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Abstract

A thread in a graph G is any maximal connected subgraph induced by a set of
vertices of degree 2 in G. A string in G is a subgraph induced by a thread and the
vertices adjacent to it. A graph G consists of s strings if it can be represented as a
union of s strings so that any two strings have at most two vertices in common. In
this paper we compute several recently introduced graph invariants for all graphs
that consist of at most three strings.

1 Introduction

A topological index is a numerical quantity related to a graph and invariant under graph

automorphisms. Hundreds of topological indices have been studied and used in structure-

property relationship studies over the course of several decades, and the new ones have

been constantly introduced.
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In order to be useful, topological indices must somehow encode the information about

structural properties of the underlying graph. Most of them do it in a quite intricate

manner. Besides making them useful, such intricacies usually make them difficult (or

at least not easy) to compute. In particular, nice closed formulas are usually available

only for very narrow classes of graphs. Typical examples are complete graphs, complete

bipartite graphs, cycles, paths, stars and some other special trees. Sometimes it is also

possible to use the symmetry-related properties of graphs to obtain closed formulas, but

such graphs are only of limited interest.

The main goal of this paper is to consider a class of graphs that admit decomposition

in a small number of path- or cycle-like structures that we call strings. We follow the idea

of a paper by Lukovits [18], where he computed Wiener indices for such graphs. Our main

results are explicit formulas for values of several recently introduced topological indices

for the considered graphs.

2 Definitions and preliminaries

All graphs considered here are finite and simple. Also, as most of the considered invariants

are connectivity-related, we assume the graphs to be connected unless explicitly stated

otherwise.

Let G be a graph on p vertices. The vertex and the edge set of G are denoted by V (G)

and E(G), respectively. A thread in G is any maximal connected subgraph induced by

a set of vertices of degree 2 in G. It is clear from the definition that a thread can have at

most two other vertices of G adjacent to it. A (sub)graph induced by a thread and the

vertices adjacent to it is called a string. Any string in G is either an induced path or an

induced cycle in G. The converse is not generally true - an induced cycle in G with at

least two vertices of degree greater than two is not a string. The length of a string is the

number of edges in it.

Every edge from E(G) incident to a vertex of degree 2 in G belongs to one (and only

one) string in G, and the length of that string is at least 2. In order to allow the length of

a string to achieve its natural minimum value of 1, we consider the edges of G connecting

two vertices of degree other than two as strings of length 1. Those strings are special,

since they do not contain threads as subgraphs. Hence we call them trivial. Besides

minimizing the length function, trivial strings allow for a decomposition of any graph into
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a finite union of strings; in the worst case, there will be exactly |E(G)| strings in the

decomposition. Such decompositions are somewhat similar to ear decompositions from

the structural theory of matchings [17]; there are, however, enough differences to justify

the use of different terminology.

We say that a graph G consists of s strings if it can be decomposed into s strings so

that any two strings have at most two vertices in common. Of special interest are the

cases when s is small with respect to the number of vertices or edges of G; it implies that

most strings are non-trivial. In the extreme case s = 1, G is either a path or a cycle,

and this, together with the number of vertices, gives us complete information on G. In

general, the smaller s, the more information on G is packed into its string decomposition.

Our goal here is to investigate how that information can be converted into information

about the values of certain topological indices of such graphs.

Up to our best knowledge, the first attempt on a systematic investigation of topological

indices of graphs consisting of a few strings was made in a paper by Lukovits [18]. There

he considered graphs consisting of at most three strings and presented explicit formulas

for the values of Wiener index of such graphs in terms of lengths of the strings. The eight

classes of graphs considered in his paper are shown in Fig. 1.
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Figure 1: Graphs from Lukovits’ paper including at most three strings.

In this paper we take further the line of research of reference [18] by considering

two more classes of graphs (shown in Fig. 2). Together with eight classes of Lukovits’

paper they exhaust the graphs consisting of at most three strings. We then proceed to

compute and present explicit formulas for the values of several topological indices (the

eccentric connectivity index, the reverse Wiener index, the geometric-arithmetic index,

two connectivity indices and two Zagreb indices) for all graphs consisting of at most three
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strings in terms of the string lengths.
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Figure 2: Two more graphs with three strings.

