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Abstract

In this article, we explore novel spectra-based descriptors to discriminate molec-
ular graphs. As known, classical structure descriptors based on the eigenvalues of
the underlying adjacency matrix are often insufficient since there exist a large num-
ber of isospectral graphs. Briefly recall that the spectrum is the set of eigenvalues
of the characteristic polynomial. To tackle the problem, we propose five families of
novel descriptors based on the eigenvalues of certain molecular matrices representing
chemical structures. Note that in this paper, we only consider the underlying skele-
ton of a molecular graph. Because it is crucial to study the discrimination power
(often called degeneracy) by not merely using synthetic (isomeric) structures, we
apply the novel measures to both real and synthetic molecular graphs. Also, we
use ten different types of molecular matrices to calculate the novel descriptors and
determine correlations between them. It turns out that the novel descriptors possess
high discrimination power when being applied to appropriate molecular matrices.
Evidently, the study also reveals that special kinds of matrices capture structural
information of the molecular graphs more meaningfully than others, particularly
the adjacency matrix which turned out often to be insufficient to develop molecular
descriptors.

1 Introduction

Structural descriptors for investigating molecular structures have been extensively ex-
plored in mathematical, structural and computational chemistry, and related disciplines;

see [3-5,7,55]. These measures have been often used to characterize molecular networks
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since they quantify structural features thereof. In fact, numerous descriptors have been
contributed but no such graph invariant can characterize the underlying graph topol-
ogy completely. Thus, it is still an outstanding problem to investigate structural graph
measures having high discrimination power when being applied to various graph classes.

In terms of structural chemistry and drug design, molecular descriptors have also been
extensively employed, e.g., for analyzing and determining physico-chemical properties of
the underlying compounds. Indeed, QSAR and QSPR are well-known application areas
where molecular structure descriptors have been proven useful; see [15]. In particular,
the prediction of biological and pharmacological properties using descriptors has been a
problem of great interest and importance [16].

If one takes a closer look at the developed descriptors, one can realize that over the
years, various mathematical methods from different fields such as combinatorics, statistics
and information-theory have been employed to tackle the challenging problem of char-
acterizing the complexity of molecules [6,11,52]. Interestingly, the analysis of biological
networks has triggered the insight that statistical techniques should be employed because
the underlying networks are often affected by measurement errors [20]. In particular,
entropy-based graph measures [6, 11] turned out to be meaningful when characterizing
graphs structurally. A major reason is that measures based on Shannon’s entropy can
be understood as a cumulation of other (local) quantities representing probabilities that
capture structural information of a graph. Other classical descriptors like the Wiener or
Randi¢ index [39,56] are simply based on deriving structural features (e.g., distances or
degrees) to obtain a single numerical value characterizing the complexity of the molecular
graph.

In this paper, we focus on developing and investigating spectra-based descriptors using
molecular matrices [32]. The main contribution besides examining the novel descriptors
is to demonstrate their ability and usefulness to tackle problems in structural chemistry.
Among the existing spectra-based measures are indices that only take a single eigenvalue,
e.g., the maximal eigenvalue or p < n (|V| := n) eigenvalues into account. Hence, we
put the emphasis on such measures taking the complete spectrum of different molecular
matrices into account. Those measures have not been well explored yet. In any way, note
that only measures that capture significant structural information have the potential to

be applied. Finally, the degeneracy problem is also a crucial issue in structural chemistry
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that deserves special attention.

As known, eigenvalue-based measures relying on the adjacency matrix have been ex-
tensively explored [31,40], but as mentioned, they often show lack because of their less
discrimination power. Also, note that graph polynomials have been used to characterize
chemical structures with the aid of coefficients or the zeros of the polynomials [31,40].
In order to sketch the most known approaches in this area in brief, we note that many
descriptors are generally defined by using either the elements or the characteristic poly-
nomial of a molecular matrix [16,31,40]. Early work to study the eigenvalues of graphs
dates back to Lovdsz et al. [37] and Cvetkovic [10]. Lovdsz et al. suggested that the
leading eigenvalue of the adjacency matrix can be used to detect molecular branching
of hydrocarbons. Leading eigenvalues of other molecular matrices such as the distance
matrix have also been studied [43]. Also, Gutman [24,25] studied the sum of the absolute
values of eigenvalues of the adjacency matrix of a graph (called graph energy) and related
it to the total m-electron energy involved in the formation of hydrocarbon molecules.
For studying the DNA structure of different species and folding of proteins, Randi¢ et
al. [45] proposed descriptors representing sums of positive eigenvalues and also based on
the multiplicity of the zero eigenvalue of molecular matrices. Apart from these measures,
there are also various measures based on the statistical quantities, such as mean, abso-
lute deviation, variance of the eigenvalues inferred from molecular matrices [9,29,30,53].
Estrada [22,23] dealt with studying exponential functions when analyzing the degree of
folding of proteins to accommodate both positive and negative eigenvalues of an adjacency
matrix. Recently, Consonni and Todeschini [9] proposed two classes of eigenvalue based
descriptors namely the absolute deviation and mean absolute deviation of eigenvalues de-
rived from matrices of weighted molecular graphs. But as already mentioned, most of the
known eigenvalue-based descriptors are not discriminative enough to characterize graphs
meaningfully. Also, they do not capture structural information meaningfully and, hence,
they can not be applied to tackle important problems in quantitative graph theory [21,38]
such as graph classification and related problems.

The paper is organized as follows: In Section 2, we introduce some graph-theoretical
terminology. Section 3 sketches the most important contribution towards the uniqueness
of descriptors. In Section 4, we propose novel descriptors based on the eigenvalues of

molecular matrices. The molecular matrices to be used in this paper are described in
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Section 5. Section 6 outlines the databases we are going to use to perform our study and
provides numerical results when determining the uniqueness of the descriptors as well as

correlations between them. The paper ends with a summary and conclusion in Section 7.

