case. To make the forthcoming

problem computationally tractable, we also introduce the following bounds for the decision

variables

[Ak]ij ≤ uij, uij > 0, i, j = 1, . . . ,m, i �= j, (j, i) /∈ K (16)

[Ak]ii ≥ li, li < 0, i = 1, . . . ,m (17)

Here we are searching for such Ak that contains the maximal number of nonzero off-

diagonal elements. For this, logical variables denoted by δ are introduced and the following

compound statements are constructed

δij = 1 ↔ [Ak]ij > ε, i, j = 1, . . . ,m, i �= j, (j, i) /∈ K (18)

where the symbol ”↔” denotes ”if and only if”, and 0 < ε � 1 (i.e. elements of Ak below

ε are treated as zero). Considering also (16), statement (18) can be translated to the

following linear inequalities

0 ≤ [Ak]ij − εδij, i, j = 1, . . . ,m, i �= j, (j, i) /∈ K (19)

0 ≤ −[Ak]ij + uijδij, i, j = 1, . . . ,m, i �= j (j, i) /∈ K (20)
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Now it is possible to compute the realization containing the maximal number of reactions

by maximizing the objective function

GMILP (δ) =
m∑

i, j = 1
i �= j, (j, i) /∈ K

δij. (21)

Finally, the following procedure is defined based on the MILP problem given by eqs.

(9)-(13), (16)-(17), and (19)-(21).

Ad
k = FindConstrDenseRealization(Y (i), A

(i)
k ,K), (22)

where the input data set is the same as in the case of the procedure IsRemovable (see

eq. (15) and the corresponding description). The output Ad
k is a dense realization that

does not contain the directed edges listed in the set K. If the set K is empty, then the

procedure is the same that computes dense realizations and that was published in [32].

3.3 Formal description of the algorithm

Now we can give the formal description of the procedure for determining weakly re-

versible CRN realizations. The input data of the procedure is an initial CRN realization

(Y (0),A
(0)

k ). The output is an m × m matrix that is the Kirchhoff matrix of the weakly

reversible realization if there exists such, or a zero matrix if the procedure found no weakly

reversible realizations. In the algorithm pseudocode, the auxiliary variable ExitCondition

is a boolean storing the exit condition from the main loop. The complete pseudocode of

the procedure called FindWeaklyReversibleRealization with common notations and

keywords can be found in Table 1.

3.4 Main properties of the algorithm

The above described algorithm always finds a dynamically equivalent weakly reversible

realization, if it exists. This clearly follows from the results R1, R2 and the basic princi-

ples of the algorithm described in subsection 3.1. From these facts it also follows that the

algorithm finds the ’densest’ weakly reversible realization that structurally contains any

other weakly reversible realizations (for illustration, see the results in subsection 4.1). An

apparent drawback of the algorithm that it contains a step where a MILP problem has to

be solved that is known to be NP-hard. However, the parallel (columnwise) implementa-

tion of the procedure FindConstrDenseRealization is possible as it is explained in [32],
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Aout
k =FindWeaklyReversibleRealization(Y (0),A

(0)

k )

1 Aout
k :=0 ∈ R

m×m; ExitCondition:=false;

2 Y := Y (0); Ak := A
(0)

k ; Fout:=true; K := {}; L := {};
3 while (ExitCondition=false) do
4 begin

5 if (K �= {}) then Fout:=IsRemovable(Y ,Ak,K);
6 if (Fout =true) then
7 begin

8 Ak:=FindConstrDenseRealization(Y ,Ak,K);
9 L:=FindCrossComponentEdges(Ak);
10 if (L = {}) then ExitCondition:=true; Aout

k :=Ak;
11 else K := K ∪ L;
12 end

13 else ExitCondition:=true;
14 end

15 return Aout
k ;

Table 1: Pseudocode of the algorithm for finding weakly reversible realizations

that significantly extends the number of complexes that can be handled in practice. We

remark that the immediate deletion of the columns/rows corresponding to the isolated

complexes from matrices Y and Ak after calling the procedure FindConstrDenseRealiza-

tion is also possible, but this requires the renumbering of complexes. This is a technical

detail of implementation and does not affect the principle or final output of the algorithm.