It is clear from the above illustrations that for a given number of vertices there are

exactly two graphs that are single strings. Further, for any given pair of meaningful

lengths there are exactly two graphs consisting of two strings. (Here we consider length of

a cycle meaningful if it is at least three.) Finally, for any three (meaningful) lengths there

are six graphs consisting of three strings with given lengths. In order to avoid notational

overcrowding we will suppress the length parameters in our notation, and denote the

considered graphs by Gi, where i is the number that appears in the parenthesis below the

graph in Fig. 1 or Fig. 2. Hence, through the rest of the paper, G1 denotes a path of

length k, G4 denotes two cycles of length k and m spliced in one vertex, and G5 denotes

three paths of lengths k, m and n spliced together in one of their respective endvertices.

Further, whenever referring to the strings of the same type, we assume that the lengths

(weakly) increase with the lexicographic order of the corresponding notational parameter.

For example, we assume k ≤ m in G4, G6 and k ≤ m ≤ n in G5, G8 and G10. Similarly,

we take m ≤ n in G7 and G9, but do not make any assumptions about the relationship

of either of them with k. Those notational conventions will enable us to formulate results

in a more compact way. However, sometimes it will be necessary to refer to the values of

the string lengths. In such cases we put the lengths in the superscripts in the alphabetic

order. For example, G1,1,n
5

denotes a graph of type (5) whose two path-like strings have

length 1. Similarly, G1,m,n
9

denotes a graph of type (9) whose path-like string is trivial.

In the rest of this section we define the topological indices considered in this paper.

For two vertices u and v of V (G) their distance d(u, v) is defined as the length of a

shortest path connecting u and v in G. For a given vertex u of V (G) its eccentricity

ε(u) is the largest distance between u and any other vertex v of G. Hence, ε(u) =

maxv∈V (G) d(u, v). The maximum eccentricity over all vertices of G is called the diameter

of G and denoted by D(G); the minimum eccentricity among the vertices of G is called
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radius of G and denoted by R(G). The eccentric connectivity index ξ(G) of a graph

G is defined as

ξ(G) =
∑

δuε(u),

where δu denotes the degree of vertex u, i. e., the number of its neighbors in G. The

eccentric connectivity index was introduced by Madan et al and employed in a series of

QSAR/QSPR oriented papers over the last couple of years [13–15,19,20]. Its mathematical

properties also attracted a lot of attention recently [1, 5–8,12,23].

The eccentric connectivity index belongs to a large family of distance-based indices.

The most prominent of them, the Wiener index W (G), is defined as the sum of distances

between all pairs of distinct vertices,

W (G) =
∑

u,v∈V (G)

d(u, v).

Introduced by H. Wiener [22] in 1947, it became one of the most used, the best researched

and most generalized topological indices. The literature on Wiener index and its general-

izations is vast; we refer the reader to [3,4] for a survey of recent results concerning some

classes of graphs of chemical interest. Among its many generalizations we consider here

the reverse Wiener index, introduced in 2000 by Balaban et al [2]. The reverse Wiener

index of a graph G is defined as

Λ(G) =

(
p

2

)
D(G)−W (G),

where D(G) denotes the diameter of G.

The geometric-arithmetic index GA(G) of a graph G is defined as

GA(G) =
∑

uv∈E(G)

2
√
δuδv

δu + δv
.

Here δu stands for the degree of a vertex u. It was introduced in a paper by Vukičević and

Furtula [21]. A number of generalizations can be obtained by replacing degrees by any

other numerical quantities associated with the endvertices of an edge. For some recent

developments we refer the reader to [9, 24].

The zeroth-order connectivity index 0χ(G) and the first-order connectivity

index 1χ(G) or simply the connectivity index (also called the Randić index [10,16]) of
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the graph G are defined respectively as:

0χ(G) =
∑

v∈V (G)

(δv)
− 1

2

1χ(G) =
∑

uv∈E(G)

(δuδv)
− 1

2

The Randić index 1χ(G) is one of the most popular descriptors and has found numerous

QSPR and QSAR applications. The quantity 0χ(G) has been also used to investigate

structure-based correlations for physical properties.

