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Abstract

Let G be a graph and λ1, λ2, . . . λn be its eigenvalues. Then the energy of G is defined as

E(G) = |λ1| + |λ2| + · · · |λn|. Let B(n) be the class of bipartite bicyclic graphs on n vertices

containing a cycle with length congruent to 2 modulo 4 . In [ Z. Liu, B. Zhou, Minimal energies

of bipartite bicyclic graphs, MATCH Commun. Math. Comput. Chem. 59 (2008) 381–396 ] it

was an attempted to determine the graph that has the minimal energy in B(n) , but left two

kinds of graphs B1
n and B2

n without determining which has the minimal energy. Let Gn be the

class of tricyclic graphs G on n vertices that contain no disjoint odd cycles Cp, Cq of lengths

p and q with p + q ≡ 2 (mod 4) . In [ S. Li, X. Li, Z. Zhu, On tricyclic graphs with minimal

energy, MATCH Commun. Math. Comput. Chem 59 (2008) 397–419 ] it was attempted to

characterize the minimal and second-minimal energies of graphs in Gn , but left four kinds of

graphs Rn , Wn , Sn , and Qn without determining their ordering. This paper is to solve the

two unsolved problems completely, and obtain that in Gn , G0
n , and G1

n have the minimal and

second-minimal energy for n ≥ 10 , respectively, and in Bn , B1
n has the minimal energy for

n ≤ 31 , otherwise, B2
n for n > 31 . The methods we use is different from those previously used.

One is the approximate root method and the other is the well-known Coulson integral formula.
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1 Preliminaries

In the paper, all the graphs under consideration are finite, connected and simple. We

use Pn , Cn and Sn to denote the path, cycle and star with n vertices, respectively.

Let G be a graph of order n and A(G) the adjacency matrix of G . The characteristic

polynomial of G is

φ(G, x) = det(λI − A(G)) =
n∑

i=0

aiλ
n−i . (1)

The roots λ1, λ2, . . . , λn of φ(G, λ) = 0 are called the eigenvalues of G . Since A(G) is

symmetric, all the eigenvalues of G are real.

The energy of G , denoted by E(G) , is defined as E(G) =
n∑

i=0

|λi| . This graph–

spectrum based invariant is much studied in mathematical chemistry; see the reviews

[3, 4], the recent papers [7, 12, 14, 15, 20, 21] and the references cited therein. In particular,

it is known [3, 5, 6] that E(G) can be expressed by means of the Coulson integral formula

E(G) =
1

2π

∫ +∞

−∞

1

x2
log

⎡⎣⎛⎝�n/2�∑
i=0

(−1)i a2ix
2i

⎞
⎠

2

+

⎛⎝�n/2�∑
i=0

(−1)i a2i+1x
2i+1

⎞
⎠

2⎤⎦ dx (2)

where a1, a2, . . . , an are the coefficients of the characteristic polynomial φ(G, x) of G .

Let b2i(G) = (−1)i a2i(G) and b2i+1(G) = (−1)i a2i+1(G) for 0 ≤ i ≤ �n
2
� . Clearly,

b0(G) = 1 and b2(G) equals the number of edges of G . If b2i(G) (resp. b2i+1(G)) assume

nonnegative ( resp., nonpositive) signs for i = 0, 1, . . . , n , it follows from Eq.(2) that E(G)

is a monotonically increasing function in bi(G) for i = 0, 1, . . . , n . That is, for any two

graphs G1 and G2 , we have

bi(G1) ≥ bi(G2) for all i ≥ 0 =⇒ E(G1) ≥ E(G2) .

If bi(G1) ≥ bi(G2) holds for all i ≥ 0 , then we denote G1 � G2 or G2 � G1 . If G1 � G2

(or G2 � G1) and there is some i0 satisfying bi0(G1) > bi0(G2) , then we denote G1 � G2

(or G2 ≺ G1) . Therefore, we have the following relation:

G1 � G2 =⇒ E(G1) ≥ E(G2)

G1 � G2 =⇒ E(G1) > E(G2) . (3)

The above relation is just the quasi-order ( i. e., ”�”) introduced in [6].

-944-



The following lemma is a well-known conclusion, known as the Coulson–Jacobs formula

[2, 3, 19].

