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Abstract

How may one assign information to a molecular structure? This question is an-
swered based on the definition of regional information on the space of the molecular
forms. It is shown that, this quantity is invariant under structural homomorphism.

1 Introduction

Within the present report, the mathematical definition of the molecular structure is re-

garded as a part of the Quantum Theory of Atoms in Molecule (QTAIM) [1]. This theory

is based on the quantum variational approach and provides a modern tool for under-

standing atoms in molecules. Although QTAIM is now routinely used by chemists for

identification and computational consideration of quantum atoms within molecules, how-

ever, less attention has been paid to mathematical foundation of this approach [2-5]. This

is particulary true for the mathematical properties of the molecular structures, forms and

structural homeomorphisms [6]. Briefly, within QTAIM, the one-electron density, say ρ,

of a molecular system may be partitioned into subsystems (topological atoms) each of

which bounded by the local zero flux surfaces ∂Ω, i.e.,

∇ρx(r).n(r) = 0 ∀r ∈ ∂Ω (1.1)
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where n(r) is the unit vector perpendicular to ∂Ω at point r and x is a parameter belonging

to the nuclear configuration space associated to Born-Oppenheimer approximation. This

equation is a result of a rigorous procedure based on Schwinger‘s principle of quantum

stationary action [7] and implies that each trajectory of ∇ρx(r) (gradient path) of the

electronic charge density originating from the core of an atom will not cross the atomic

surface ∂Ω. In this manner, QTAIM should be regarded as a method for the topological

analysis (TA) of the one-electron charge density. Of course, TA of various scalar functions

is now routinely employed in the computational chemistry. For instance, TA of electron

localization function [8-10], the nuclear potential energy field [11], the virial field [6]

and Laplacian of charge density [12-14]. These applications indicate that mathematical

framework of TA is not confined to charge density. Collard and Hall also briefly considered

TA of potential energy hyper-surface [15]. These are multi-dimensional scalar functions.

Subsequently this program was fully realized by Mezey [16, 17].

The main steps of the static aspects of TA of the one-electron charge density, within

QTAIM, may be enumerated as follows:

1 Constructing the gradient dynamical system with respect to the one-electron charge

density in a given nuclear configuration (not necessarily the equilibrium configura-

tion).

2 Searching for the critical points of ρx, i.e., ∇ρx(z) = 0.

3 Classification of critical points, namely, repulsions, attractors and saddle points,

based on the spectrum of ρx-Hessian matrix.

Since the spectrum of ρx-Hessian matrix precisely determines the dynamical behavior

of ∇ρx-gradient vector field, one should classify the configuration space of a molecular

system based on the TA above. Such a classification is the origin of the mathematical

definition of structure, structural stability and instability of molecular structure within

QTAIM [1, 4].

In this report, we turn our attention to the dynamical aspects of TA, i.e., the dynamics

on the configuration (or control) space. In this manner, a weight (probability measure)

can be associated to each structure. This is the essence of our strategy to assign an

invariant quantity, referred to as structural information, to each molecular structure.

-110-



2 The nature of the problem

Studying the concept of form, structure and structural stability is one of the most funda-

mental problems for scientists. In particular, an explicit and authoritative definition of

molecular structure is the desire of chemists. Although researchers in different branches

of science have more or less the same intuitive perception concerning the concept of form

and structure, it seems to be impossible to acquire a common belief regarding an ex-

plicit definition of form. Nevertheless, in the most general case, if (G, ∗) is a group (or

a pseudo-group) acting on a topological space Ω, the triple (G,Ω, ∗) may be posed as

the mathematical definition of form [19]. In this account, and for our goal, it suffices to

consider a topological space Ω as the space of forms and to replace the action of the group

G by a dynamical system on Ω. In order to elucidate the connection between this abstract

definition of form and QTAIM one should regard the topological space Ω as the nuclear

configuration space. In fact, for a chemist, different molecules have different forms, i.e.,

different molecules possess different charge density distribution functions ρ. In accordance

with this delineation a molecular system also possesses different forms, i.e., different nu-

clear geometries x or equivalently different charge density distributions ρx, where x arises

from Born-Oppenheimer approximation. This correspondence, namely x �→ ρx, indicates

that the nuclear configuration space is in fact a space of forms.