The list of invariants considered in this paper is concluded by a pair of topological

indices introduced some 30 years ago [11] under the name of Zagreb indices. The first

M1(G) and the second M2(G) Zagreb index of a graph G are defined as follows.

M1(G) =
∑

v∈V (G)

(δv)
2

M2(G) =
∑

uv∈E(G)

δuδv

3 Main results

3.1 Eccentric connectivity index

In this subsection we compute eccentric connectivity indices of graphs Gi, 1 ≤ i ≤ 10.

The first two cases were treated in earlier works [8, 23] and we quote the results without

proofs.

Lemma 3.1

ξ(G1) = ξ(Pk) =

{
3

2
k2 + 1

2
k is odd

3

2
k2 k is even .

Lemma 3.2

ξ(G2) = ξ(Ck) =

{
k2 k is even

k(k − 1) k is odd .

Most of the results that follow are obtained by straightforward calculations. As a rule,

we omit the computational details and proofs.

Lemma 3.3

ξ(G3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5m2

+20mk+12k2+4

8
m is even, 2k+m

2
is odd

5m2−2m−3+20mk−4k+12k2

8
m is odd, 2k+m−1

2
is even

5m2
+20mk+12k2

8
m, 2k+m

2
are even

5m2−2m+1+20mk−4k+12k2

8
m, 2k+m−1

2
are odd

�m
2
� ≤ k

{
3k2 +mk +m2 m is even
3k2 +mk + k −m+m2 m is odd

�m
2
� > k
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Proof

We consider two cases. If �m
2
� ≤ k, then

ξ(G3) = ξ(Pk+�m
2
	+1) +

{
m2

4
+mk m is even

(m−1)
2

4
+mk +m+ k − 1 m is odd

.

On the other hand, if �m
2
� > k we have:

ξ(G3) =

{
3(k2 − 1) +mk +m2 + 3 m is even
3(k2 − 1) +mk + k +m+ (m− 1)2 + 2 m is odd

This completes the proof.

Lemma 3.4

ξ(G4) =

⎧⎪⎪⎨⎪⎪⎩
m2 +mk + k2 m, k are even
m2 − 1 + k2 +mk −m− k m, k are odd
m2 + k2 − k +mk k is odd and m is even
m2 + k2 −m+mk m is odd and k is even

Lemma 3.5

ξ(G5) =

{
3n2

+6mn+3m2
+4kn+2k2+1

2
m+ n + 1 is even

3

2
(m+ n)2 + (2n+ k)k m+ n + 1 is odd

Proof

It is easy to see that G5 − E(Pk) = Pm+n+1. Hence,

ξ(G5) =
m+n+k+1∑

i=1

δviε(vi) =
m+n+1∑

i=1

δviε(vi)

+
m+n+k+1∑
i=m+n+2

δviε(vi) + n

= ξ(Pm+n+1) + 2n+ k + 2((n+ 1) + (n+ 2) + . . .+ (n+ k − 1)).

The claim now follows by lemma 3.1.

Lemma 3.6

ξ(G6) =

⎧⎪⎪⎨⎪⎪⎩
ξ(Gm,n

3
) + k(2�n

2
�+ k) k ≤ m < �n

2
�

ξ(Gm,n
3

) + k(2m+ k) k ≤ �n
2
� ≤ m{

ξ(Pm+k) +
n(n+4m)

2
n is even

ξ(Pm+k) +
n2

+4mn−1

2
n is odd

�n
2
� ≤ k ≤ m

Lemma 3.7 For G7 we distinguish two cases.

(A). If �n
2
� ≤ k + �m

2
� then

ξ(G7) = ξ(Pa+b+k) +

⎧⎪⎪⎨⎪⎪⎩
1

4
(m2 + n2) +mn+mk + kn m, n are even

n2
+2n+4nm+4nk−10+2m+8k+m2

+4mk
4

m, n are odd
n2

+4nm+4nk+m2
+4mk−3+4k+2m

4
n even , m odd

n2
+4nm+4nk+m2

+4mk−3+4k+2n
4

n odd , m even
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(B). If �n
2
� > k + �n