2 Graph-theoretical Terminology

We start this section by defining some terminology for chemical graphs and molecular
matrices to be used in subsequent sections [11,12,47,49].

Let G = (V, E) be a finite connected graph without loops and multiple edges. Here V'
is the set of elements called vertices and E is the set of unordered pairs of distinct elements
of V, called edges [28]. G is a molecular graph representing the chemical structures. Again,
we only consider the skeleton of the underlying graph, i.e., we do not take heteroatoms
and bond types into account [26,54]. In view of the above definitions, we interchangeably
use the terms structure and graph.

Let deg(v) denote the number of edges incident with v, called the degree of a vertex.
Let d(u,v) denote the length of the shortest path connecting the vertices u and v, called
as distance between two vertices u and v, and let p(G) = max{d(u,v) : u,v € V} denote
the diameter of G. Let S,(u; G) denote the r-sphere of a vertex u defined as S,(u; G) =

{z e V:d(u,z) =r}.
3 Uniqueness of Descriptors

The uniqueness (or degree of degeneracy) is an important property of a descriptor and
expresses its discrimination power [8,34,36]. In general, a descriptor is degenerated if
there are at least two non-isomorphic graphs possessing the same value. However, it
is well-known that every index is degenerated to some extent. Hence to quantify the
degree of degeneracy of a given index, a non-information-theoretic measure [34, 35] and
an information-theoretic measure [51] have been developed. To generate the numerical

results, we use the sensitivity index S(I) of a descriptor I due to Konstantinova [34]:

S(1) = % W

where |G| denotes the cardinality of a given set of graphs G and |G;| is the number of
graphs G; € G that cannot be distinguished by the descriptor I. It is evident that S(I)

relies on the given collection of graph structures. By definition S(I) = 1 implies that
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there does not exist any pair of non-isomorphic graphs possessing the same value of 1.
Hence when S(I) is close to one, then I is said to be highly discriminative. Seminal work
to evaluate the discrimination power of topological indices has been done by Bonchev et
al. [8] when analyzing information-theoretic measures on alkane structures. This study has
been then further extended by Raychaudhri et al. [46] to graphs containing one ring. Later
Konstantinova et al. [34-36] studied the sensitivity of various measures using polycyclic
structures such as hexagonal and square lattices that represent the class of cata-condensed
benzenoid hydrocarbons. More recent results have been achieved by Diudea et al. [17]
when examining a novel super index based on Shell-matrices and polynomials. By using
real and synthetic molecular graphs, it turned out that this new descriptor can distinguish

all graphs uniquely [17].

4 Molecular Descriptors

In this section, we define novel molecular descriptors derived by using the spectra of
molecular matrices. Let G = (V, E) be a molecular graph on n vertices. Let M be
a molecular matrix defined on G and let s > 0. Let {1, As,..., A\x} be the non-zero

eigenvalues of M. We define

Al |\il5
HJ\VI‘.L;(G) = - X 1 lOgZ < — l) ’ (2)
2‘2:; Z?:l |/\j ° Z?:l ‘/\j‘?

Sars(G) = [Ai|5 + [Xal* 4+ |\l (3)

1
ISa(G) = , 4
Mol ) = T el 4 ol .
Pars(G) = [Aas - [Aaf* - M5, (5)

1
[P]\/I7S(G) = 1 1 - (6)

Al (Aol - [l

Note that Hy4(G) defined by Equation (2) is based on Shannon’s entropy [48]. Here,
Hys(G) represents the mean information content of G with respect to the distribution
of the eigenvalues of the molecular matrix M. A comprehensive and almost up to date
survey on information-theoretic indices for graphs has been recently published by Dehmer
et al. [11].

The just defined families generalize some measures known in the literature. When

M = A(G) and s = 1, Sy 4(G) is the well-known graph energy proposed by Gutman
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(24,25]. Also, Sys(G) (see Equation (3)) is a special case of the measure

SpSum® (M, w) Z I, (7)

proposed in [9]. When s = 2, Sy s(G) represents a measure defined by Dehmer et al. [14]
for analyzing the zeros of a special matrix (defined in the next section as IM;(G) in
Equation (18)). In this paper, we refer to Equation (2) as an entropy-(based) measure

and Equations (3) to (6) as algebraic measures.

5 Molecular Matrices

Numerous graph-theoretical matrices have been defined by using the structural properties
of a molecular graph [32]. In this article, we mainly consider ten types of matrices defined
by using the adjacency between vertices, the degree of a vertex and/or the distance be-
tween two vertices of a graph. Reasons why we have used these particular matrices are the
reasonable computational complexity to derive the matrices from given molecular graphs
and the fact that their underlying structural features have been extensively investigated
and are well understood (interpretability). Now let V' = {1,2,...,n} be the vertex set of

the graph G. Each of the matrices defined below is real and a square n x n matrix:
1. A(G) is the adjacency matrix of G.

2. The Laplacian matrix, L(G), is a symmetric matrix which is based on the degrees

and adjacency relations [28]. For 1 < i,j < n, the (i, 7)" entry of L(G) is given by,

-1, if vertices ¢ and j are adjacent,
[L]U = deg(i), if i =j, (8)
0, otherwise.

3. The distance matrix, D(G), is a symmetric matrix defined by using the distance
between the vertices [28]:
d(i.f), iti#j,
[D]ij == . (9)
0, otherwise.
4. The distance path matrix, DP(G), is a symmetric matrix defined by using the
elements of the distance matrix [18,19]:

[DP];; ([D L; - 1) (10)
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Each element of this matrix counts all internal paths included in the shortest paths

between the pair of vertices.