On the other hand, each point in Ω can be associated to a gradient dynamical system

as in the following steps (see section 4 or [1, 19] for details):

x → molecular form ρx → gradient vector field ∇ρx

→ corresponding dynamical system ξx.
(2.1)

In this manner, each two points x and y in Ω, as two different forms, are related based

on the following equivalence relation:

”x ∼ y if and only if two dynamical systems ξx and ξy are conjugate.”

The definition of such an equivalence relation on the space of forms automatically leads

the definition of the molecular structure and structural stability, i.e., each equivalence

class is called a molecular structure and each open class (as a topological set) referred to

as a structural stable class. Other classes show the catastrophic properties [20].

A significant question concerning these equivalence classes or equivalently stable chem-

ical structures is: can one assign a quantitative measure to each molecular structure? Such
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measures are usually called topological indices and several versions of them are proposed

during the time [21-29]. Studying this area states the fact that Shannon information

theory is one of the important tools in describing different structures. In particular, it

provides an efficient tool to present a quantity, namely, information content of a molec-

ular system, as a part of mathematical chemistry. It was first introduced by Rashevsky

[30, 31] in the language of graph theory, namely, topological information content. The

mathematical framework of this definition was precised using automorphism group of the

graphs by Trucco [32]. Mowshowitz [33-36] and Bonchev et al [37-40] introduced chro-

matic information and information content of molecules respectively, which led to the

analysis of the relationship between topological information and symmetry of molecules.

In all works, mentioned above, a molecular system is considered as a structure con-

sisting of vertices and wedges of a graph whereas, the present approach is based on the

definition of forms and molecular structures within QTAIM. On the other hand, since

the molecular structures may be exhibited based on the gradient paths of the different

structural descriptors [6, 11], can one assign this quantitative measure so that be invariant

under structural homeomorphisms? In this report, it is demonstrated that the answer,

in the sense of information contained in structures, is affirmative. In order to do so, we

define the regional information as a set function on the space of forms which is invariant

under topological conjugacy.

3 Definition of regional information: Mathematical

foundations

The Shannon information [41] for a discrete distribution (p1, ..., pk) is defined as follows:

S({pi}) = −
∑

pi log pi (3.1)

wherein, pi is the probability of the ith event. The quantity − log pi may be regarded as

the surprise associated with the outcome i. To see this, note that if pi is small, one would

be quite surprised if the outcome is explicitly i. Accordingly, − log pi is large for small

pi. Also, if pi is large, one perceives that the surprise is small. In this manner, (3.1) may

be interpreted as the expectation value of the surprise for a system of a random variable

with discrete distribution (p1, ..., pk).

Now, let Ω be a compact metric space and Φ : Ω → Ω be a continuous dynamical
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system. In conformity with probability pi above, one can offer the following quantity:

τΦ(x,A) := lim sup
n→∞

1

n
card({k ∈ {0, 1, ..., n− 1} : Φk(x) ∈ A}) (3.2)

where the card(B) denotes the cardinality of the set B. This quantity is the average

time in which x ∈ Ω spends in the arbitrary region A ⊂ Ω under the dynamic of Φ.

Since τΦ(x,A) may play the role of pi in (3.1), − log τΦ(x,A) may be regarded as the

measure of how encountering the orbit of x in A surprises an observer. In this regard, if

ξ = {A1, ..., An} is a Borel partition of Ω, a primary counterpart for relation (3.1) may

be defined as follows:

SΦ(x; ξ) := −
n∑

j=1

τΦ(x,Aj) log τΦ(x,Aj). (3.3)

The map x �−→ SΦ(x; ξ) is called the local information map with respect to ξ. That is

the average of information attained by observing the orbit of x in each fragment of the

specific partitioning ξ.

