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Abstract

Let G be a graph on n vertices. It was found that the ordinary energy E(G) and
the Laplacian energy LE(G) have a number of analogous properties. In particular,
if G is regular, then E(G) = LE(G) , and there are non-regular graphs with the
same property. In this paper we consider the non-regular non-isomorphic connected
graphs of the same order with the same energy and Laplacian energy, called as E-L
equienergetic graphs. We construct a pair of E-L equienergetic graphs on n vertices
for n ≡ 0 (mod 7) . Thus it is shown that there exist infinitely many pairs of E-L
equienergetic graphs.

1 Introduction

Let G be a simple undirected graph possessing n vertices and m edges. Let A be

the symmetric (0, 1)−adjacency matrix of G and D = diag(d1, d2, . . . dn) be the diagonal

matrix of vertex degrees. The Laplacian matrix of G is L = D−A . Let λ1 , λ2 ,. . .λn be

the adjacency spectrum of G , and let μ1 , μ2 ,. . .μn be the Laplacian spectrum of G .
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The energy E(G) of a graph G is defined as E(G) =
n∑

i=1

|λi| [4,6,8]. This quantity has

a clear connection to chemical problems [5, 7] and has recently been much investigated

(see [12,15,19,21–23] and the references cited therein).

The Laplacian energy LE(G) of a graphG has been defined [9] as LE(G) =
n∑

i=1

∣∣μi − 2m
n

∣∣ .
For recent investigations of this quantity see [13, 17,18,24,25].

Two non-isomorphic graphsG1 andG2 of the same order are said to be equienergetic [1]

if E(G1) = E(G2) . Similarly as in the case of graph energy, two non-isomorphic graphs

G1 and G2 of the same order are said to be LE-equienergetic if LE(G1) = LE(G2) [14].

The quantities E(G) and LE(G) were found to have a number of analogous properties

[9,13]. It is easy to see that if the graph G is regular, then E(G) = LE(G) , and there are

non-regular graphs with the same property [10, 11]. So the equienergetic regular graphs

are also the LE-equienergetic graphs. Besides, the two energies are equal. For instance,

the regular graphs with 6 vertices of degree 2, 3, 4 respectively, are both equienergetic

graphs and LE-equienergetic graphs with the energies 8 . Such case is of no interest. In

this paper we are concerned with the non-regular non-isomorphic connected graphs of the

same order with the same energy and Laplacian energy, which we call E-L equienergetic

graphs. We construct a pair of E-L equienergetic graphs of order n , for all n ≡ 0 (mod 7) ,

and show that there exist infinitely many pairs of E-L equienergetic graphs.

2 Lemmas and results

Lemma 2.1 There exists a pair of E-L equienergetic graphs of order 7 .

Proof. We consider the following two connected graphs of order 7 . (G710 , G711 are

graphs 10− 333 , 11− 362 in [2] respectively). Clearly, G710 and G711 are non-regular. It

was shown in [2] that the adjacency spectra of G710 and G711 are

{3.41421, 0.58579, 0, 0, 0,−2,−2} and {3.41421, 0.58579, 0, 0, 0,−1,−3}

respectively. Thus E(G710) = E(G711) .

By direct computing, the Laplacian spectra of G710 and G711 are {7, 5, 3, 3, 1, 1, 0} and

{7, 5, 4, 2, 2, 2, 0} respectively. It is then immediate to verify that LE(G710) = LE(G711) .

�
In fact, the graphs in Lemma 2.1 are the minimal E-L equienergetic graphs.
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Now we introduce an operation on graphs [16] and consider how it affects the adjacency

spectrum and the Laplacian spectrum.

Let G be a graph on n vertices and m edges, and t > 0 be an integer. Write G(t) for

the graph obtained by replacing each vertex u ∈ V (G) by a set Vu of t vertices and joining

x ∈ Vu to y ∈ Vu if and only if uv ∈ E(G) . Notice that the order of G(t) is v(G(t)) = tn ,

and the number of edges of G(t) is e(G(t)) = t2m . The following result holds.

Lemma 2.2 [16] The adjacency eigenvalues of G(t) are tλ1(G) , . . . , tλn(G) together

with n(t− 1) additional 0’s.

From this we get the following result:

Theorem 2.1 If E(G1) = E(G2) , then E(G
(t)
1 ) = E(G

(t)
2 ) , for all integers t > 0 .

The following result on Laplacian spectrum was presented in [3].

Lemma 2.3 Let G be a simple graph of order n . If we put two similar graphs G side

by side, and any vertex of the first graph G is connected by edges with the vertices

which are adjacent to the corresponding vertex of the second graph G , then the result-

ing graph has Laplacian eigenvalues 2μ1(G) , . . . , 2μn(G) and the remaining eigenvalues

are 2d1, 2d2, . . . , 2dn .

In fact, Lemma 2.3 gives the Laplacian spectrum of G(2) . It can be extended to G(t)

for all integers t > 0 .

Lemma 2.4 The Laplacian eigenvalues of G(t) are tμ1(G) , . . . , tμn(G) and the remain-

ing eigenvalues are td1, td2, · · · , tdn with multiplicities t− 1 , i. e.,(
tμ1(G) tμ2(G) · · · tμn(G) td1 td2 · · · tdn

1 1 · · · 1 t− 1 t− 1 · · · t− 1

)
.
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Remark 2.1 By Lemma 2.4 , it is an easy computation to show that

LE(G(t)) = t LE(G) + t(t− 1)
n∑

i=1

∣∣∣∣di − 2m

n

∣∣∣∣ . (1)

Notice that LE(G1) = LE(G2) does not imply that LE(G
(t)
1 ) = LE(G

(t)
2 ) .

Finally, we show that there exist infinitely many pairs of E-L equienergetic graphs.

Theorem 2.2 There exists a pair of E-L equienergetic graphs of order n , for all n ≡
0 (mod 7) .

Proof. Let G1 = G
(t)
710 , G2 = G

(t)
711 , where G710 , G711 be the graphs in Lemma 2.1 , and

t > 0 be an integer. Then by Theorem 2.1 , we have E(G1) = E(G2) .

Moreover, by equation (1),

LE(G1) = t LE(G710) + t(t− 1)
7∑

i=1

∣∣∣∣di0 − 20

7

∣∣∣∣ = t LE(G710) +
52

7
t(t− 1)

and

LE(G2) = t LE(G711) + t(t− 1)
7∑

i=1

∣∣∣∣di1 − 22

7

∣∣∣∣ = t LE(G711) +
52

7
t(t− 1)

where di0, di1 , i = 1, 2, . . . , 7 , are the vertex degrees of G710 and G711 , respectively.

Hence, there exists a pair of E-L equienergetic graphs of order n , for all n ≡ 0 (mod 7) .

�
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Graph Spectra, Elsevier, Amsterdam,1988.

[3] K. C. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004)

715–724.

-974-



[4] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz 103

(1978) 1–22.

[5] I. Gutman, Total π-electron energy of benzenoid hydrocarbons, Topics Curr. Chem.

162 (1992) 29–63.

[6] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R.

Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications , Springer–

Verlag, Berlin, 2001, pp. 196–211.

[7] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of

total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441–

456.

[8] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert–Streib (Eds.),

Analysis of Complex Networks. From Biology to Linguistics , Wiley–VCH, Weinheim,

2009, pp. 145–174.

[9] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006)

29–37.

[10] I. Gutman, N. M. M. de Abreu, C. T. M. Vinagre, A. S. Bonifácio, S. Radenković,
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