. The augmented vertex degree matrix, AV(G), is a non-symmetric matrix defined

by using the degree and distance between the vertices [41,42]:
[AV];j := deg(j) /2P (11)

. The extended adjacency matrix, EA(G), is a symmetric matrix defined by using

the degree of the vertices [57]:

L <d€g(i) + deg(j)) , if vertices i and j are adjacent,

[EA]; :—{ 2\ deg(5) " deg(i) 1)
0,

otherwise.
. The vertex connectivity matrix, VC(G), is a symmetric matrix defined by using the
degrees of the vertices [44]:

1 . . . . .
————— if vertices ¢ and j are adjacent,
Vel = { Vdeq(iyies) J ! (13)

0, otherwise.

. The random walk Markov matrix, MM (G), is a non-symmetric matrix defined by
using the vertex degrees [33]. Firstly, it is assumed that every neighboring vertex can
be reached from a given vertex u with the same probability, that is, the probability
of going from u to one of its neighbors is 1/deg(u). The resulting Markov matrix is
defined as follows:

if vertices ¢ and j are adjacent,

1
[MM];; = { deg(5) (14)

0, otherwise.

The walks of the generated distribution are called simple random walks. Note that
random walks can also be obtained by calculating powers of MM (G). That is the
entry at [M M?];; represent the probability for a A-step simple random walk starting

at vertex j and ending at vertex i.

To describe two more graph-theoretical matrices, we need further definitions. Let G =

(V, E) be a graph with n vertices. We start by defining a probability distribution Pg (V)

on the vertices of a given graph using an arbitrary information functional that captures

the structural information of a graph, see [11,12]. Then, the quantities [12]

f@)

psi) = mv (15)
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form a probability distribution over the set of vertices V = {1,2,...n}. Again f : V — RT
is an arbitrary information functional that maps a set of vertices to non-negative real
numbers.
Now we can define the so-called weighted structure function matriz denoted by IM(G):
[IM]ij := 1= |ps (i) = pr(1)IBA(, ). (16)
This matrix is symmetric and is based on the inferred probability distribution Pg (V). /8
is a weighting function. Evidently, concrete information functionals and parameters lead
to special matrices. By using the information functional

p(G)
FG) = ¢l8,(:G), (17)

Jj=1

we yield the following matrices:

9. Weighted structure function matrix, 7M;(G) [12,14]:

_ lps(d) = ps (Gl

My =1 odig) (18)
p(G)
where f(i) = Z(/’(G) +1—)I5;(6; G| and B(d(i, 5)) = s
j=1
10. Weighted structure function matrix, IMs(G) [12,14]:
ps(i) — sy
[IMs);; :=1— M;d(ii,j)f()" (19)
p(G) '
where f(i) = Z(/’(G)eﬂﬂ)wj(i; @)| and B(d(i, ) = 32t
j=1

More technical details and other information functionals can be found in [12].
6 Analysis and Numerical Results

In this section we exhibit the behavior of the newly defined descriptors (from Section 4)
by applying them to various databases containing a large number of molecular structures.
Concretely, we investigate what kind of structural information the measures do detect by
determining correlations and cumulative distributions.

From the newly defined descriptors in Section 4, we arbitrarily choose eight descrip-

tors by varying the value of s, namely Hy1(G), Hya(G), Swo(G), Sus(G), ISu2(G),
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Pr1(G), Pyao(G) and I Py 5(G). Here M denotes the matrix that is being considered. For
example, Hp»(G) denotes the entropy measure at s = 2 and the eigenvalues are derived
using the distance matrix D(G). Apart from these eight measures, we also consider two
more statistical measures from the literature [14,37], namely the leading eigenvalue (also
called the maximum) denoted by T'1};(G) and the variance of the eigenvalues denoted by

TI,(G).
6.1 Databases

We have considered both real and synthetic chemical structures. Note that all databases
only contain the skeletons of the underlying chemical structures (all bond and atom types
are equal). Chemical structures with isomorphic structures are represented only once.

The synthetic graphs have been generated by using the software Molgen [1].

MS2265 This database has been extracted from the commercially available mass spectral
database NIST [13,50]. It contains 2265 non-isomorphic chemical structures. Also

4 <|V]| <19; 2 < p(G) < 15 holds for all G € MS2265.

AG3981 The database has been generated from a freely available database called Ames
Genetoxicity [13,27]. It contains 3981 non-isomorphic chemical structures. Also

2 < |V]| <109 and 2 < p(G) < 47 holds VG € AG3981.

APL91075 The database has been generated from a freely available database called
ASINEX Platinum Collection [2,13] which contains in-house designed and synthe-
sized collection of drug-like compounds. Also 6 < [V]| < 60 and 3 < p(G) < 36
holds VG € APL91075.

C12 Trees This is a synthetic graph class consisting of 355 (exhaustive) alkane isomers

with 12 carbon atoms.

C12 Ringl This synthetic graph class consists of 3232 (exhaustive) hydrocarbon isomers

with 12 carbon atoms such that each molecular structure contains one ring.

C12 Ring2 This synthetic graph class consists of 16977 (exhaustive) hydrocarbon iso-

mers with 12 carbon atoms such that each molecular structure contains two rings.

C13 Ring2 This synthetic graph class consists of 51652 hydrocarbon isomers with 13

carbon atoms such that each molecular structure contains two rings.
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C14 Trees This synthetic graph class consists of 1858 alkane isomers with 14 carbon

atoms.

C14 Ringl This synthetic graph class consists of 22565 hydrocarbon isomers with 14

carbon atoms such that each molecular structure contains one ring.