A partition ξ = {A1, ..., Am} may be regarded as listing the possible outcomes of an

experiment. Consequently, if we consider the dynamic Φ as a passage of one day of time

then
n−1∨
i=0

Φ−iξ = {Ai0 ∩ Φ−1(Ai1) ∩ ... ∩ Φ−(n−1)(Ain−1) : Aik ∈ ξ, 0 ≤ ik ≤ m}

represents the combined experiment of performing the original experiment ξ on n consec-

utive days.

In analogy to the standard definition of the information of a partition [42] (more

precisely, the information of a dynamical system with respect to a partition) we define

S̄Φ(x; ξ) := lim sup
n→∞

1

n
SΦ(x;

n−1∨
i=0

Φ−iξ). (3.4)

For any x ∈ Ω, the quantity S̄Φ(x; ξ) could be interpreted as the average local infor-

mation of per day that one gets from performing the original experiment daily forever.

Now we are in a position to define the information of a Borel set.

Definition 3.1 (Information of a Borel set) Suppose that Φ : Ω → Ω is a continuous

dynamical system on the compact metric space Ω, μ is a Borel measure and A is a Borel

subset of Ω. The information of A is defined as follows:

IΦ,μ(A) := sup
ξ

∫
A

S̄Φ(x; ξ)dμ(x) (3.5)

where the supremum is taken over all Borel partitions of Ω.
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Since this quantity depends on μ and the dynamical system Φ, the map IΦ,μ : B(Ω) →
[0,∞], given by A �→ IΦ,μ(A) is called the Φ−regional information map with respect to

μ, wherein, B(Ω) is the family of Borel subsets of Ω. Theorem 3.4 reveals that for A = Ω,

IΦ,μ(Ω) coincides with the well known measure theoretic entropy (information) of Φ. In

this regard IΦ,μ(A) may be interpreted as the contribution of the Borel subset A of the

measure theoretic information of the dynamical system Φ.

Note that since we do not deal with a dynamical system on the phase space in general,

we invoke the term ”Information” instead of ”Entropy”. Theorem 3.4 (infra) justifies why

we offer the term ”information of A” for the expression (3.5).

Before going any further, we recall the Choquet‘s Theorem and its corollary [43]. Note

that, if Ω is a compact metric space and Φ : Ω → Ω is a continuous dynamical system,

then the space of all Borel probability measures on Ω is denoted by M(Ω). In addition,

M(Ω,Φ) denotes the space of all invariant measures of Φ. We also write E(Ω,Φ) for the

space of ergodic measures of Φ. One can see that M(Ω), equipped by the weak∗ topology,

is a compact metrisable space and E(Ω,Φ) equals the extreme points of the compact

convex set M(Ω,Φ) [44].

Theorem 3.2 (Choquet [43]) Suppose that Y is a metrisable compact convex subset of a

locally convex space E, and that x0 is an element of Y . Then there exists a probability

measure λ on Y which represents x0 and is supported by the extreme points of Y , i.e.,

L(x) = ∫
Y
Ldλ for every continuous linear functional L on E.

For μ ∈ M(Ω,Φ) and a bounded measurable function f : Ω → R, applying Theorem

3.2 for E = M(Ω), the space of all finite Borel regular measures on Ω, Y = M(Ω,Φ)

and the linear functional L : M(Ω) → R given by L(μ) = ∫
Ω
fdμ, we have the following

corollary:

Corollary 3.3 Suppose that Φ : Ω → Ω is a continuous map on the compact metric space

Ω. Then for each μ ∈ M(Ω,Φ) there is a unique measure λ on the Borel subsets of the

compact metrisable space M(Ω,Φ) such that λ(E(Ω,Φ)) = 1 and∫
Ω

f(x)dμ(x) =

∫
E(Ω,Φ)

(∫
Ω

f(x)dm(x)

)
dλ(m)

for every bounded measurable function f : Ω → R.