(However, decreasing the number of optimization variables and constraints in each step

in such a way might be required especially in the case of larger networks.)

4 Examples

The following examples were implemented in the MATLAB R13 computation environ-

ment using the YALMIP and the Multi-Parametric Toolboxes [22, 23]. The examples

were run on a desktop PC with dual Intel Xeon 1.8GHz CPU and 2 Gigabytes of RAM.

The implementation of dense realization computation was not parallel, therefore all the

decision variables and constraints were put into a single optimization problem in proce-

dure FindConstrDenseRealization. The strong components of the reaction graphs were

identified using Kosaraju’s algorithm [27].
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4.1 Weakly reversible realizations of a simple irreversible net-
work

Figure 1: a) Simple irreversible network from [21], b) Structure of one of its possible
weakly reversible realizations determined in [21]

The simple network that can be seen in Fig. 1 a) was taken from [21] (Example 3).

In [21], it is shown that for any positive ε, the network has a possible weakly reversible

realization with the structure shown in Fig. 1b). (The computation and analysis of the

parameters of the CRN in Fig. 1b can be found in [21].) The stoichiometric matrix of the

network is

Y =

[
1 1 2 0 1 1 3
2 0 1 3 3 1 1

]
(23)

The nonzero elements of the Kirchhoff matrix Ak ∈ R
7×7 with ε = 1.5 are

[Ak]2,1 = 1.5, [Ak]4,3 = 1, [Ak]6,5 = 1, [Ak]7,6 = 1 . (24)

For this network, the algorithm described in section 3.3 and Table 1 works as follows.

After the initialization steps, the dense realization containing all possible reactions with

an empty constraint set K is computed (line 8 of the pseudocode). The Kirchhoff matrix

of the dense realization is given by

A
(1)

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.25 0 0.1 0 0.1 0.1 0
0.55 0 0.1 0 0.4333 0.5 0
0.1 0 −1.4 0 0.1 0.1 0
0.3 0 0.8 0 0.3 0.1 0
0.1 0 0.2 0 −1.1333 0.1 0
0.1 0 0.1 0 0.1 −1.9 0
0.1 0 0.1 0 0.1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

The structure of the dense realization is shown in Fig. 2. The following steps can be

followed using Fig. 3. The dense realization is not weakly reversible because there are

edges between different strong components (line 9). The complexes of the single nontrivial

strong component are indicated by boldface labels in Fig. 3. It is clear from the figure
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Figure 2: Structure of the dense realization of the reaction network shown in Fig. 1 a)

that the edges adjacent to the complexes X1, 3X2, 3X1 + X2 are to be removed. These

edges are drawn with dotted arrows in the figure. Thus, the constraint list is

K = {(1, 2), (1, 4), (1, 7), (3, 2), (3, 4), (3, 7), (5, 2), (5, 4), (5, 7), (6, 2), (6, 4), (6, 7)}.

The next iteration of the algorithm (line 5) gives that these edges can be removed from

the realization. Now a new dense realization is computed excluding edges in K (line 8).

The reactions of this dense realization are indicated by thick arrows in Fig. 3. Note that

the constraint of excluding the reactions in K from the network resulted in the removal

of directed edges X1 +X2 → X1 + 2X2, X1 + 2X2 → 2X1 +X2, X1 + 3X2 → 2X1 +X2,

and X1 +X2 → X1 + 3X2, too, that were within the nontrivial strong component of the

previous step. In this case, the resulting network remained weakly reversible (lines 9-10),

so the algorithm can stop with success and return the determined dynamically equivalent

weakly reversible CRN. The structure of the resulting network is shown in Fig. 4. The

