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Abstract

The sum of the absolute values of the eigenvalues of a graph G is called energy of
G. Let P 6

n be the graph obtained by merging a vertex of the six vertex cycle C6 and
an end vertex of the n−5 vertex path. In this paper we prove that for n = 8, 12, 14 or
n ≥ 16 we have E(P 6

n) > E(Cn). Combined with a result in [Y. Hou, I. Gutman, C.-
W. Woo, Unicyclic graphs with maximal energy, Linear Algebra Appl. 356 (2002)
27-36] this means that P 6

n is the connected unicyclic bipartite graph of order n, for
the values listed above, with maximal energy.

1 Introduction

For any graph G of order n, we denote by λ1(G), λ2(G), · · · , λn(G) its eigenvalues. The

graph invariant defined by

E(G) =
n∑

i=1

|λi(G)| (1)

is called energy of G. Within the framework of the Hückel molecular orbital [1] approx-

imation, the calculation of the total π-electron energy in a conjugated hydrocarbon can

be reduced to that of the energy of the corresponding graph. An alternative expression
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of E(G) is given as a Coulson integral [1] by

E(G) =
1

2π

∞∫
−∞

1

x2
log

⎡⎣⎛⎝�n/2�∑
j=0

(−1)ja2jx
2j

⎞⎠2

+

⎛⎝�n/2�∑
j=0

(−1)ja2j+1x
2j+1

⎞⎠2⎤⎦ dx , (2)

where a0, a1, · · · , an are the coefficients of the characteristic polynomial of G written in

the form

φ(G, x) =
n∑

i=0

aix
n−i . (3)

Formula (2) has been very helpful for the study of extremal energy in various classes of

graphs (see for instance [2–4]).

Among the most popular classes of graphs are unicyclic graphs and bipartite graphs.

The former class consists of all graphs which contain exactly one cycle, and a graph

belongs to the latter class if its set of vertices can be partitioned into two subsets in such

a way that every edge has its ends in different sets. In this paper we aim to show that

P 6
n , which results from merging an end vertex of a n− 5 vertex path and a vertex in a 6

vertex cyclic graph, is the connected unicyclic bipartite graph of order n with maximal

energy. A very important step leading to this objective was achieved in [5] where it is

proven that

Theorem 1. P 6
n has the maximal energy among all connected unicyclic bipartite n-vertex

graphs, except the circuit Cn.

Therefore, what is left is to compare the energy of the two graphs P 6
n and Cn for a

fixed positive integer n. Our main result is that for n = 8, 12, 14 or n ≥ 16 we have

E(Cn) < E(P 6
n) . (4)

This partially proves the conjecture:

Conjecture 1 ( [6, 7]). Among all unicyclic graphs on n ≥ 7 vertices the cycle Cn has

maximal energy if n = 9, 10, 11, 13 and 15. For all other values of n the unicyclic graph

with maximum energy is P 6
n .

2 Lower bound for E(P 6
n)

Since P 6
n is bipartite (see Figure 1), its characteristic polynomials is of the form [1]

φ(P 6
n , x) = det(xIn − A(P 6

n)) =
∑
k≥0

(−1)kbk(P
6
n)x

n−2k (5)
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v3 v1 v5 v7 vn−1

v2 v4 v6 v8 vn

Figure 1: P 6
n , emphasizing that it is bipartite

where A(P 6
n) is an adjacency matrix of P 6

n and In is the identity matrix of order n. Hence,

using equation (2), the Coulson integral expression of the energy of P 6
n is given by

E(P 6
n) =

2

π

∞∫
0

1

x2
log

(∑
k≥0

bk(P
6
n)x

2k

)
dx . (6)

First, we need an explicit expression for Qn(x) =
∑

k≥0 bk(P
6
n)x

2k in terms of n and x.

This will help us to evaluate the right-hand side of the equation (6). Qn(x) and φ(P 6
n , x)

are related as follows for all n ≥ 6:

(x/i)nφn(P
6
n , i/x) = (x/i)n

∑
k≥0

(−1)kbk(P
6
n)(i/x)

n−2k

=
∑
k≥0

(−1)kbk(P
6
n)i

−nin−2kxnx−n+2k

=
∑
k≥0

bk(P
6
n)x

2k

= Qn(x) . (7)

If we label the vertices of P 6
n as in Figure 1, then the corresponding adjacency matrix

is

A(P 6
n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 0 . . . 0 0
1 0 1 0 0 0 0 . . . 0 0
0 1 0 1 0 0 0 . . . 0 0
0 0 1 0 1 0 0 . . . 0 0
0 0 0 1 0 1 0 . . . 0 0

1 0 0 0 1 0 1
. . .