Under the assumptions of Corollary 3.3 we write μ =
∫
E(Ω,Φ)

mdλ(m) and it is called

the ergodic decomposition of μ.
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The following theorem indicates that in case of A = Ω and while μ is an invariant

measure, i.e., the dynamic is taken on the phase space, the quantity (3.5) coincides with

the measure theoretic information (entropy). Therefore, in some sense, the quantity (3.5)

may be regarded as the contribution of A to the measure theoretic information of the

dynamical system Φ.

Theorem 3.4 Suppose that Φ : Ω → Ω is a continuous dynamical system on a compact

metric space Ω and μ ∈ M(Ω,Φ). Then

IΦ,μ(Ω) = hμ(Φ)

where hμ(Φ) is the measure theoretic information (entropy) of Φ.

Proof. First, let m be ergodic. For any Borel set A and x ∈ Ω, by Birkhoff ergodic The-

orem, one can easily show that τΦ(x,A) = m(A) for almost all x ∈ Ω, and consequently,

if ξ is any Borel partition then SΦ(x; ξ) = Hm(ξ) for almost all x ∈ Ω, where Hm(ξ) is

the entropy of ξ. Therefore, if ξ is any Borel partition of Ω then S̄Φ(x; ξ) = hm(Φ, ξ) for

almost all x ∈ Ω. Integrating both sides on Ω yields
∫
Ω
S̄Φ(x; ξ)dm(x) = hm(Φ, ξ). The

result follows by taking supremum over all Borel partitions of Ω.

Now let μ ∈ M(Ω,Φ). Let ξ be a Borel partition of Ω and let μ =
∫
E(Ω,Φ)

mdλ(m) be the

ergodic decomposition of μ. Then, as was stated before, one obtains∫
Ω

S̄Φ(x; ξ)dm(x) = hm(Φ, ξ)

for all m ∈ E(Ω,Φ). For n ≥ 1, let Sn := min{S̄Φ(·; ξ), n}. Then {Sn}n≥1 is an increasing

sequence of bounded maps such that Sn → S̄Φ(·; ξ) on Ω. Applying Corollary 3.3, Jacob‘s

Theorem and Monotone Convergence Theorem one obtains∫
Ω

S̄Φ(x; ξ)dμ(x) = lim
n→∞

∫
Ω

Sn(x)dμ(x)

= lim
n→∞

∫
E(Ω,Φ)

(∫
Ω

Sn(x)dm(x)

)
dλ(m)

=

∫
E(Ω,Φ)

(∫
Ω

S̄Φ(x; ξ)dm(x)

)
dλ(m)

=

∫
E(Ω,Φ)

hm(Φ, ξ)dλ(m)

= hμ(Φ, ξ).

The result follows by taking supremum over all Borel partitions of Ω. �
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Another important property of the information of a Borel set is its invariance under

topological conjugacy. Recall that two dynamical systems Φ,Ψ : Ω → Ω are topologically

conjugate, if there is a homeomorphism h : Ω → Ω such that hΦ = Ψh.

Theorem 3.5 Suppose that Φ,Ψ : Ω → Ω are topologically conjugate continuous dynam-

ical systems on compact metric spaces via the homeomorphism h : Ω → Ω and A be a

Borel set in Ω. If μ ∈ M(Ω,Φ) then

IΦ,μ(A) = IΨ,μh−1(h(A)).

Proof. For n ∈ N, x ∈ Ω and the Borel set A ⊆ Ω we have τΦ(x,A) = τΨ(h(x), h(A)).

Now, let ξ = {A1, ..., An} be a Borel partition of Ω and x ∈ Ω, then

SΦ(x; ξ) = −
n∑

j=1

τΦ(x,Aj) log τΦ(x,Aj)

= −
n∑

j=1

τΨ(h(x), h(Aj)) log τΨ(h(x), h(Aj))

= SΨ(h(x);h(ξ)).