2
� then

ξ(G7) =

⎧⎪⎪⎨⎪⎪⎩
n2 + nm+m2 + nk + 4mk + 3k2 m, n are even
n2 − n+ nm− 1−m+m2 + nk − k + 4mk + 3k2 m, n are odd
n2 + nm+m2 −m+ nk + 4mk − 2k + 3k2 n even , m odd
n2 + nm− n+m2 + nk + k + 4mk + 3k2 n odd , m even

Lemma 3.8

ξ(G8) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
R m, n are odd
R + k − n−m− 1 m, n are even
R− n− 2k n even and m odd
R− k −m n odd and m even

k is odd

⎧⎪⎪⎨⎪⎪⎩
R + k − n−m− 1 m, n are odd
R m, n are even
R− n− 2k n is odd, m is even
R− k −m m is odd, n is even

k is even

Here R = n2 + 2nk + nm+m2 +mk.

Lemma 3.9

ξ(G9) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ(Gk,n
3

) +

{
4mk+m2

2
m is even

m2
+4mk−1

2
m is odd

�n
2
� < k

ξ(Gk,n
3

) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2mn+m2

2
m, n even

2mn+m2−2m−1

2
m, n odd

2mn+m2−1

2
n even, m odd

2mn+m2−2m
2

n odd, m even

�m
2
� ≤ k ≤ �n

2
�

ξ(Gm,n
4

) +

{
k(n+ k) n is even
k(n+ k − 1) n is odd

k < �m
2
�

Lemma 3.10

ξ(G10) = ξ(Gm,n
4

) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{

k2+2kn
2

n is even
k2+2kn−2k

2
n is odd

k is even{
k2+2kn−1

2
n is even

k2+2kn−2k−1

2
n is odd

k is odd

3.2 Reverse Wiener index

As mentioned before, the reverse Wiener index was introduced by Balaban in 2000 [2].

It is defined in terms of Wiener index and the diameter of a graph. Hence we start

this subsection by computing the diameters of the graphs considered in this paper. The

diameters are presented in Table I. We then proceed by combining them with Lukovits’

results in order to obtain explicit formulas. Again, we omit most of the computational

details.
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G remark |V (G)| D(G)
Pk k + 1 k
Ck k �k

2
�

G3 k +m �m
2
�+ k

G4 k +m− 1 �m
2
�+ �k

2
�

G5 k ≤ m ≤ n k +m+ n+ 1 m+ n
G6 k ≤ m k +m+ n m+ �n

2
�

G7 m ≤ n k +m+ n− 1 �n
2
�+ �m

2
�+ k

G8 k ≤ m ≤ n k +m+ n− 1

{
n+m
2

m, n are even or odd
n+m−1

2
otherwise

G9 m ≤ n k +m+ n− 1

{ �n
2
�+ �m

2
� k ≤ �m

2
�

k + �n
2
� k ≥ �m

2
�

G10 k ≤ m ≤ n k +m+ n− 2 �n
2
�+ �m

2
�

Table I

We start by quoting known results for paths and cycles.

Lemma 3.11 Let Ck and Pk be a cycle and a path of length k.

Λ(Ck) = Λ(G2) =

{
k2(k−2)

8
k is even

k(k−1)(k−3)

8
k is odd

, Λ(Pk) = Λ(G1) =
k(k2 − 1)

3
.

The results for two-parameter graphs depend on the parity of the cycle length(s).

Lemma 3.12

Λ(G3) =

{
8k3+18k2m−12k2−30km+4k+3m3

+18m2k−6m2

24
m is even

8k3+18k2m−18k2−42km+16k+3m3
+18m2k−12m2

+9m
24

m is odd

Λ(G4) =

⎧⎪⎨⎪⎩
k3+4k2m−4k2+4m2k−12km+m3−4m2

+4k+4m
8

k,m are even
(k+m−4)(k2−4k+3km−4m+m2

+3)

8
k,m are odd

k3+4k2m−6k2+4m2k−16km+m3−6m2
+12k+11m−6

8
otherwise

Lemma 3.13 Let us consider G5 and G6.