Lemma 1.1. If G1 and G2 are two graph with the same number of vertices, then

E(G1) − E(G2) =
1

π

∫ +∞

−∞
log

φ(G1; ix)

φ(G2; ix)
dx .

After these preparations, we will solve two unsolved problems on the minimal energies

of two classes of graphs, left in [13, 18].

2 Solution to the unsolved problem in [13]

Since it is difficult to precisely calculate the non-zero eigenvalues of the characteristic

polynomial of ascertained graphs for an arbitrary n , some scholars used to figure out

energies of graphs and proceed effective comparison through estimating approximate roots

of its eigenvalues, i. e., it is usually called the approximate root method.

Let Gn be the class of tricyclic graph G with n vertices that contain no disjoint two odd

cycles Cp, Cq with p + q ≡ 2 ( mod 4) . Denote G0
n as the graph obtained by connecting

3 pendent vertices to a vertex of degree 1 of the K1,n−1 , and G1
n as the graph formed by

joining n− 6 pendent vertices to a vertex of degree 4 of the complete bipartite graph K2,4

( see Figure 1).

n-5︷ ︸︸ ︷ n-6︷ ︸︸ ︷

G0
n G1

n

Fig.1. The graphs G0
n and G1

n .
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}
n-7

︸ ︷︷ ︸
n-6

︸ ︷︷ ︸
n-5

︸ ︷︷ ︸
n-4

Rn Wn Rn Qn

Fig.2. The graphs Rn , Wn , Sn , and G1
n .

In Gn , there are four special graphs, which are named as Rn ,Wn ,Sn , and Qn , re-

spectively, where Rn has n − 7 pendent vertices, Wn has n − 6 pendent vertices, Sn has

n − 5 pendent vertices and Qn has n − 4 pendent vertices ( see Figure 2).

Recently, Li et al.[13] wanted to determine the graphs having the minimal and second-

minimal energies in Gn (n ≥ 11) . This conclusion is a partial proof of the case e = n + 2

for n ≥ 7 of a conjecture in [1], but has the constrained condition that it cannot contain

the above four special graphs.

In this section we will show that the result is valid for all graphs in Gn . In fact, the

conclusion is also true for n = 10 . Firstly, we restate the main result of [13] as follows.

Theorem 2.1. (i) G1
n has the minimal energy in Gn for 7 ≤ n ≤ 10;

(ii) If G ∈ Gn and G 	∈ {Rn,Wn, Sn, Qn, G0
n, G1

n} , then E(G0
n) < E(G1

n) < E(G) for

n ≥ 11 .

By simple calculation, we immediately have the following lemma.

Lemma 2.2.

φ(Qn; λ) = λn − (n + 2)λn−2 − 8λn−3 + (3n − 15)λn−4 + (2n − 8)λn−5

φ(Rn; λ) = λn − (n + 2)λn−2 − 6λn−3 + (3n − 6)λn−4 + 12λn−5 − (3n − 14)λn−6 − 6λn−7

φ(Wn; λ) = λn − (n + 2)λn−2 − 6λn−3 + (3n − 9)λn−4 + 8λn−5 − (2n − 12)λn−6

φ(Sn; λ) = λn − (n + 2)λn−2 − 6λn−3 + (3n − 12)λn−4 + 2λn−5 − (n − 5)λn−6

φ(G0
n; λ) = λn − (n + 2)λn−2 − 6λn−3 + (3n − 15)λn−4

φ(G1
n; λ) = λn − (n + 2)λn−2 + (4n − 24)λn−4 .
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Theorem 2.3. For n ≥ 10 , if G ∈ Gn and G 	∼= G0
n, G1

n, then E(G0
n) < E(G1

n) < E(G) .

In order to obtain the above assertion, we, from Theorem 2.1, only need to show the

following lemma.

Lemma 2.4. If G ∼= Rn,Wn, Sn, Qn , then E(G) > E(G1
n) for n ≥ 10 .

Proof. From Lemma 2.2 and the quasi-order (3), it is not difficult to check that E(Sn) <

E(Wn) < E(Rn) . Next, we consider the problem of the difference between the energies

of Qn and Sn , as well as those of Qnand G1
n . Therefore, now we only need to show the

following two claims in the sequel.

Claim1: E(Qn) < E(Sn), for n ≥ 7 .