C15 Trees This is also a synthetic graph class consisting of 4347 alkane isomers with 15

carbon atoms.

6.2 Entropy Based Measures

6.2.1 Cumulative Distributions

In the following, we interpret the obtained results by using cumulative distributions of
the measures. Also, we determine correlations between different measures. To interpret
the cumulative distributions, consider Figure 1. They show the cumulative distributions
of entropy measures Hyy1(G) and Hyo(G) for AG3981. Here the z-axis represents the
normalized entropy values and the y-axis represents the percentage rate of chemical struc-
tures having a normalized value less or equal 7'I. The measures were normalized according

to the following scheme:
T T1 — min(T1)
~ max(T1) — min(7'1)’

(20)

HE) HE)

(a) Hua(G) (b) Har2(G)

Figure 1: Cumulative distributions of entropy based measures for AG3981.
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Indices p when Indices p when
s=1 s=2 s=1 s=2
Has(G) Hays(GQ) 0.987 | 0.9792 || Hin, s(G) Has(G) -0.8405 | 0.3807
Ha(G) Hpas(G) | 0.9987 | 0.9999 || Hin, s(G) Havs(G) | -0.8442 | 0.358
Has(G) Hp s(G) 0.9898 | 0.9806 || Hyum, s(G) Hpas(G) |-0.8317 | 0.3847
Hy5(Q) Hyes(G) | 0.9993 | 0.9999 || Hrars(G)  Hrs(G) -0.8375 | 0.3751
Hys(G) Hur,s(G) | 0.9993 | 0.9999 || Hrar s(G)  Hye(G) | -0.8387 | 0.3831
Havs(G) Hpas(G) | 0.9829 | 0.9723 || Hin, o(G) Hps(G) -0.3489 | 0.3435
Havs(G) Hps(G) 0.9955 | 0.9989 || Him, s(G) Hpps(G) | 0.0903 | 0.5587
Havs(G) Hyes(G) | 0.9855 | 0.979 || Hiwns(G) Hiwm,s(G) | 0.8846 | 0.7159
Havs(G) Huws(G) | 09855 | 0.979 || Hpps(G) Hps(G) 0.4489 | 0.64241
Hpas(G) Hps(G) 0.9864 | 0.9796 || H.s(G)  Hyc,s(G) | 0.9884 | 0.9804
Hpas(G) Hyes(G) |0.9992 | 0.999 | Hps(G) Hyvs(G) | 0.9884 | 0.9804
Hpas(G) Haws(G) | 0.9992 | 0.999 | Hyeos(G)  Huwms(G) 1 1

Table 1: Correlation coefficient p if s =1 and s = 2 for Hy;4(G) by using AG3981.

In Figure 1(a), we observe that the eigenvalues of the matrices A(G) and EA(G) pos-
sess almost identical distributions. In addition, the eigenvalues of VC'(G) and MM (G)
also have identical distribution and are almost identical with A(G) and EA(G). The
eigenvalues of AV (G) and L(G) also possess a similar distribution to the aforementioned
matrices. But this does not mean that these molecular matrices are per se useless. In-
deed, the resulting eigenvalues can be used to define measures that capture structural
information meaningfully, e.g., see [14].

We also present the results when determining the correlations of the entropy measures
H)y s between various matrices in Table 1. The resulting scatter plots are shown in Figure
2. In support of the above mentioned observation, we see again that the correlation be-
tween the measures Hy,(G) for every pair of the matrices, A(G), L(G), AV(G), EA(G),
VC(G) and MM (G), is greater than 0.986. The correlation for descriptors using the ma-
trices VC(G) and MM (G) equals one. Further, the values of the entropy measure based
on the eigenvalues of DP(G) are uniformly distributed where the values range between 0.2
to 0.8. We also observe that the correlation between DP(G) and any matrix is around
zero while the maximum correlation is around 0.44 with D(G). That means, the cor-
responding measures capture structural information of the molecular graphs differently.
The scatter plot of the entropy measure by using DP(G) vs. other molecular matrices
is shown in Figure 3. It is worth mentioning that the mean of these distributions range
between 0.524 and 0.536. The distribution of the eigenvalues of the matrices D(G) and
L(G) show that 80% — 90% of the underlying chemical structures possess large entropy

values having means of 0.63 and 0.59, respectively. The eigenvalue distribution of D(G)
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has a correlation coefficient ranging between 0.66 and 0.69 with the matrices described
above. In contrast, IM;(G) and IM(G) possess small entropy values for nearly 90% of
the molecular graphs having means of 0.25 and 0.42, respectively. From Table 1, we also
observe that the entropy measure Hys; shows negative correlation between I'M;(G) and
all the other measures except IM(G).

Clearly, Figure 1(b) shows that Hys2(G) has a different impact on D(G), IM;(G) and
IM,y(G) as compared to Hy1(G). This fact can also be underpinned by the correlation
analysis, wherein the correlation between IM(G)(both IM;(G) and IMy(G)) and other
matrices is positive having correlation coefficients between 0.3 and 0.76. Finally, we
gain that all the matrices used for calculating Hy»(G) have a quite similar pattern of
distribution. Note that we obtain similar results by using MS2265 and APLI1075 (not
shown here).