Kirchhoff matrix of the obtained realization is the following

A
(2)

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.2 0 1.8 0 0.1 0 0
0 0 0 0 0 0 0
0 0 −2 0 0 2 0
0 0 0 0 0 0 0
0.1 0 0.1 0 −1.05 0 0
3.1 0 0.1 0 0.95 −2 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

The running time of the algorithm was 11s using the hardware/software environment

described in the beginning of section 4.
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It is interesting to note that the obtained weakly reversible realization is not complex

balanced. (For convenience, we briefly define the notion of complex balance: A CRN

realization (Y,Ak) is called complex balanced if there exists a positive vector x∗ ∈ R
n
+
for

which Akψ(x
∗) = 0 [5, 19, 29].) However, using the polynomial-time algorithm described

in [33], we can compute a complex balanced realization with 6 reactions in 0.1s, that is

shown in Fig. 5. It is easy to see that the unweighted directed graphs of Figs. 1 b) and

Fig. 5 are the proper subgraphs of the structure visible in Fig. 4.

Figure 3: Illustration of the operation of the algorithm on the example given in section
4.1

Figure 4: The structure of the obtained dynamically equivalent weakly reversible CRN

4.2 Weakly reversible realization of a kinetic polynomial system

The equations and initial CRN in this example were also used in [33] for illustrating other

computation methods. We start from the polynomial ordinary differential equations given
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Figure 5: Complex balanced realization of the CRN described in section 4.1

by

ẋ1 = x2

3
− x1x2 + x3x4 − 2x1x

2

2
x3

ẋ2 = x2

3
− x1x2 + 2x3x4 − 4x1x

2

2
x3

ẋ3 = −2x2

3
+ x1x2 − x1x

2

2
x3 + 2x3

4
(27)

ẋ4 = x1x2 − x3x4 + 4x1x
2

2
x3 − 3x3

4

Using the inverse kinetic algorithm first published in [20] (see also [33] for a summary

about the kinetic realizability of polynomial vector fields), a CRN shown in Fig. 6 can be

constructed algorithmically that gives the dynamics (27). The numbering of complexes

in the figure is the following:

1 : 2X3, 2 : X3 +X4, 3 : X1 + 2X3, 4 : X2 + 2X3,

5 : X3, 6 : X1 +X3 +X4, 7 : X2 +X3 +X4,

8 : X1 +X2, 9 : X1 + 2X2 +X3, 10 : X1, 11 : X2,

12 : X1 +X2 +X4, 13 : X1 +X2 +X3, 14 : 2X2 +X3,

15 : X1 + 2X2, 16 : X1 + 2X2 +X3 +X4,

17 : 3X4, 18 : X3 + 3X4, 19 : 2X4 (28)

The dense realization of the network contains 80 reactions, therefore it is not shown in a

figure. For the sake of completeness, the list of the reactions (i.e. weighted directed edges)

of the dense realization in the form (source vertex number, destination vertex number, rate

coefficient) is given below:

(5, 1, 0.5), (7, 1, 0.1), (11, 1, 0.1), (15, 1, 0.8), (1, 2, 0.1), (3, 2, 0.1), (5, 2, 0.1), (7, 2,

0.1), (12, 2, 0.3), (1, 3, 0.1), (5, 3, 0.1), (7, 3, 0.1), (12, 3, 0.1), (1, 4, 0.1), (3, 4, 0.4), (5,
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4, 0.1), (7, 4, 0.1), (11, 4, 0.1), (3, 5, 0.1), (7, 5, 0.1), (11, 5, 0.1), (15, 5, 0.1), (3, 6, 0.1),

(5, 6, 0.1), (7, 6, 0.1), (1, 7, 0.1), (3, 7, 0.1), (5, 7, 0.2), (12, 7, 0.3), (1, 8, 0.1), (3, 8, 0.1),