From Lemma 2.2, we have

φ(Qn; x) = xn − (n + 2)xn−2 − 8xn−3 + (3n − 15)xn−4 + (2n − 8)xn−5

= xn−5(x + 1)2(x3 − 2x2 − (n − 1)x + (2n − 8))

:= xn−5(x + 1)2f1(x)

φ(Sn; x) = xn−6(x6 − (n + 2)x4 − 6x3 + (3n − 12)x2 + 2x − (n − 5))

:= xn−6f2(x) .

It is easy to see that

f1(−
√

n) = −√
n − 8 < 0 (n > 0)

f1(−2) = 4n − 26 > 0 (n > 6)

f1(2 − 7/n) =
n3 − 35n2 + 196n − 343

n3
> 0 (n > 28)

f1(2) = −56 < 0 (n > 0)

f1(
√

n − 1) = −6 < 0 (n > 0)

f1(
√

n) =
√

n − 8 ≥ 0 (n ≥ 64)

According to the theorem of zeros of continued functions, we arrive at

2

(
(2 − 7

n
) +

√
n − 1

)
< E(Qn) for n > 28 (4)
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E(Qn) < 2(2 +
√

n) for n ≥ 64 . (5)

It is also easy to see that

f2(−
√

n) = n2 + 6n
3
2 − 13n − 2

√
n + 5 > n2 − 9n + 5 > 0 (n > 9)

f2(−2) = −5n + 33 < 0 (n > 6)

f2(−1) = n − 4 > 0 (n > 4)

f2(0) = −(n − 5) < 0 (n > 5)

f2(0.6) = −0.0496n + 0.371456 > 0 (n > 7)

f2(7/4) = −206607

4096
− 305

256
n < 0 (n > 0)

f2(
√

n − 1) = −10n − 6(n − 1)
√

n − 1 + 2
√

n − 1 + 14 < 0 (n > 1)

f2(
√

n) = n2 − 6n
√

n − 13n + 2
√

n + 5 > 0 (n > 59) .

Again, according to the theorem of zeros of continued functions, we arrive at

2(0.6 + 1.75 +
√

n − 1) < E(Sn) for n > 7 . (6)

It follows from
√

n < 0.35+
√

n − 1 with n ≥ 3 that the right-hand side of (5) is less than

the left-hand side of (6). Hence E(Qn) < E(Sn) for n ≥ 64 . Direct calculation yields

that E(Qn) < E(Sn) for 7 ≤ n ≤ 63 , see Table 1.

Next, we will do the remaining part of the proof.

Claim 2: E(G1
n) < E(Qn), for n ≥ 7 .

From Lemma 3.2, we have

φ(G1
n; x) = xn−4(x4 − (n + 2)x2 + (4n − 24))

� xn−4f3(x) .

Since

f3(1) = 3n − 25 > 0 (n > 8)

f3(2 − 4/n) =
−112n3 + 352n2 − 512n + 256

n4
< 0 (n > 3)

f3(
√

(n − 7/4)) =
n

4
− 279

16
> 0 (n > 69)

therefore we have

E(G1
n) < 2

(
(2 − 4

n
) +

√
(n − 7

4
)

)
for n > 69 . (7)
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It follows from 3n2−12n
√

4n − 7−36 > 0 with n > 62 that the right–hand side of (7)

is less than the left–hand side of (4). So E(G1
n) < E(Qn) for n > 69 . By straightforward

computing, we also have that E(G1
n) < E(Qn) for 7 < n ≤ 69 , see Table 2.

It is easy to get that E(G1
10) > E(G0

10) by direct calculation. Therefore, the proof is

complete.