6.2.2 Discrimination Power

MS2265 | AG3981 | APL91075 MS2265 | AG3981 | APL91075
Hy 0.925828 | 0.962823 | 0.899292 | Hap 0.925386 | 0.955288 | 0.8818666
Hp, 0.993819 | 0.989952 | 0.809409 | Hp 2 0.999117 | 0.997488 | 0.89714
Hp 1 0.985431 | 0.988696 | 0.886753 | Hpo 0.984106 | 0.985933 | 0.783003
Hippyp | 0.947461 | 0.944235 | 0.092704 | Hypg, o | 0.992936 | 0.989199 | 0.832698
Hipg,po | 0.980574 | 0.966591 | 0.188614 | Hypg,o | 0.998234 | 0.993971 | 0.823431
Hayyo | 0996468 | 0.991962 | 0.892133 | Hay | 0.979691 | 0.9578 0.624167
Hpay | 0997351 | 0.992213 | 0.914093 | Hpa | 0.992936 | 0.990204 | 0.890684
Hygarn | 0.993819 | 0.990204 | 0.914455 | Hpgpro | 0.988521 | 0.987189 | 0.890716
Hycyo | 0.993819 | 0.990204 | 0.914455 | Hycp | 0.988521 | 0.987189 | 0.890716
Hppy | 0.996468 | 0.997488 | 0.871776 | Hppz | 0.997351 | 0.996483 | 0.89401

Table 2: Value of sensitivity index for the descriptor Hy+(G) when s = 1 and s = 2, with
various matrices for real chemical structures.

As a next step of our analysis, we study the discrimination power of the measures using
our databases. At the outset, we analyze Table 2 showing the calculated sensitivity indices
(S(I)) concerning the entropy measures Hy1(G) and Hy2(G) computed for MS2265,
AG3981 and APL91075. In general, all measures using the defined matrices show a high
sensitivity value for AG3981 and MS2265 and, hence, can discriminate more than 92%
of the graphs uniquely. In particular, the measures defined by the matrices DP(G) and
AV(G) (that are based on distances) can discriminate more than 99% of the graphs
uniquely. The measures using the adjacency matrix and the weighted structure function

matrices possess the lowest discrimination power. Also, the entropy measure Hyq(G)
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does possess a high discrimination power if s = 1 compared to the case s = 2, except
for the distance and the weighted structure function matrices. In contrast, the matrices
D(G), IM;(G) and IM5(G) do have a better discrimination power if s = 2 (this also
supports the observation from Figure 1).

Next we observe that the measures (based on the molecular matrices) possess relatively
less discrimination power for APL91075. The measure H);1(G) has the highest sensitivity
value of approximately 0.915 when using the matrices based on degrees (such as FA(G),
VC(G), MM(G)). The matrices defined using distances follow with around 0.80 — 0.88
while the weighted structure function matrices show quite low sensitivity values (0.09 and
0.18). But when applying Hy»(G), the values of S(I) range from 62% — 89% for all the
matrices. However, it is worth mentioning that the weighted structure function matrices
show a tremendous improvement of the discrimination power (83% as compared to ca.
18% for Hy1(G)).

Next we note that the discrimination power of the measure based on the matrix
VC(G) is as good as when using M M (G), for all the graph classes (as observed earlier by
performing the correlation analysis; p = 1). However, there is a major difference between
the matrices: VC(G) is symmetric and, hence, has only real eigenvalues. MM (G) is non-
symmetric and its spectrum contains complex-valued eigenvalues too. Interestingly, when
the absolute values of the eigenvalues are taken into consideration, the spectra of both
matrices become identical and, hence, the entropy values are identical. This fact can also
be observed from the Figure 1 since the cumulative entropy distributions for MM (G) and
VC(G) are almost identical. In contrast to the above situation, even though the matrices
EA(G) and A(G) show identical distribution of measure values, the matrix FA(G), has
higher discrimination power than A(G), VC(G) or MM (G).

We yield another interesting finding if s = 1 for MS2265, see Table 2. By calculating
the matrices D(G) and VC(G), we find equal sensitivity values (0.994), but the struc-
tures that are not distinguishable by them are completely different. This shows that the
underlying measures captures structural information of the graphs significantly different.

In Tables 3 and 4, we evaluate the discrimination power of the entropy measures
Hy1(G) and Hyp2(G) for synthetic structures (see Section 6.1). For Hyy1(G), the matri-
ces when being ranked in terms of their resulting sensitivity values (based on the under-

lying measure) reveal that DP(G) > EA(G) > D(G) > AV(G) for all synthetic (isomer)
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C12Ringl | C12Ring2 | C13Ring2 | C14Ringl | C12Trees | C14Trees | C15Trees
Hy 0.756807 | 0.774283 | 0.676643 | 0.601773 | 0.743662 | 0.710441 | 0.625489
Hp 0.987005 | 0.938093 | 0.826415 | 0.771638 1 0.992465 | 0.982977
Hr 0.808478 | 0.713789 | 0.548962 | 0.583204 | 0.983099 | 0.958019 | 0.943179
Hirar 1 | 0.933478 | 0.696236 | 0.339561 | 0.519211 | 0.983099 | 0.95479 | 0.904992
Hina 0.95823 0.80986 0.510861 | 0.626679 | 0.994366 | 0.982239 | 0.933747
H v 0.98453 0.918949 | 0.768005 | 0.741724 | 0.994366 | 0.989236 | 0.980676
Hpaa 0.990718 | 0.954232 | 0.870848 | 0.782717 1 0.989236 | 0.990798
Hpyarn | 0.909963 | 0.917241 | 0.824634 | 0.728917 | 0.943662 | 0.951561 | 0.950311
Hyca 0.909963 | 0.917241 | 0.824634 | 0.728917 | 0.943662 | 0.951561 | 0.950311
Hppa 0.996287 | 0.977028 | 0.930342 0.79743 1 0.996771 | 0.992179

Table 3: Value of the sensitivity index for Hyy 1 (G) by using various matrices and synthetic
structures.

graph classes. Then, other matrices follow while the adjacency matrix A(G) shows the
lowest performance in most of the cases. By using Hp2(G), the ordering of the matri-
ces changes to DP(G) > IM,(G) > IMy(G) > D(G) followed by other matrices. The
matrices AV(G), L(G) and A(G) lead to low discrimination power among others. Even
for isomers, we observe (as before) that the entropy measures have higher discrimination
power if s = 1 than s = 2 for all matrices except the distance matrix and the weighted
structure function matrices. In contrast, using the distance matrix D(G), weighted struc-
ture function matrices I M;(G) and IM,(G) lead to a better discrimination power if s = 2.
In particular, IM,(G) has higher discrimination power than 7'M (G), in all the cases. A
reason for this is the presence of exponential terms in the definition of the matrix IMs(G).
Also, using VC(G) and MM (G) lead to similar results when applying the measures to

synthetic chemical structures.