(5, 8, 0.3), (7, 8, 0.3), (11, 8, 1.2), (1, 9, 0.1), (5, 9, 0.1), (7, 9, 0.1), (11, 9, 0.2), (1, 10,

0.5), (3, 10, 0.8), (5, 10, 0.1), (7, 10, 0.1), (12, 10, 0.1), (3, 11, 0.1), (5, 11, 0.1), (7, 11,

0.1), (1, 12, 0.1), (3, 12, 0.1), (5, 12, 0.1), (7, 12, 0.1), (1, 13, 0.1), (3, 13, 0.1), (5, 13,

0.1), (7, 13, 0.1), (11, 13, 0.1), (15, 13, 0.1), (1, 14, 0.1), (3, 14, 0.1), (5, 14, 0.1), (7, 14,

0.1), (12, 14, 0.1), (3, 15, 0.1), (5, 15, 0.1), (7, 15, 0.7), (11, 15, 0.1), (5, 16, 0.25), (7, 16,

0.3), (11, 16, 0.7), (15, 16, 0.2), (3, 17, 0.1), (5, 17, 0.1), (7, 17, 0.1), (3, 18, 0.1), (5, 18,

0.1), (7, 18, 0.4), (3, 19, 0.1), (5, 19, 0.1), (7, 19, 0.1), (11, 19, 0.1), (15, 19, 0.1).

Figure 6: CRN realizing the dynamics of eq. (27). Only reaction rates different from 1
are indicated.

The dense realization has 13 strong components. Out of these, there is only one

nontrivial strongly connected component containing the vertices 1, 3, 5, 7, 11, 12, and

15. After identifying all directed edges linking different strong components, we obtain

that the following 53 edges given in the form (source vertex number, destination vertex

number) should be deleted from the dense realization in the next step of the algorithm:

(1,2), (3,2), (5,2), (7,2), (12,2), (1,4), (3,4), (5,4), (7,4), (11,4), (3,6), (5,6), (7,6), (1,8),

(3,8), (5,8), (7,8), (11,8), (1,9), (5,9), (7,9), (11,9), (1,10), (3,10), (5,10), (7,10), (12,10),

(1,13), (3,13), (5,13), (7,13), (11,13), (15,13), (1,14), (3,14), (5,14), (7,14), (12,14), (5,16),

(7,16), (11,16), (15,16), (3,17), (5,17), (7,17), (3,18), (5,18), (7,18), (3,19), (5,19), (7,19),

(11,19), (15,19).

All the above listed edges were possible to remove from the dense realization (their

removal implied the deletion of 12 additonal reactions), and the resulting constrained

dense realization is shown in Fig.7. It is clear from the figure that edges adjacent to
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vertices no. 11 and 12 have to be removed in the following step. This final step is

illustrated in Fig. 8, where the meaning of the line types is the same as in the case of

Fig. 3. With the removal of edges (5,11), (5,12), (7,11), (7,12), the directed edges (5,1),

(7,1), (7,3), (5,3), (7,5) and (5,15) were also deleted, and the resulting weakly reversible

realization (of deficiency 0) is shown in Fig. 9. The total running time of the algorithm

was 80.5s.

Figure 7: CRN realization of eq. (27) containing the vertices of the only nontrivial strong
component of the dense realization

Figure 8: Illustration of the final step of the algorithm on the CRN corresponding to eq.
(27)

5 Conclusions

A numerical algorithm for finding dynamically equivalent weakly reversible realizations

of chemical reaction networks was proposed in this paper. The algorithm computes a
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Figure 9: The obtained weakly reversible realization of eq. (27)

maximal superstructure that contains all other possible weakly reversible structures as

proper subgraphs, and it is able to determine if no weakly reversible realization exists.

The method uses linear and mixed integer linear programming steps and it is based

primarily on the computation and properties of dense realizations published in [32, 34].

The computationally critical MILP step of the algorithm can be implemented parallelly.

The operation of the algorithm has been illustrated on numerical examples.
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