For n ∈ N, replacing ξ by
∨n−1

i=0
Φ−iξ yields

SΦ(x;
n−1∨
i=0

Φ−iξ) = SΨ(h(x);h(
n−1∨
i=0

Φ−iξ))

= SΨ(h(x);
n−1∨
i=0

hΦ−iξ)

= SΨ(h(x);
n−1∨
i=0

Ψ−ih(ξ)).

Dividing by n and letting n → ∞ yields

S̄Φ(x; ξ) = S̄Ψ(h(x);h(ξ)). (3.6)

Note that, if μ ∈ M(Ω,Φ) then μh−1 ∈ M(Ω,Ψ). Thus, for any Borel partition ξ one

obtains ∫
A

S̄Φ(x; ξ)dμ(x) =

∫
A

S̄Ψ(h(x);h(ξ))dμ(x)

=

∫
h(A)

S̄Ψ(x;h(ξ))dμh
−1(x).

The result follows by taking supremum over all Borel partitions of Ω. �
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Note that the information of a set A ⊂ Ω could be attained by integrating of other

local information maps on A. For instance, the Brin-Katok and Shannon local information

maps which measure the exponential rate of the decreasement of the number of orbits

around the orbit of x may also be used. In this account, we introduced our regional

information IΦ,μ(A) instead of the Brin-Katok [45] and Shannon [41] approach, since they

are formulated for dynamics on phase spaces and so depend on the invariant measure with

respect to the dynamic on the phase space. However our regional information is indeed

independent of the properties of the measure, i.e., IΦ,μ(A) may be defined for arbitrary

(not necessarily invariant) measures. Consequently, it can be defined on an arbitrary

compact metric space which could be the space of the molecular forms as a special case.

One may find the generalized form of the mathematical approach given in this section in

[46].

4 Information of a molecular structure as an invari-

ant quantity

The regional information, introduced in section 3, is given for an arbitrary measurable

region in a compact metric space. We will apply it to the special case of modeling of

information for a molecular structure. In this case, since the distance between the nucleus

of a molecular system is not violently increased, we may replace Ω by a large compact box,

embeded in R
q, where R

q is the nuclear configuration space. The Ω may be partitioned

into the regions, namely, molecular structures via the structural diagram [1, 4]. These

regions are indeed Borel measurable.

The idea of partitioning of the nuclear configuration space is briefly presented in the

following steps:

4.1 The structural stability of a dynamical system

We first recall the concept of a dynamical system, based on the ordinary differential

equations [47]. Consider an ordinary differential equation

ẋ = v(x) (4.1)
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where x ∈ R
m and v : Rm → R

m is a smooth vector field. Equation (4.1) has a solution

φ : Rm × R → R
m determined by the equation

φ(x, 0) = x,
∂

∂t
φ(x, t) = v(φ(x, t)). (4.2)

For each fixed x ∈ R
m, the solution of equation (4.2) with initial values x is given by

t → φ(x, t). We may also consider the map φt : R
m → R

m given by φt(x) = φ(x, t) such

that

φ0 = id, φtoφs = φt+s.

Two dynamical systems φ, ψ : R
m × R → R

m are said to be conjugate, if there is a

diffeomorphism h : Rm → R
m such that

h(φ(x, s)) = ψ(h(x), s)

for all x ∈ R
m and s ∈ R. Based on this conjugacy, we may define an equivalence re-

lation on a family of dynamical systems. This equivalence relation partitions the family

of dynamical systems into equivalence classes. Based on this concept one may define the

structural stability for a dynamical system.

Let φ : Rm×R → R
m be a dynamical system. We say that φ is structurally stable if there

exists ε > 0 such that φ is conjugate to ψ whenever ψ is a dynamical system on R
m with

‖φ− ψ‖ < ε. In other words, the dynamical system φ is called structurally stable if it is

an interior point of its conjugacy class. In addition, one should interpret the structural

stability as follows:

” A dynamical system φ is structurally stable if there is a neighborhood such that

every dynamical system in this neighborhood behaves like φ,”

or equivalently

” A dynamical system φ is structurally stable if a small perturbation does not vary its

dynamical behavior.”