Cl12Ringl | C12Ring2 | C13Ring2 | C14Ringl | C12Trees | Cl4Trees | C15Trees
Hyp 0.741027 | 0.699535 | 0.516398 | 0.529803 | 0.743662 | 0.707750 | 0.609616
Hpo 0.989480 0.94469 0.836676 | 0.756348 | 0.994366 | 0.989236 | 0.972625
Hy o 0.744121 | 0.573187 | 0.281228 | 0.372568 | 0.926761 | 0.76211 | 0.541753

Hiyp 2 | 0.993193 | 0.958827 | 0.871176 | 0.780545 1 0.992465 | 0.990798
Hyyv,o | 0993812 | 0.963362 | 0.881166 | 0.782185 1 0.996771 | 0.991718
Hpva 0.865408 | 0.607646 | 0.278073 | 0.370796 | 0.963380 | 0.836921 | 0.690821
Hgao 0.97401 0.899158 | 0.736177 | 0.713982 1 0.981701 | 0.968484

Hyrare | 0.889542 | 0.853095 0.65709 0.648837 | 0.938028 | 0.946717 | 0.924776
Hycp 0.889542 | 0.853095 0.65709 0.648837 | 0.938028 | 0.946717 | 0.924776
Hppp 0.996287 | 0.965424 | 0.904166 0.78799 1 0.995695 | 0.990338

Table 4: Value of S(I) for Hj5(G) using various matrices and synthetic structures.

From the sensitivity values shown in Tables 3 and 4, it is important to emphasize that

among all synthetic graph classes, the alkane isomers (C12Trees, C14Trees and C15Trees)
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could be discriminated significantly as compared to the other hydrocarbon isomer classes.
6.3 Algebraic and Statistical Measures

Next, we analyze the algebraic measures Sy 2(G) and Sy 3(G) (see Equation (3)) . The
results are shown by Tables 5, 6 and 7. Here, we only consider the symmetric matrices.
From Tables 5 and 2, we observe that Sy s(G) has a better discrimination power than
Hys(G). Also, Sys(G) discriminates better than Sy »(G). Again, the distance and
degree- based matrices DP(G), D(G) and EA(G) capture structural information more
significantly and possess a higher discriminating power. By using AG3981, Sy 3(G) has
the same sensitivity values (0.9995) when applied to the matrices D(G), L(G), IM(G),
IM,(G) and EA(G). But interestingly, the pairs of graphs that can not be discriminated

by these matrices are notably different, see Figure 4.
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(d) M = IM;(G) with Sypr, 5(G) =475 (e) M = IMy(G) with Sy, 5(G) = 5.313

Figure 4: Pairs of graphs having same values using Sy 3(G).
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MS2265 | AG3981 | APL91075 MS2265 | AG3981 | APL91075
Saz2 0.928918 | 0.965084 | 0.94431 | Sa3 0.977925 | 0.990455 | 0.948251
Sp 1 1 0.980006 | Sp.3 1 0.999498 | 0.996904

Spp2 0.99117 | 0.996986 | 0.922701 | Sp3 0.998234 | 0.999498 | 0.877068
Sty 2 | 0.997351 | 0.997991 | 0.961713 | Syagy3 | 0.999117 | 0.999498 | 0.964524
Sia,2 | 0.999117 | 0.999498 | 0.966676 | Srar,,3 | 0.996468 | 0.999498 | 0.97098

Spas 1 1 0.996014 | Spas 1 0.999498 | 0.996114
Syea | 0.992936 | 0.994223 | 0.993741 | Sycs | 0.993819 | 0.994725 | 0.994049
Sppa 1 1 0.999231 | Spps 1 1 0.99765

Table 5: Value of S(I) for Sy 5(G) if s =2 and s = 3 by using various matrices and real
chemical structures.

C12Ringl | C12Ring2 | C13Ring2 | C14Ringl | C12Trees | Cl4Trees | C15Trees
Saz2 0.762686 | 0.820758 | 0.793638 | 0.644538 | 0.749296 | 0.717976 | 0.635611
Sp2 0.999381 | 0.993698 | 0.984144 0.81755 1 1 0.9977
Sro 0.820235 | 0.789068 | 0.727213 | 0.655965 | 0.983099 | 0.974704 | 0.973315
S 2 | 0989171 | 0.949108 | 0.859328 | 0.782008 1 0.997847 | 0.991258
S | 0.993193 | 0.962066 | 0.895048 | 0.784445 1 0.998924 | 0.995399
Spaz | 0.997525 | 0.989987 | 0.975683 | 0.816132 1 1 0.99954
Sveo | 0.914913 | 0.954114 | 0.936169 | 0.774075 | 0.943662 | 0.960172 | 0.966644
Spp2 0.998762 | 0.996937 0.99245 0.820474 1 1 1

Table 6: Value of S(I) for Sy 2(G) using various matrices and synthetic molecular struc-
tures.