If k ≤ m ≤ n, then

Λ(G5) = − 1

6
k3 +

1

2
(km2 − km+ kn2 − k2 − kn) +

1

3
(m3 + n3 − k − n−m)

+ 2kmn+m2n+mn2

If n is even and k ≤ m, then

Λ(G6) =
1

3
m3 +

1

8
n3 − 1

6
k3 − 1

2
m2 − 1

4
n2 +

3

4
m2n+

3

4
n2m− 1

4
k2n

− 3

2
km− 3

4
kn− 5

4
mn+

1

2
km2 +

1

4
kn2 +

3

2
kmn+

1

6
k +

1

6
m
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If n is odd and k ≤ m, then

Λ(G6) =
1

3
m3 +

1

8
n3 − 1

6
k3 − 3

4
m2 − 1

2
n2 +

3

4
m2n+

3

4
n2m− 1

4
k2n− 1

4
k2

− 2km− 5

4
kn− 7

4
mn+

1

2
km2 +

1

4
kn2 +

3

2
kmn+

2

3
k +

2

3
m+

3

8
n

Lemma 3.14 For G7 we distinguish three cases:

(A) m and n are even

Λ(G7) =
1

8
(m3 + n3) +

1

3
k3 − k2 +

1

2
(m2n+ n2m− n2 −m2 +m+ n)

− 7

4
km− 7

4
kn− 3

2
mn+

3

4
(km2 + k2m+ kn2 + k2n) + kmn+

2

3
k

(B) m and n are odd

Λ(G7) = −3

2
(1 + k2) +

1

8
(m3 + n3) +

3

4
(kn2 + k2n+ km2 + k2m)− n2 −m2

− 11

4
(km+ kn)− 5

2
mn+ kmn+

8

3
k +

1

3
k3 +

19

8
(m+ n) +

1

2
(m2n+ n2m)

(C) otherwise

Λ(G7) = −3

4
(1 + n2 +m2) +

1

8
(m3 + n3) +

1

3
k3 − 5

4
k2 +

1

2
(m2n+ n2m) + kmn

− 9

4
(km+ kn)− 2mn+

3

4
(km2 + k2m+ kn2 + k2n) +

5

3
k +

3

2
m+

11

8
n

Lemma 3.15 For G8 we have four cases:

(A) k, m and n are all even or all odd.

Λ(G8) =
1

8
(n3 +m3 +mk2 + nk2 + kn2 + km2)− 1

4
(k3 + km+ nk)

+
1

2
(mn2 + nm2 − n2 −m2 +m+ n+ kmn)− 3

2
mn

(B) m, k are odd and n is even or m, k are even and n is odd.

Λ(G8) =
1

8
(n3 +m3 +mk2 + nk2 + km2 + kn2)− 1

4
(k3 + k2) +

1

2
(mn2 +m2n)

− 3

4
(mk + nk + n2 +m2 + 1)− 2mn+

1

2
knm+

11

8
n+

3

2
m+

7

8
k

(C) k, n are odd and m is even or k, n are even and m is odd.

Λ(G8) =
1

8
(n3 +m3 +mk2 + nk2 + km2 + kn2) +

1

2
(mn2 +m2n+ kmn)

+
3

2
n+

7

8
k +

11

8
m− 2nm− 1

4
(k3 + k2)− 3

4
(n2 +m2 + km+ kn+ 1)
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(D) m, n are even and k is odd or m, n are odd and k is even.

Λ(G8) =
1

8
(m3 + n3 +mk2 + nk2 +m2k + n2k)− 1

4
(k3 + k +mk + nk)

+
7

8
(m+ n)− 1

2
(n2 +m2 −mn2 −m2n− kmn+ 1)− 3

2
mn

Graph G9 is the most complicated, since we have to take care of many possible com-

binations of parities of cycle lengths and their relationships with the length of the path

part.

Lemma 3.16 For G9 we have two cases, each of them with four subcases:

(A) k ≤ �m
2
�

If m and n are even then

Λ(G9) = −1

6
k3 +

1

2
nm2 +

1

4
km2 +

1

2
m+

1

2
k2 − 1

2
n2 +

1

8
n3 +

1

8
m3 +

1

2
n+mnk

+
2

3
k +

1

2
mn2 − 1

2
m2 − 3

2
mn− 5

4
mk − 5

4
nk − 1

4
(nk2 +mk2 − kn2)