Table1. The difference between E(Sn) and E(Qn)

n E(Sn) − E(Qn) n E(Sn) − E(Qn) n E(Sn) − E(Qn)

n = 7 0.33131 n = 8 0.26381 n = 9 0.28413

n = 10 0.39805 n = 11 0.41813 n = 12 0.41087

n = 13 0.42196 n = 14 0.42691 n = 15 0.43099

n = 16 0.43442 n = 17 0.43734 n = 18 0.43985

n = 19 0.44204 n = 20 0.43985 n = 21 0.44566

n = 22 0.44717 n = 23 0.44853 n = 24 0.44976

n = 25 0.45086 n = 26 0.45187 n = 27 0.45279

n = 28 0.45364 n = 29 0.45441 n = 30 0.45514

n = 31 0.45580 n = 32 0.45641 n = 33 0.45698

n = 34 0.45753 n = 35 0.45803 n = 36 0.45849

n = 37 0.45894 n = 38 0.45935 n = 39 0.45974

n = 40 0.46011 n = 41 0.46046 n = 42 0.46079

n = 43 0.46110 n = 44 0.46140 n = 45 0.46168

n = 46 0.46195 n = 47 0.46220 n = 48 0.46245

n = 49 0.46268 n = 50 0.46290 n = 51 0.4631

n = 52 0.46332 n = 53 0.46351 n = 54 0.46371

n = 55 0.46388 n = 56 0.46405 n = 57 0.46418

n = 58 0.46438 n = 59 0.46453 n = 60 0.46468

n = 61 0.46482 n = 62 0.46496 n = 63 0.46509
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Table2. The difference between E(Qn) and E(G1
n)

n E(Qn) − E(G1
n) n E(Qn) − E(G1

n) n E(Qn) − E(G1
n)

n = 7 1.05420 n = 8 0.83081 n = 9 0.70536

n = 10 0.62183 n = 11 0.55206 n = 12 0.51447

n = 13 0.47707 n = 14 0.44648 n = 15 0.42070

n = 16 0.39865 n = 17 0.37953 n = 18 0.36275

n = 19 0.34787 n = 20 0.33457 n = 21 0.32259

n = 22 0.31172 n = 23 0.30182 n = 24 0.29273

n = 25 0.28437 n = 26 0.27665 n = 27 0.26948

n = 28 0.26280 n = 29 0.25656 n = 30 0.25072

n = 31 0.24524 n = 32 0.24006 n = 33 0.23621

n = 34 0.23160 n = 35 0.22624 n = 36 0.22220

n = 37 0.21816 n = 39 0.21442 n = 39 0.21085

n = 40 0.20744 n = 41 0.20420 n = 42 0.20107

n = 43 0.19808 n = 44 0.19521 n = 45 0.19246

n = 46 0.19080 n = 47 0.18726 n = 48 0.18420

n = 49 0.18244 n = 50 0.18015 n = 51 0.17795

n = 52 0.17782 n = 53 0.17276 n = 54 0.17186

n = 55 0.16983 n = 56 0.16796 n = 57 0.16615

n = 58 0.16439 n = 59 0.16268 n = 60 0.16102

n = 61 0.15941 n = 62 0.15785 n = 63 0.15632

n = 64 0.15483 n = 65 0.15339 n = 66 0.15198

n = 67 0.15061 n = 68 0.14927 n = 69 0.14797

3 Solution to the unsolved problem in [18]

First we recall some notations. Let B(n) be the set of n-vertex bipartite graphs that

contain a cycle of length ≡ 2 ( mod4) . Let B be the graph with 6 vertices obtained by

identifying an edge of two quadrangles. Denote by B1
n the graph formed by attaching

n − 6 pendent vertices to a vertex of degree 2 of B . By B2
n we denote the graph formed
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by attaching n−6 pendent vertices. Let B3
n be the graph obtained by identifying a vertex

of a hexagon and a vertex of a quadrangle, and attaching n − 9 pendent vertices to this

common vertex. Let B4
n be the graph obtained by introducing an edge between a vertex

of a hexagon and a vertex of a quadrangle, and attaching n − 10 pendent vertices to the

vertex of degree 3 in the hexagon. See Fig.3 for these graphs.

︸ ︷︷ ︸
n-6

︸ ︷︷ ︸
n-6

︸ ︷︷ ︸
n-9

︸ ︷︷ ︸
n-10

B1
n B2

n B3
n B4

n

Fig.3. The graphsB1
n , B2

n , B3
n and B4

n .