In Tables 8 and 9, we present the sensitivity values for T1}, (@), TI1(G), Pui(G),
Pyr2(G) and TPy o(G). This table shows only the best sensitivity values in conjunction
with the underlying molecular matrix, i.e., only those values which represent a compet-
itively higher discriminating power among all values (and their corresponding matrices)
when applying the underlying measures to our databases. Similarly, we present in Table
10 the sensitivity values for 1.5y 2(G) using selected symmetric matrices in the order of
their discrimination power. From Table 8, we observe that [Py 5(G) is highly sensitive

for the matrices IM;(G), IMy(G) and L(G), and can discriminate almost every graph

C12Ringl | C12Ring2 | C13Ring2 | C14Ringl | C12Trees | Cl4Trees | C15Trees
Sags 0.940594 | 0.924368 | 0.915918 | 0.768314 | 0.949296 | 0.944564 | 0.938348
Sp3 0.998762 | 0.990104 | 0.976651 | 0.813915 1 0.998924 | 0.994019
Sr3 0.943379 | 0.909525 | 0.814509 | 0.733658 | 0.988732 | 0.986007 | 0.968715
S,z | 0.998762 | 0.973847 | 0.921842 | 0.799778 1 0.998924 | 0.994479
S,z | 0.998144 | 0.978324 | 0.936518 | 0.806116 1 0.995694 | 0.995859
Seazs | 0.998762 | 0.988455 | 0.977407 | 0.816131 1 1 0.996779
Syes | 0913676 | 0.951051 | 0.929935 | 0.771460 | 0.943662 | 0.961249 | 0.966874
Sppa | 0.999381 | 0.994817 | 0.982634 | 0.815644 1 0.996771 | 0.99908

Table 7: Value of S(I) for Sy 3(G) using various matrices and synthetic molecular struc-
tures.
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1Py 2 | IPry, 1P Pppa Ppaa Pppo Praa
MS2265 1 1 1 1 0.9766 0.999117 | 0.902429
AG3981 1 1 1 1 0.990706 | 0.999497 | 0.954032
APL91075 1 0.999495 | 0.989844 1 0.994697 1 0.939753
C12Ringl 1 1 1 1 0.950186 | 0.999381 | 0.769183
C12Ring2 1 1 1 0.999647 | 0.858043 | 0.995641 | 0.587265
C13Ring2 1 1 1 0.999884 | 0.855824 | 0.995663 | 0.560733
Cl14Ringl | 0.822734 | 0.822734 | 0.822734 | 0.822734 | 0.76499 | 0.821183 | 0.559982
Cl12Trees 1 1 1 1 0.994366 1 0.95493
Cl4Trees 1 1 1 1 0.997847 | 0.998924 | 0.911195
C15Trees 1 1 1 1 0.994479 | 0.99954 | 0.89188

Table 8: Best values of S(I) for algebraic descriptors I Py s(G) and Py .(G) using various
matrices.

TIhp TIj TT;x TI Ile Tl IZM; I 12;\,11 TI}p
MS2265 1 1 0.978367 | 0.997351 | 0.998234 | 0.993819 | 0.873289
AG3981 1 1 0.937704 | 0.994725 | 0.997991 | 0.991962 | 0.942477
APL91075 | 0.99989 | 0.955334 | 0.606961 | 0.149108 | 0.278035 | 0.661685 | 0.979171
C12Ringl 1 0.995359 | 0.996287 | 0.939975 | 0.968441 | 0.916151 | 0.174505

C12Ring2 | 0.999647 | 0.996938 | 0.973553 | 0.716734 | 0.841256 | 0.658126 | 0.030394
C13Ring2 | 0.999342 | 0.994386 | 0.951173 | 0.366007 | 0.580307 | 0.309068 | 0.023136
C14Ringl | 0.822424 | 0.820519 | 0.797252 | 0.551607 | 0.666652 | 0.466342 | 0.120629

C12Trees 1 1 0.994366 | 0.994366 | 0.994366 | 0.977465 | 0.890141
Cl4Trees 1 1 0.982239 | 0.961787 | 0.975242 | 0.927341 | 0.784715
C15Trees 1 0.99954 | 0.959282 | 0.921785 | 0.958822 | 0.848861 | 0.617207

Table 9: Best values of S(I) for algebraic descriptors T'I},(G) and TI3,(G) using various
matrices.

ISim,2 | IS 2 | ISEa2 ISpyo ISppo I1S1, 2
MS2265 0.973068 | 0.969978 | 0.947461 | 0.927152 | 0.907726 | 0.89404
AG3981 0.961316 | 0.965838 | 0.919116 | 0.892238 | 0.868626 | 0.81889
APLI1075 | 0.216887 | 0.243184 | 0.081032 | 0.053132 0.03843 | 0.061104
C12Ringl | 0.856745 | 0.843441 | 0.789913 | 0.580446 | 0.612933 | 0.143874
C12Ring2 | 0.462862 | 0.408847 | 0.33298 | 0.1395432 | 0.126465 | 0.015904
C13Ring2 | 0.126926 | 0.110489 | 0.072408 | 0.025827 | 0.023639 | 0.003311
C14Ringl | 0.294882 | 0.282296 | 0.167029 | 0.062752 | 0.064259 | 0.007401
C12Trees | 0.960563 | 0.994366 | 0.960563 | 0.898592 | 0.938029 | 0.771831
Cl4Trees | 0.914424 | 0.911195 | 0.850915 | 0.58127 | 0.699139 | 0.143703
C15Trees | 0.776628 | 0.781459 | 0.651944 | 0.267541 | 0.413159 | 0.037037

Table 10: Best values of S(I) for the algebraic descriptor I.Sy,s(G) using various matrices.
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in all the databases except C14Ringl. However in terms of C14Ringl, only I Py, o(G),
I P, 2(G) and 1Py, 5(G) have high discrimination power. We also discover that there
exists a set of 4000 structures (out of 22565 structures) that can not be discriminated
by these measures. Interestingly, we contemplate that this set of 4000 non-isomorphic
structures appear in the set of non-distinguishable structures for all combinations of the
measures and matrices.