If m and n are odd then

Λ(G9) = −1

6
k3 +

1

2
nm2 +

19

8
(m+ n)− (n2 +m2) +

1

8
(n3 +m3) +

8

3
k +mnk

+
1

2
mn2 − 5

2
mn− 9

4
(mk + nk)− 1

4
(nk2 +mk2 − kn2 − km2)− 3

2

If m is even and n is odd then

Λ(G9) = −1

6
k3 +

1

2
nm2 +

3

2
m+

11

8
n− 3

4
(n2 +m2) +

1

8
(n3 +m3) +

5

3
k +mnk

+
1

2
mn2 − 2mn− 7

4
(mk + nk)− 1

4
(nk2 +mk2 − kn2 − km2 − k2)− 3

4

If n is even and m is odd then

Λ(G9) = −1

6
k3 +

1

2
nm2 +

3

2
n+

11

8
m− 3

4
(n2 +m2) +

1

8
(n3 +m3) +

5

3
k +mnk

+
1

2
mn2 − 2mn− 7

4
(mk + nk)− 1

4
(nk2 +mk2 − kn2 − km2 − k2)− 3

4

(B) k ≥ �m
2
�

If m and n are even then

Λ(G9) =
1

3
k3 +

1

4
km2 − k2 − 1

2
n2 +

1

8
n3 − 1

8
m3 +

1

2
n+

3

2
mnk +

1

2
mk2

+
5

3
k +

1

4
mn2 +

1

4
m2 − 3

4
mn− 2mk − 11

4
nk +

3

4
(nk2 + kn2)
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If m and n are odd then

Λ(G9) =
1

3
k3 +

1

4
km2 − 5

4
k2 − 3

4
n2 +

1

8
n3 − 1

8
m3 +

13

8
n+

3

2
mnk +

1

2
mk2

+
35

12
k +

9

8
m+

1

4
mn2 − 5

4
mn− 5

2
mk − 13

4
nk +

3

4
(nk2 + kn2)− 1

If m is even and n is odd then

Λ(G9) =
1

3
k3 +

1

4
km2 − k2 − 1

2
n2 +

1

8
n3 − 1

8
m3 +

5

8
n+

3

2
mnk +

1

2
mk2 +

1

4
m2

+
23

12
k +

1

4
m+

1

4
mn2 − 3

4
mn− 2mk − 11

4
nk +

3

4
(nk2 + kn2)− 1

4

If n is even and m is odd then

Λ(G9) =
1

3
k3 +

1

4
km2 − 5

4
k2 − 3

4
n2 +

1

8
n3 − 1

8
m3 +

3

2
(n+mnk) +

1

2
mk2

+
8

3
k +

7

8
m+

1

4
mn2 − 5

4
mn− 5

2
mk − 13

4
nk +

3

4
(nk2 + kn2)− 3

4

Lemma 3.17

Λ(G10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
R m, n are even
S m, n are odd
T m is even, n is odd
T + n−m

8
m is odd, n is even

k is even

⎧⎪⎪⎨⎪⎪⎩
R + 2n+2m+k−4

8
m, n are even

S + 2n+2m+k−4

8
m, n are odd

T + 2n+2m+k−4

8
m is even, n is odd

T + 3n+m+k−4

8
m is odd, n is even

k is odd

Here

R = (m3
+n3−k3)+2(km2−3n2

+kn2−3m2−5mk−5nk)+4(nm2
+3m+k2+3n+mn2−5mn)+8mnk

8

S = (m3
+n3−k3+35m+35n)+2(km2−5n2

+kn2−5m2−9mk−9nk)+4(nm2
+mn2−7mn)+8(3k+mnk−4)

8

T = (m3
+n3−k3+23n)+2(km2

+k2+kn2−7mk−7nk)+4(nm2
+3k+mn2

)+8(−m2
+3m−3mn+mnk−2)

8
.

3.3 Geometric - arithmetic index

Since the majority of edges in our graphs are in threads, and hence have both ends of

degree two, their contributions to the geometric-arithmetic index will be, in most cases,

equal to one. Hence the values of the geometric-arithmetic indices will be, on average,

close to the number of edges, and the deviations will be determined by the number and

type of the out-of-thread edges. Further deviations arise when some of the threads are

trivial. In order to emphasize the deviations, we express GA(Gi) in terms of the number

of edges q, which is equal to the sum of lengths of all strings in Gi.
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All results of this subsection follow by a straightforward calculation. Hence we present

them omitting the details and proofs.