Let B1 ,B2 and B3 be the class of graphs that contain three cycles, two cycles just

having one common vertex and two vertex-disjoint cycles, respectively. Liu and Zhou [18]

characterized the graph B1
n or B2

n , B3
n and B4

n have the minimal energy in the three classes

B1 ,B2 and B3 of graphs, respectively. Furthermore, they almost completely obtained

the graphs that have the minimal energy in B(n) . Thus, which of the graphs B1
n and

B2
n that has the minimal energy was not determined. In this section, we shall solve this

unsolved problem and obtain that the graph B1
n and B2

n has the minimal and second-

minimal energy in B(n) for 31 ≥ n ≥ 7 , respectively, and otherwise, B2
n and B1

n for

n > 31 .

Liu and Zhou [18] got the following result.

Theorem 3.1. If G ∈ B(n) and G 	= B1
n, B

2
n , where n ≥ 8 , then E(G) > E(B2

n) .

They also remarked that E(B1
n) < E(B2

n) for 7 ≤ n ≤ 20 , but for n ≥ 7 the common

comparing way is invalid, since

b2(B
1
n) = 5n − 23 > 4n − 17 = b2(B

2
n), b3(B

1
n) = 2n − 11 < 4n − 17 = b3(B

2
n) . (8)

By simple calculation, their characteristic polynomials can be expressed as follows.
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Lemma 3.2.

φ(B1
n; λ) = λn − (n + 1)λn−2 + (5n − 23)λn−4 − (2n − 11)λn−6

φ(B2
n; λ) = λn − (n + 1)λn−2 + (4n − 17)λn−4 − (3n − 17)λn−6 .

Before exhibiting our main result, we should prepare some knowledge on real analysis

[23].

Lemma 3.3. for any real number X > −1 , we have

X

1 + X
≤ log(1 + X) ≤ X . (9)

The following lemma[10, 11] will be very useful in the sequel.

Lemma 3.4. Let A be a positive real number, B and C are non-negative. Then

X =
B − C

A + C
> −1 .

Now we will describe our main result in the section. That is, the graphs with the

minimal and second-minimal energies in B(n) are uniquely ascertained.

Theorem 3.5. If G ∈ B(n) and G 	= B1
n, B

2
n , then

(i) E(B1
n) < E(B2

n) < E(G) for 7 ≤ n ≤ 31 ;

(ii) E(B2
n) < E(B1

n) < E(G) for n > 31 .

Proof. Clearly, the common comparing method is failed for E(B1
n) and E(B2

n) by inequali-

ties (8). That is, it can not be determined completely by just comparing the corresponding

coefficients of their characteristic polynomials. But we can use the well-known Coulson

integral formula to compare the energies of the two graphs completely. By Lemmas 1.1

and 3.2, we arrive at

E(B1
n) − E(B2

n) =
1

π

∫ +∞

∞
log

x6 + (n + 1)x4 + (5n − 23)x2 + (2n − 11)

x6 + (n + 1)x4 + (4n − 17)x2 + (3n − 17)
dx . (10)

Denote f(x, n) as the integrand in Eq.(10). By letting A = x6 + (n + 1)x4 , B = (5n −
23)x2 + (2n − 11) and C = (4n − 17)x2 + (3n − 17) , f(x, n) can be expressed as

f(x, n) = log
A + B

A + C
= log

(
1 +

B − C

A + C

)
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i. e.,

f(x, n) = log

(
1 +

(n − 6)(x2 − 1)

x6 + (n + 1)x4 + (4n − 17)x2 + (3n − 17)

)
Obviously, A > 0 ,B ≥ 0 and C ≥ 0 for n ≥ 6 . Now let X = B−C

A+C
. Then by Lemmas 3.3

and 3.4, we obtain that for all x ∈ R and any integer n ≥ 6 ,

f(x, n) ≤ (n − 6)(x2 − 1)

x6 + (n + 1)x4 + (4n − 17)x2 + (3n − 17)

and

f(x, n) ≥ (n − 6)(x2 − 1)

x6 + (n + 1)x4 + (5n − 23)x2 + (2n − 11)
.

It follows that

f(x, n) ≤ (n − 6)(x2 − 1)

x6 + (n + 1)x4 + (4n − 17)x2 + (3n − 17)
< 0, if |x| < 1 (11)

and

f(x, n) ≥ (n − 6)(x2 − 1)

x6 + (n + 1)x4 + (5n − 23)x2 + (2n − 11)
> 0, if |x| > 1 . (12)

Notice that the function sequence{f(x,n)} is convergent (if x 	= 0), and

lim
p→+∞

f(x, n) = log
x4 + 5x2 + 2

x4 + 4x2 + 3
.

