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Abstract

Let G = (V,E) be a simple graph, I(G) its incidence matrix. The incidence energy

of G is the sum of the singular values of I(G). It was shown that among all trees of

order n, the trees with the largest and smallest incidence energy are the n-vertex path

Pn and n-vertex star Sn, respectively. In this paper, we characterize the trees with

the second greatest, the third greatest, the second smallest and the third smallest

incidence energy among all trees on n vertices.

1 Introduction

The energy E(G) of a graph G = (V,E) is the sum of the absolute values of the eigenvalues

of its adjacency matrix A(G), and it has been researched extensively. For more details

see [1, 2]. Nikiforov [3] recently extended the concept of energy to all (not necessarily

square) matrices, defining the energy of a matrix M as the sum of the singular values of

M , i.e., the sum of the square roots of the eigenvalues of MM t, where M t is the transpose

of M .

In line with Nikiforov’s idea, Jooyandeh et al. [4–6] introduced the incidence energy

IE(G) of a graph G, IE(G) was defined as the energy of its incidence matrix I(G). They

also found the relation between the energy and the incidence energy of graphs and some

similar upper and lower bounds of energy for incidence energy. It was shown in [7] that the
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incidence energy IE(G) coincides with the Laplacian-like energy LEL(G) for a bipartite

graph G. The Laplacian-like energy LEL(G) of a graph G, introduced in [10], is the sum

of the square roots of eigenvalues of its Laplacian matrix.

Lemma 1.1 ( [7]) If G is a bipartite graph, then IE(G) = LEL(G).

Since trees are bipartite, any result on LEL on trees is automatically applicable for IE.

Denote by ψ(G, λ) the characteristic polynomial of the Laplacian matrix of a graph G.

It is known that

ψ(G, λ) =
∑
k≥0

(−1)kck(G)λn−k

where ck(G) ≥ 0. By using the Coulson integral formula, Gutman et al. [7] obtained the

next formula:

LEL(G) =
1

π

∫ +∝

0

ln

[∑
k≥0

ck(G)x2k

]
dx

x2
. (1)

This shows that LEL(G) is a monotonically increasing function of each of the coefficients

ck(G). And the coefficients ck(G) of a tree G are related with the numbers mk(s(G)) of

k-matching of its subdivision s(G):

Lemma 1.2 ( [8]) Let G be a tree on n vertices. Then ck(G) = mk(s(G)) for 0 ≤ k ≤ n.

Among the trees, it has been long known [11] that the path Pn has maximum energy and

that the star Sn has minimal energy, and there are many results on graphs with extremal

energy [12,12–16]. Gutman et al. also characterized the trees with the minimal and maximal

incidence energy among all trees on n vertices.

Lemma 1.3 ( [7]) Let T be any tree on n vertices. Then

IE(Sn) ≤ IE(T ) ≤ IE(Pn)

with equality if and only if T ∼= Sn and T ∼= Pn, where Sn and Pn are the star and path on

n vertices, respectively.

In this work, we characterize the trees with the second smallest, the third smallest, the

second greatest and third greatest incidence energy among all trees on n vertices.

2 The main result

First, we find the trees with the second and the third smallest incidence energy among all

trees on n vertices.
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Denote by Sn1,n2 be the double star on n vertices (n = n1 + n2 + 2, n1 ≥ n2 ≥ 1)

obtained by adding an edge between the centers of Sn1+1 and Sn2+1 and Tn1,n2,n3 be a tree

on n vertices obtained from the path P3 = u1u2u3 by adding n1, n2, n3 pendant edges on

u1, u2, u3, respectively, where n1 + n2 + n3 + 3 = n, and n1, n3 ≥ 1.

The following σ-transformation can transform every tree which is not a star into a double

star.

σ-transformation: Let u0 be a vertex of a tree T of degree p + 1. Suppose that

u0u1, u0u2, · · · , u0up are pendant edges incident with u0, and that v0 is the neighbor of

u0 distinct from u1, · · · , up. Then we form a tree T ∗ = σ(T, u0) by removing the edges

u0u1, · · · , u0up from T and adding p new pendant edges v0u1, · · · , v0up incident with v0.

We say that T ∗ is a σ-transformation of T .

Lemma 2.1 ( [9]) Let T ∗ = σ(T, u0) be a σ-transformation of a tree T of order n. Then

ck(T ) > ck(T
∗) for 2 ≤ k ≤ n− 2, and ck(T ) = ck(T

∗) for k = 0, 1, n− 1, n.

Lemma 2.2 If n1 ≥ n2 > 1, then ck(Sn1,n2) > ck(Sn1+1,n2−1) for 2 ≤ k ≤ n − 2, and

ck(Sn1,n2) = ck(Sn1+1,n2−1) for k = 0, 1, n− 1, n.