4.2 The structural stability of a molecular system

The structural stability was introduced formally within the context of the theory of dy-

namical systems. We are interested to extend this definition to the molecules. Therefore,
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we must find a general way to assign a dynamical system to a molecule. Based on the

discussion presented in the previous subsection, we must attribute a differential equa-

tion to a molecule. Accordingly, equation (4.3) is the appropriate differential equation

[1] (this equation was introduced originally to construct the gradient vector fields of the

one-electron charge densities).
dr(s)

ds
= ∇ρ(r(s)) (4.3)

Note that it is a special case of equation (4.1), replacing the vector field v(x) by ∇ρ. Now,

one may establish the formal definition of the structural stability of a molecule. Suppose

that M is a molecular system and x is the corresponding nuclear configuration. Then the

state function of this molecule is denoted by χ = χ(r; x) where r stands for the collection

of electronic variables whereas x is introduced to emphasize the parametric dependence

of state function to the nuclear coordinates. Accordingly, the one-electron charge density

and the corresponding gradient vector field ∇ρx are also dependent parametrically on the

nuclear configuration x. Thus, it is possible to rewrite equation (4.3) as follows:

dr(s)

ds
= ∇ρx(r(s)) (4.4)

It is evident that the corresponding dynamical system is also dependent parametrically

on the nuclear configuration x which is denoted by ζx. Since for every point in the nuclear

configuration space there is a certain dynamical system, the equivalence relation ∼ on the

nuclear configuration space could be introduced as follows:

”x ∼ x′ if and only if two dynamical systems ζx and ζx′ are conjugate.”

Thus, the nuclear configuration space is partitioned into equivalence classes. Every equiv-

alence class is composed of a set of molecular forms and is called as molecular structure.

Consequently, one may finally define the structural stability for a molecular system: a

molecule M with the form x is structurally stable if and only if x is an interior point of

its equivalence class.

4.3 Stable structures, unstable structures and structural dia-
grams

The equivalence relation partitions the nuclear configuration space into separate classes.

In order to proceed further, we explicitly suppose that this equivalence relation partitions

the space into k (a finite number) different classes. This is denoted by [x1], [x2], ..., [xk]
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such that for every i �= j, [xi] ∩ [xj] = ∅ and ∪k
i=1

[xi] = Ω. We may categorize these

equivalence classes into two fundamental sets, namely, stable and unstable.

An equivalence class [x] is stable if it is open. In other words the equivalence class

[x] is stable if for every nuclear configuration y ∈ [x] there is a neighborhood of y such

that it is encompassed within [x]. Thus, a small perturbation does not remove y to a

new equivalence class (or a small perturbation does not change the molecular structure).

Suppose that [x1], [x2], ..., [xl] (l ≤ k) are all stable classes. The set U = Ω \ ∪l
i=1

[xi] is

called a catastrophe set. It is obvious that U itself is the union of m = k − l classes.

These classes are collectively termed unstable classes. Every unstable class [xi] has the

property that for every nuclear configuration y within this class a small perturbation may

render the new perturbed nuclear configuration into a new class. In other words, there is

no neighborhood around the nuclear configuration y to be completely contained in [xi].

In this regard, the configuration space is partitioned into disjoint regions, bounded by

unstable (catastrophe) sets. This pattern is known as structural diagram.