For convenience, let ψ(x) = log x4+5x2+2
x4+4x2+3

be the limit of {f(x, n)} . For x 	= 0 , we get

ψ(x) − f(x, n)

= log
x4 + 5x2 + 2

x4 + 4x2 + 3
− log

x6 + (n + 1)x4 + (5n − 23)x2 + (2n − 11)

x6 + (n + 1)x4 + (4n − 17)x2 + (3n − 17)

= log
x10 + (n + 6)x8 + (9n − 10)x6 + (25n − 100)x4 + (23n − 119)x2 + (64n − 34)

x10 + (n + 5)x8 + (9n − 16)x6 + (25n − 100)x4 + (23n − 113)x2 + (64n − 33)

It is convenient to set

g1(x) = x10 + (n + 6)x8 + (9n − 10)x6 + (25n − 100)x4 + (23n − 119)x2 + (64n − 34)

and

g2(x) = x10 + (n + 5)x8 + (9n − 16)x6 + (25n − 100)x4 + (23n − 113)x2 + (64n − 33) .

Now let A = x10 + (n + 5)x8 + (9n− 16)x6 + (25n− 100)x4 + (23n− 119)x2 + (64n− 34) ,

B = x8 + 6x6 and C = 6x2 + 1 . Then ψ(x) − f(x, n) can be translated into

ψ(x) − f(x, n) = log
A + B

A + C
= log

(
1 +

B − C

A + C

)
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i. e.,

ψ(x) − f(x, n) = log

(
1 +

x8 + 6x6 − 6x2 − 1

g2(x)

)
.

It is easy to get that A > 0 , B ≥ 0 and C ≥ 0 . By Lemmas 3.3 and 3.4, we have, for all

x ∈ R and any integer n ≥ 5 ,

ψ(x) − f(x, n) ≤ x8 + 6x6 − 6x2 − 1

g2(x)

and

ψ(x) − f(x, n) ≥ x8 + 6x6 − 6x2 − 1

g1(x)
.

Since B − C = x8 + 6x6 − 6x2 − 1 = (x2 − 1)(x6 + 7x4 + 7x2 + 1) , it follows that

ψ(x) < f(x, n) if 0 < |x| < 1 (13)

ψ(x) > f(x, n) if |x| > 1 . (14)

Analogously, for x 	= 0 , we will consider

f(x, n + 1) − f(x, n)

= log
x6 + (n + 2)x4 + (5n − 18)x2 + (2n − 9)

x6 + (n + 2)x4 + (4n − 13)x2 + (3n − 14)

− log
x6 + (n + 1)x4 + (5n − 23)x2 + (2n − 11)

x6 + (n + 1)x4 + (4n − 17)x2 + (3n − 17)

= log
x12 + (2n + 3)x10 + (n2 + 12n − 33)x8 + (9n2 − 17n − 78)x6+

x12 + (2n + 3)x10 + (n2 + 12n − 34)x8 + (9n2 − 17n − 84)x6+

(25n2 − 175n + 263)x4 + (23n2 − 209n + 459)x2 + (6n2 − 61n + 153)

(25n2 − 175n + 263)x4 + (23n2 − 209n + 465)x2 + (6n2 − 61n + 154)
.

It is also convenient to set h1(x) = x12 + (2n + 3)x10 + (n2 + 12n − 33)x8 + (9n2 −
17n − 78)x6 + (25n2 − 175n + 263)x4 + (23n2 − 209n + 459)x2 + (6n2 − 61n + 153) and

h2(x) = x12+(2n+3)x10+(n2+12n−34)x8+(9n2−17n−84)x6+(25n2−175n+263)x4+

(23n2−209n+465)x2+(6n2−61n+154) . Now let A = x12+(2n+3)x10+(n2+12n−34)x8+

(9n2 − 17n− 84)x6 + (25n2 − 175n + 263)x4 + (23n2 − 209n + 459)x2 + (6n2 − 61n + 153) ,

B = x8 + 6x6 and C = 6x2 + 1 . Then the above f(x, n + 1) − f(x, n) can be translated

into

f(x, n + 1) − f(x, n) = log
A + B

A + C
= log

(
1 +

B − C

A + C

)
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i. e.,

f(x, n + 1) − f(x, n) = log

(
1 +

x8 + 6x6 − 6x2 − 1

h2(x)

)
.