Proof Let u, v, w ∈ Sn1,n2 and d(u) = n1 + 1, d(v) = n2 + 1, vw ∈ E(Sn1,n2). Sn1+1,n2−1

can be formed by removing the edges uv from Sn1,n2 and adding a new pendant edges uw.

From Lemma 1.2, we have

ck(Sn1,n2) = mk(s(Sn1,n2))

= mk(s(Sn1,n2 − w)) +mk−1(s(Sn1,n2 − w)) +mk−1(s(Sn1,n2 − w)− v)

and

ck(Sn1+1,n2−1) = mk(s(Sn1+1,n2−1))

= mk(s(Sn1+1,n2−1 − w)) +mk−1(s(Sn1+1,n2−1 − w)) +mk−1(s(Sn1+1,n2−1 − w)− u)

= mk(s(Sn1,n2 − w)) +mk−1(s(Sn1,n2 − w)) +mk−1(s(Sn1,n2 − w)− u) .

By some computations, we have

mk−1(s(Sn1,n2 − w)− v) =

(
n1 + n2

k − 1

)
+ n1

(
n1 + n2 − 2

k − 2

)

and

mk−1(s(Sn1,n2 − w)− u) =

(
n1 + n2

k − 1

)
+ (n2 − 1)

(
n1 + n2 − 2

k − 2

)
.
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ck(Sn1,n2)− ck(Sn1+1,n2−1) = mk−1(s(Sn1,n2 − w)− v)−mk−1(s(Sn1,n2 − w)− u)

= (n1 − n2 + 1)

(
n1 + n2 − 2

k − 2

)
.

So, ck(Sn1,n2) > ck(Sn1+1,n2−1) for 2 ≤ k ≤ n − 2, and ck(Sn1,n2) = ck(Sn1+1,n2−1) for

k = 0, 1, n− 1, n.

Lemma 2.3. If n ≥ 6, then ck(Sn−4,2) < ck(T1,n−4,1) for 3 ≤ k ≤ n−2, and ck(Sn−4,2) =

ck(T1,n−4,1) for k = 0, 1, 2, n− 1, n.

Proof. Let u, v, w ∈ Sn−4,1 and d(u) = n− 3, d(v) = 2, d(w) = 1, uw ∈ E(Sn−4,1).

From Lemma 1.2, we have

ck(Sn−4,2) = mk(s(Sn−4,2))

= mk(s(Sn−4,1)) +mk−1(s(Sn−4,1)) +mk−1(s(Sn−4,1)− v)

and
ck(T1,n−4,1) = mk(s(T1,n−4,1))

= mk(s(Sn−4,1)) +mk−1(s(Sn−4,1)) +mk−1(s(Sn−4,1)− w) .

By some computations, we have

mk−1(s(Sn−4,1)− v) =

(
n− 3

k − 1

)
+ (n− 4)

(
n− 4

k − 2

)

and

mk−1(s(Sn−4,1))− w) =

(
n− 3

k − 1

)
+ (n− 4)

(
n− 4

k − 2

)
+

(
n− 3

k − 2

)
+

(
n− 5

k − 2

)

+(n− 5)

(
n− 6

k − 3

)
+ 2

(
n− 5

k − 3

)
+

(
n− 5

k − 4

)
.

ck(T1,n−4,1)− ck(Sn−4,2) = mk−1(s(Sn−4)− w)−mk−1(s(Sn−4,1)− v)

=

(
n− 3

k − 2

)
+

(
n− 5

k − 2

)
+ (n− 5)

(
n− 6

k − 3

)

+2

(
n− 5

k − 3

)
+

(
n− 5

k − 4

)
.

So ck(S(n − 4, 2) < ck(T1,n−4,1) for 3 ≤ k ≤ n − 2, and ck(S(n − 4, 2) = ck(T1,n−4,1) for

k = 0, 1, 2, n− 1, n.
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Theorem 2.4 If T is a tree on n ≥ 6 vertices and T �= Sn, Sn−3,1, Sn−4,2, then LEL(T ) >

LEL(Sn−4,2) > LEL(Sn−3,1) > LEL(Sn), i.e., Sn−3,1 and Sn−4,2 are the unique tree with

the second and the third smallest Laplacian-like energy among all trees on n vertices,

respectively.

Proof Since Laplacian-like energy is a monotonically increasing function of each of

the coefficients. We only need to prove that ck(T ) > ck(Sn−4,2) for 3 ≤ k ≤ n − 2 and

ck(T ) = ck(Sn−4,2) for k = 0, 1, 2, n− 1, n.