4.4 Information of a structure as an invariant

Based on what mentioned in the last section, the topological analysis of a scalar function

may be employed to determine the molecular structure of a molecular system. Since,

the topological analysis of various scalar functions can be used to describe the molecular

structure, one should consider these scalar functions as ”structural descriptors”. Suppose

that Φ is a continuous dynamical system on the configuration space Ω. If F and G are

two homeomorphic structural descriptors (for instance, virial field and charge density

[6]) z is a nuclear configuration then based on the correspondence z �→ Fz and z �→ Gz

the structures of the forms Fz and Gz are denoted by [z]F and [z]G respectively. The

information of the structure [z]F , in accordance with Definition 3.1, is defined as follows:

IΦ,m([z]F ) := sup
ξ

∫
[z]F

S̄Φ(x; ξ)dm (4.5)

where dm = dx1...dxq is the Lebesgue (standard) measure on R
q. Let the map

h
(x1, ..., xq) �−→ (h1, ..., hq)

be a homeomorphism on the space of forms and let Ψ be the dynamical system con-

jugate to Φ via the homeomorphism h, i.e., Φh = hΨ. Then, combining (3.6) and change

-120-



of variables Theorem, one obtains∫
[z]F

S̄Φ(x1, ..., xq; ξ)dx1...dxq =

∫
[z]F

S̄Ψ(h(x1, ..., xq);h(ξ))dx1...dxq

=

∫
h([z]F )

S̄Ψ(hoh
−1(h1, ..., hq);h(ξ))

∣∣∣∣∂(x1, ..., xq)

∂(h1, ..., hq)

∣∣∣∣ dh1...dhq

=

∫
[h(z)]G

S̄Ψ(h1, ..., hq;h(ξ))

∣∣∣∣∂(x1, ..., xq)

∂(h1, ..., hq)

∣∣∣∣ dh1...dhq.

Now, taking supremum over all partitions ξ and using the notation dν =
∣∣∣∂(x1,...,xq)

∂(h1,...,hq)

∣∣∣ dm
we have

sup
ξ

∫
[z]F

S̄Φ(x; ξ)dm = sup
ξ

∫
[h(z)]G

S̄Ψ(h;h(ξ))dν

or equivalently

IΦ,m([z]F ) = IΨ,ν([h(z)]G) (4.6)

where ν = mh−1.

This is our main result of this section. This exhibits the relationship between the

information content of the structures [z]F and [h(z)]G, where h is the structural homeo-

morphism between F and G. One may apply (4.5) to define the information content of a

form as well. Since IΦ,m([x]F ) = IΦ,m([z]F ) for all x ∈ [z]F , we may define the information

of a form z to be

IF
Φ,m(z) := IΦ,m([z]F ). (4.7)

In lights of the latter discussion, ”all forms in a specific structure possess the same in-

formation content.” With this in mind, we may rewrite the relation (4.6) in the following

form:

IF
Φ,m(z) = IG

Ψ,ν(h(z)). (4.8)

Let F be a structural descriptor of a molecular system and u be a nuclear configuration

such that the form Fu is unstable, i.e., the dynamical system ξu determined by (2.1),

with ρu = Fu, is unstable. Then, by definition of an unstable structure, there is no

q−dimensional ball, centered at u, which is contained in [u]F ; so, if m is the standard

measure on Rq we have

m([u]F ) =

∫
[u]F

dm = 0.

Therefore, for any partition ξ ∫
[u]F

S̄Φ(x1, ..., xq; ξ)dm = 0.
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Taking supremum over all partitions yields

IΦ,m([u]F ) = 0.

This means that, ”the information content of an unstable structure is zero”.

5 Summary and discussion

In this report a rigorous definition of the information content of the molecular forms was

propounded. The information content, as a function of the space of forms to the extended

real line, depends on the structural descriptor of the molecular system, F , and dynamical

system Φ on the space of forms (dependence on measure is not drastic since one should

fix the standard measure on the space of forms). In this manner, this function may be

referred to as Φ-information. Based on this definition all forms belonging to a specific

molecular structure possess the same information and information content of each unsta-

ble form, independent of the properties of dynamical system Φ, which is zero. The most

noteworthy feature of this definition is that the information content of each molecular

structure is invariant under structural homeomorphism.
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