Similarly, we have

f(x, n + 1) − f(x, n) ≤ x8 + 6x6 − 6x2 − 1

h2(x)

and

f(x, n + 1) − f(x, n) ≥ x8 + 6x6 − 6x2 − 1

h1(x)
.

Because B − C = x8 + 6x6 − 6x2 − 1 = (x2 − 1)(x6 + 7x4 + 7x2 + 1) , it follows that

f(x, n + 1) < f(x, n) < 0 if 0 < |x| < 1 (15)

and

f(x, n + 1) > f(x, n) > 0 if |x| > 1 . (16)

Combining inequalities (11) through (16), we can deduce that

ψ(x) < f(x, n + 1) < f(x, n) if 0 < |x| < 1 (17)

and

ψ(x) > f(x, n + 1) > f(x, n) if |x| > 1 . (18)

Together with inequalities (17) and (18), for n > 36 it is straightforward to obtain that

+∞∫
0

f(x, n) dx =

1∫
0

f(x, n) dx +

+∞∫
1

f(x, n) dx >

1∫
0

ψ(x, n) dx +

+∞∫
1

f(x, 36) dx . (19)

With computer-aided calculations and Lemma 3.3, for any x > 1 we have

f(x, 36) = log
x6 + 37x4 + 157x2 + 61

x6 + 37x4 + 127x2 + 91

= log

(
1 +

30(x2 − 1)

x6 + 37x4 + 157x2 + 61

)

≥ 30(x2 − 1)

x6 + 37x4 + 157x2 + 61

≥ 30(x2 − 1)

x6 + 37.13x4 + 157.901x2 + 61.1116
.
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Moreover, we get∫ +∞

1

f(x, 36)dx ≥
∫ +∞

1

30(x2 − 1)

x6 + 37x4 + 157x2 + 61
dx

≥
∫ +∞

1

30(x2 − 1)

x6 + 37.13x4 + 157.901x2 + 61.1116
dx

=

∫ +∞

1

30(x2 − 1)

(x2 + 323
10

)(x2 + 22
5
)(x2 + 43

100
)
dx

=
111000

31911431

√
3230 arctan

√
3230

323
+

4290000

5440527

√
43 arctan

10

43

√
43

+
4500

135377

√
110π − 9000

135377

√
110 arctan

√
110

22
− 555000

31911431

√
3230π

− 2145000

54405277

√
43π

= 0.2088648803 . (20)

Table3. The difference between E(B1
n) and E(B2

n)

n E(B2
n) − E(B1

n) n E(B2
n) − E(B1

n) n E(B2
n) − E(B1

n)

n = 7 0.06301 n = 17 0.03370 n = 26 0.00963

n = 8 0.06812 n = 18 0.02952 n = 27 0.00779

n = 9 0.06568 n = 19 0.02653 n = 28 0.00529

n = 10 0.06141 n = 20 0.02372 n = 29 0.00415

n = 11 0.05676 n = 20 0.02372 n = 30 0.00274

n = 12 0.05214 n = 21 0.02106 n = 31 0.00081

n = 13 0.04875 n = 22 0.01855 n = 32 -0.00076

n = 14 0.04361 n = 23 0.01617 n = 33 -0.00228

n = 15 0.03973 n = 24 0.01392 n = 34 -0.00373

n = 16 0.03610 n = 25 0.01177 n = 35 -0.00513

n = 36 -0.00779
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Meanwhile,∫ 1

0

ψ(x)dx =

∫ 1

0

x4 + 5x2 + 2

x4 + 4x2 + 3
dx

=
1

192

(
(60 − 12

√
17) arctan(

2√
10 − 2

√
17

)

√
10 + 2

√
17 − (96 + 64

√
3)π

+ (60 + 12
√

17) arctan(
2√

10 + 2
√

17
)

√
10 − 2

√
17

)

= −0.2084288229 . (21)

Consequently, associating Eqs.(19) through (21), the difference between the energies of

B1
n and B2

n for n ≥ 36 is determined by a positive number. Together with Table 3 , we

surely complete the proof of the conclusion.
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