Since T �= Sn, Sn1,n2 , T can be transformed into Tn1,n2,n3 by σ−transformation, where

n = n1 + n2 + n3 + 3, n1 ≥ n3 ≥ 1 and Tn1,n2,n3 can be transformed into Sn1,n2+n3+1. By

Lemmas 2.1, 2.2 and 2.3, we have ck(T ) > ck(Tn1,n2,n3) > ck(Sn1,n2+n3+1) > ck(Sn−4,2) >

ck(Sn−3,1) for 2 ≤ k ≤ n − 2 and ck(T ) = ck(Tn1,n2,n3) = ck(Sn1,n2+n3+1) = ck(Sn−4,2) =

ck(Sn−3,1) for k = 0, 1, n− 1, n.

By Lemma 1.1, we have next corollary.

Corollary 2.5. If T is a tree on n ≥ 6 vertices, and T �= Sn, Sn−3,1, Sn−4,2, then

IE(T ) > IE(Sn−4,2) > IE(Sn−3,1) > IE(Sn) , i. e., Sn−3,1 and Sn−4,2 are the unique tree

with the second and the third smallest incidence energy among all trees on n vertices,

respectively.

In the following, we find the trees with the second and the third greatest incidence

energy among all trees on n vertices. For any graph, the incidence energy is a half of the

energy of its subdivision graph.

Lemma 2.6 ( [7]) For any graph G ,

IE(G) =
1

2
E(s(G))

where E(s(G)) is the energy of its subdivision graph s(G).

In [12], the trees with the maximal, second maximal and the third maximal energy were

determined.

Lemma 2.7 ( [12]) Among all trees on n vertices, (i) Pn is the unique tree with the

maximal energy; (ii) for n ≤ 3, there is no tree with the second maximal energy; for

n = 4, n = 5 and n ≥ 6, the trees with the second maximal energy are S4, T1 and T 3,2
n ,

respectively, depicted in Figure 1.(iii) for n ≤ 5, there is no tree with the third maximal

energy; for n = 5 ,n = 6, n = 7 and n = 9 the trees with the third maximal energy are S5,

T2,T3,T4,respectively, depicted in Figure 1. For n = 8 and n ≥ 10 the trees with the third

maximal energy is T 5,2
n , respectively, depicted in Figure 1.
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.....

T 3,2
n

1 2 3 4 n− 2
.....

1 2 3 n− 1

T 1,1
n T1

Figure 1.

n− 2

T 5,2
n

.........

T2 T3 T4

.....
1 2 3 n− 1

T 2,1
n

It is easy to see that there is no tree with the second maximal incidence energy for n ≤ 3

(There is only one tree on n ≤ 3 vertices, respectively). There are only two trees S4 and P4

on 4 vertices and we have IE(S4) < IE(P4). There are exactly three tree s S5, T
1,1
5 and P5

on 5 vertices and we have IE(S5) < IE(T 1,1
5 ) < IE(P5).

Theorem 2.8 If T be a tree on n ≥ 6) vertices and T �= Pn, T
2,1
n , T 1,1

n (depicted in

Figure 1), then

IE(T ) < IE(T 2,1
n ) < IE(T 1,1

n ) < IE(Pn) .

Proof. Let n ≥ 6. If T is any tree on n vertices and T �= Pn, T
2,1
n , T 1,1

n , then their sub-

divisions s(Pn) = P2n−1, s(T
1,1
n ) = T 3,2

2n−1, s(T
2,1
n ) = T 5,2

2n−1 and s(T ) �= P2n−1, T
3,2
2n−1, T

5,2
2n−1 .

By Lemma 2.6, we have

E(s(T )) < E(S(T 2,1
n )) < E(s(T 1,1

n )) < E(s(Pn))

and

IE(T ) < IE(T 2,1
n ) < IE(T 1,1

n ) < IE(Pn) .
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[12] I. Gutman, S. Radenković, N. Li, S. Li, Extremal energy trees, MATCH Commun.

Math. Comput. Chem. 59 (2008) 315–320.

-983-



[13] J. Zhang, B. Zhou, On minimal energies of non-starlike trees with given number of

pendent vertices, MATCH Commun. Math. Comput. Chem. 62 (2009) 481–490.

[14] J. Ou, On ordering chemical trees by energy, MATCH Commun. Math. Comput. Chem.

64 (2010) 157–168.

[15] H. Y. Shan, J. Y. Shao, S. Li, X. Li, On a conjecture on the tree with fourth greatest

energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 181–188.

[16] X. Yao, Maximum energy trees with on maximum and one second maximum degree

vertex, MATCH Commun. Math. Comput. Chem. 64 (2010) 217–230.

-984-