Proposition 3.18 Let q denote the number of edges in Gi. Then

(1) GA(G1) = q − 2 + 4
√
2

3
; GA(G1

1
) = 1.

(2) GA(G2) = q.

(3) GA(G3) = q − 4 + 6
√
6

5
+ 2

√
2

3
; GA(G1,m

3
) = q − 3 + 4

√
6

5
+

√
3

2
.

(4) GA(G4) = q − 4 + 8
√
2

3
.

(5) GA(G5) = q − 6 + 6
√
6

5
+ 2

√
2; GA(G1,m,n

5
) = q − 5 + 4

√
6

5
+ 4

√
2

3

√
3

2
; GA(G1,1,n

5
) =

q − 4 + 2
√
6

5
+ 2

√
2

3
+
√
3; GA(G1,1,1

5
) = 3

√
3

2
.

(6) GA(G6) = q − 6 + 4
√
2; GA(G1,m,n

6
) = q − 21

5
+ 8

√
2

3
;

GA(G1,1,n
6

) = q − 12

5
+ 4

√
2

3
.

(7) GA(G7) = q − 6 + 12
√
6

5
; GA(G1,m,n

7
) = q − 4 + 8

√
6

5
.

(8) GA(G8) = q − 6 + 12
√
6

5
; GA(G1,m,n

8
) = q − 4 + 8

√
6

5
.

(9) GA(G9) = q − 6 + 10
√
10

7
+ 2

√
2

3
; GA(G1,m,n

9
) = q − 5 + 8

√
10

7
+

√
5

3
.

(10) GA(G10) = q − 6 + 3
√
3.

A few things are immediately obvious from the above formulas. First, we note that

among the graphs with at most three strings the geometric-arithmetic index assumes

rational values only on cycles and on the trivial string K2. Further, the index is quite

discriminative on the considered class of graphs; given the number of edges, the graph type

can be in most cases reconstructed from the index value. The only exceptions are G7 and

G8. The same two graphs also show anomalous behavior with respect to the deviations of

GA(G) from q. Namely, the quantity q−GA(Gi) introduces an ordering into the set of ten

graph classes considered here. Its numerical values range from 0 for G2 and 0.11438 for

G1 to 0.53965 for G9 and 0.80385 for G10, and, for the most part, agree with an intuitive

sense of complexity of the graphs. (We have restricted our attention only on the graphs

without trivial strings.) If we agree that Gi ≤ Gj means q − GA(Gi) ≤ q − GA(Gj), we

can write

G2 ≤ G1 ≤ G3 ≤ G7 = G8 ≤ G4 ≤ G5 ≤ G6 ≤ G9 ≤ G10.
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This supports the conclusion that the geometric-arithmetic index measures both diversity

of edge types and a disparity of their end-vertices.

3.4 Connectivity indices

The results for the connectivity indices have a similar flavor as those for the geometric-

arithmetic index. For example, all of them (with two trivial exceptions) contain irra-

tionalities and they do not distinguish between G7 and G8. That is the reason we present

them next.

Proposition 3.19 Let Gi be graphs in figures 1 and 2. Then

(1) 0χ(G1) = 2 +
√
2

2
(k − 1);

1χ(G1) =
√
2− 1 + 1

2
k; 1χ(G1

1
) = 1.

(2) 0χ(G2) =
√
2

2
k;

1χ(G2) =
1

2
k.

(3) 0χ(G3) = 1 +
√
3

3
+

√
2

2
(k +m− 2);

1χ(G3) = −2 +
√
2+

√
6

2
+ 1

2
(k +m); 1χ(G1,m

3
) =

√
3+

√
6

3
+ m−2

2
.

(4) 0χ(G4) =
1

2
+

√
2

2
(k +m− 2);

1χ(G4) = −2 +
√
2 + 1

2
(k +m).

(5) 0χ(G5) = 3 +
√
3

3
+

√
2

2
(k +m+ n− 3);

1χ(G5) = −3 + 3
√
2+

√
6

2
+ 1

2
(k +m+ n); 1χ(G1,m,n

5
) = 3

√
2+

√
3+

√
6

3
+ m+n−4

2
;

1χ(G1,1,n
5

) = 4
√
3+

√
6+3

√
2

6
+ n−2

2
; 1χ(G1,1,1

5
) =

√
3.