The measure Py 4(G) is sensitive by only applying it to matrices DP(G) and EA(G);
see Table 8. When using other matrices, it shows very little discrimination power, less
than 1%. This can be understood by the fact that the values of the eigenvalues of the
underlying matrices are very small and that the value of the measure itself is close to zero.
In general, Py (G) shows higher sensitivity when compared with Py2(G).

From Table 10, we observe that I.Sy2(G) shows an average discrimination power when
compared with all other measures. In particular, this measure has low discrimination

power when applied to synthetic structures.

TI},(G) shows a better result by using the distance-based matrices DP(G) and D(G),
followed by the weighted structure function matrices IM(G) and EA(G); see Table 9.
Further, this measure has a very little discrimination power by using VC(G). For all
the other matrices, it has a better discrimination power. This holds due to the fact that
the leading eigenvalue for the matrix VC(G) is always equal to one for every graph and,
hence, the measure possesses the lowest discrimination power when compared to all other
matrices.

TI%(G) is highly sensitive for IMy(G) followed by 1M, (G), DP(G) and D(G), while
the sensitivities when applying it to other matrices are close to zero; see Table 9. This
can be explained by the fact that the eigenvalues are uniformly distributed for most of the
matrices. In contrast to the matrices IM,(G), IMy(G), DP(G) and D(G), the eigenvalues
are not uniformly distributed and there is a large zero-free region.

We underpin the just made statement by considering Figures 5, 6 and 7. For this,
we randomly choose a set of 1000 graphs from MS2265 and C12Ringl and plot the dis-
tribution of the eigenvalues for IM;(G), D(G) and A(G). Then, we observe that for
the weighted structure function matrices shown in Figure 7, there is exactly one large
eigenvalue equal to the number of atoms (vertices) in the structure and the remaining

eigenvalues are closely distributed around zero. When considering the results using the
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adjacency matrix in Figure 5, we rediscover independent of the size of the graph, the
eigenvalues are always less than three and are symmetrically distributed around zero. In
contrast, the eigenvalue distribution of the distance matrix depicted by Figure 6 shows a

large zero-free region above zero and negative eigenvalues occur more frequently.

o 200 400 600 800 1000 o 20 00 600 800 1000

o G

(a) MS2265 (b) C12Ringl

Figure 5: Distribution of eigenvalues for the Adjacency Matrix A(G)
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50

(a) MS2265 (b) C12Ringl

Figure 6: Distribution of eigenvalues for the Distance Matrix D(G)

A similar conclusion can be derived when plotting the distribution of the eigenvalues by

using other matrices and databases. Studying the distribution of eigenvalues of molecular
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Figure 7: Distribution of eigenvalues for the weighted structure function matrix M, (G).

matrices is an interesting and novel problem itself and might lead to deeper insights when

investigating or designing molecular structure descriptors.

7 Summary and Conclusion

In this paper, we analyzed the novel spectra-based molecular descriptors based on some
molecular matrices. Despite the fact that eigenvalue-based measures have been investi-
gated in structural chemistry and related fields, using the eigenvalues for discriminating
chemical structures uniquely is a rather new problem. Except the recent work due to
Dehmer et al. [14] - to our best knowledge - there is no large scale study to investigate
spectra-based measures and particularly their discrimination power. Based on our find-
ings, we conclude that to further study these descriptors might be promising and useful
to tackle problems in structural chemistry, chemical theory and related fields.

Let’s summarize our findings in brief:

e We considered ten types of measures and applied each to ten different molecular
matrices. Then, we evaluated those by using the ten databases containing both
real and synthetic chemical structures. Based on the fact that the computational
complexity of all defined measures is polynomial, performing such a large scale study
(e.g., see APL91075, C13Ring2 and C14Ringl) becomes feasible at all. Among all

the measures we have considered in this study, 1Py s(G) gives quite promising
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results using IM;(G), IMy(G) and L(G) (for all the databases). Equally, this also
holds for Py 4(G) using DP(G).

e We have found that matrices defined by using distances (DP(G) and D(G)) are
quite suitable to discriminate the graphs structurally. Interestingly, wherever the
performance of DP(G) is not satisfying, the weighted structure function matrices
IM,(G) and IMy(G) lead to much better results. Again, this holds due to the dif-
ferent distribution of their eigenvalues. The correlation analysis of the descriptors
turned out that some of the new measures are uncorrelated and, hence, good candi-
dates to characterize chemical structures. Also, it might be worthwhile to examine
the correlation between those and already existing descriptors. This might help

when searching for new groups of descriptors.

e The usefulness of such highly discriminative descriptors is not only interesting to
tackle problems in structural chemistry and related fields such as drug design and
medical chemistry. Such structure descriptors could also be used to solve the still
outstanding graph isomorphism problem. As known, there is no complete graph
invariant but highly discriminative structure descriptors might help to tackle this
problem. Also the efficiency of these measures, e.g., the ones proposed in this paper

open a new door to various problems in quantitative graph theory.

e Note that we only considered skeletons of the underlying chemical structures to
perform our study. In future, we will extend our mathematical apparatus to process
weighted chemical graphs too. In particular, this relates to important chemical

properties such as heteroatoms and different bond types.
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