(6) 0χ(G6) =
5

2
+

√
2

2
(k +m+ n− 3);

1χ(G6) = 2
√
2− 3 + 1

2
(k +m+ n); 1χ(G1,m,n

6
) = 5

√
2−2

4
+ m+n

2
;

1χ(G1,1,n
6

) =
√
2+n
2

.

(7) 0χ(G7) =
2
√
3

3
+

√
2

2
(k +m+ n− 3);

1χ(G7) =
√
6− 3 + 1

2
(k +m+ n); 1χ(G1,m,n

7
) = 2

√
6−5

3
+ m+n

2
;

(8) 0χ(G8) =
0 χ(G7);

1χ(G8) =
1 χ(G7);

1χ(G1,m,n
8

) =1 χ(G1,m,n
7

); 1χ(G1,1,n
8

) =
√
6−1

3
+ n

2
;

1χ(G1,1,1
8

) = 1
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(9) 0χ(G9) =
5+

√
5

5
+

√
2

2
(k +m+ n− 3);

1χ(G9) =
√
2+

√
10−6

2
+ 1

2
(k +m+ n); 1χ(G1,m,n

9
) =

√
5+2

√
10−10

5
+ m+n

2
;

(10) 0χ(G10) =
√
6

6
+

√
2

2
(k +m+ n− 3);

1χ(G10) =
√
3− 3 + 1

2
(k +m+ n)

3.5 Zagreb Indices

The Zagreb indices exhibit somewhat larger degeneracy than the connectivity indices and

the geometric-arithmetic index. For example, neither of them discriminates between G6,

G7 and G8.

Proposition 3.20 Let Gi be graphs from figures 1 and 2.

(1) M1(G1) = 4k − 2;

M2(G1) = 4(k − 1); M2(G
1

1
) = 1.

(2) M1(G2) = M2(G2) = 4k.

(3) M1(G3) = 4(k +m) + 2;

M2(G3) = 4(k +m) + 4;

M2(G
1,m
3

) = 4m+ 7.

(4) M1(G4) = 4(m+ k + 2);

M2(G4) = 4(m+ k + 4).

(5) M1(G5) = M2(G5) = 4(k +m+ n);

M2(G
1,m,n
5

) = 4(m+ n) + 3; M2(G
1,1,n
5

) = 4n+ 6; M2(G
1,1,1
5

) = 9.

(6) M1(G6) = 4(k +m+ n) + 6;

M2(G6) = 4(k +m+ n) + 12;

M2(G
1,m,n
6

) = 4(m+ n) + 14; M2(G
1,1,n
6

) = 4n+ 16.

(7) M1(G7) = M1(G6);

M2(G7) = M2(G6); M2(G
1,m,n
7

) = 4(m+ n) + 17;

(8) M1(G8) = M1(G6);

M2(G8) = M2(G6); M2(G
1,m,n
8

) = M2(G
1,m,n
7

); M2(G
1,1,n
8

) = 4n+ 22;

M2(G
1,1,1
8

) = 27
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(9) M1(G9) = 4(k +m+ n) + 14;

M2(G9) = 4(k +m+ n) + 28; M2(G
1,m,n
9

) = 4(m+ n) + 29;

(10) M1(G10) = 4(k +m+ n) + 24;

M2(G10) = 4(k +m+ n) + 48.

We see than the expressions for M1(G) have basically the same form as those for

0χ(G) for all considered graphs. This fact is readily explained by noticing that the only

differences come from the vertices of degree 3 and more. Another consequence of this

observation is that M1(G) and 0χ(G) will order our graphs (on the same number of

edges) in roughly the opposite ways. Similar, but less pronounced, is the parallelism

between 1χ(G) and M2(G) for the considered graphs.

4 Concluding remarks

In this paper we have presented explicit formulas for values of several important graph-

theoretical invariants of graphs that consist of at most three strings. In spite of the

simple description, this class contains many chemically interesting graphs. Hence, it

could be worthwhile to continue this line of research by finding formulas for values of

other chemically interesting invariants.
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