...
...

0 0 0 0 0 1 0
. . . 0 0

...
...

...
...

...
. . . . . . . . . 1 0

0 0 0 0 0 · · · 0 1 0 1
0 0 0 0 0 · · · 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)
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Therefore the characteristic polynomial of P 6
n is

φ(P 6
n , x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0 0 −1 0 · · · 0 0
−1 x −1 0 0 0 0 · · · 0 0
0 −1 x −1 0 0 0 · · · 0 0
0 0 −1 x −1 0 0 · · · 0 0
0 0 0 −1 x −1 0 · · · 0 0

−1 0 0 0 −1 x −1
. . .

...
...

0 0 0 0 0 −1 x
. . . 0 0

...
...

...
...

...
. . . . . . . . . −1 0

0 0 0 0 0 · · · 0 −1 x −1
0 0 0 0 0 · · · 0 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (9)

In particular, after computation of the corresponding determinant, we have

φ(P 6
6 , x) = x6 − 6x4 + 9x2 − 4 , (10)

φ(P 6
7 , x) = x7 − 7x5 + 13x3 − 7x (11)

and consequently, using equation (7), we obtain

Q6(x) = (x/i)6((i/x)6 − 6(i/x)4 + 9(i/x)2 − 4)

= 1 + 6x2 + 9x4 + 4x6 (12)

Q7(x) = (x/i)7((i/x)7 − 7(i/x)5 + 13(i/x)3 − 7(i/x))

= 1 + 7x2 + 13x4 + 7x6 . (13)

The importance of equation (9) is that it allows us to derive a recurrence relation for

the sequence of polynomials (φ(P 6
n , x))n≥6. For n ≥ 8, expanding the determinant on the

right-hand side of equation (9) with respect to its last row we obtain

φ(P 6
n , x) = xφ(P 6

n−1, x)− φ(P 6
n−2, x) . (14)

Via equation (7) we now can deduce a recurrence relation for the sequence (Qn(x))n≥6:

Qn(x) = (x/i)nφn(i/x)

= (x/i)n
i

x
φn−1(i/x)− (x/i)nφn−2(i/x)

= (x/i)n−1φn−1(i/x) + x2(x/i)n−2φn−2(i/x)

= Qn−1(x) + x2Qn−2(x) . (15)
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This linear recurrence relation has characteristic equation

X2 −X − x2 = 0 (16)

which has two roots

D1(x) =
1 +

√
1 + 4x2

2
(17)

and

D2(x) =
1−

√
1 + 4x2

2
. (18)

Therefore, the explicit expression for Qn(x) must be of the form

Qn(x) = C1(x)D
n
1 (x) + C2(x)D

n
2 (x) (19)

where C1(x) and C2(x) satisfy the system of equations⎧⎪⎨⎪⎩
C1(x)D

6
1(x) + C2(x)D

6
2(x) = Q6(x) = 1 + 6x2 + 9x4 + 4x6

C1(x)D
7
1(x) + C2(x)D

7
2(x) = Q7(x) = 1 + 7x2 + 13x4 + 7x6 .

(20)

Solving the system of equations we obtain

C2(x) =
(x2 + 1)((4x4 + 5x2 + 1)

√
1 + 4x2 − 1− 7x2 − 10x4)

2D6
2(x)

√
1 + 4x2

, (21)

C1(x) =
(x2 + 1)((4x4 + 5x2 + 1)

√
1 + 4x2 + 1 + 7x2 + 10x4)

2D6
1(x)

√
1 + 4x2

(22)

and therefore

Qn(x) =
(x2 + 1)((4x4 + 5x2 + 1)

√
1 + 4x2 + 10x4 + 7x2 + 1)

2
√
1 + 4x2

(
1 +

√
1 + 4x2

2

)n−6

+
(x2 + 1)((4x4 + 5x2 + 1)

√
1 + 4x2 − 10x4 − 7x2 − 1)

2
√
1 + 4x2

(
1−

√
1 + 4x2

2

)n−6

=
(x2 + 1)((4x4 + 5x2 + 1)

√
1 + 4x2 + 10x4 + 7x2 + 1)

2
√
1 + 4x2

(
1 +

√
1 + 4x2

2

)n−6

⎛⎝1 +
(4x4 + 5x2 + 1)

√
1 + 4x2 − 10x4 − 7x2 − 1

(4x4 + 5x2 + 1)
√
1 + 4x2 + 10x4 + 7x2 + 1

(
1−

√
1 + 4x2

1 +
√
1 + 4x2

)n−6
⎞⎠ . (23)

With this expression of Qn(x), equation (6) leads to

E(P 6
n) =

2

π
((n− 6)I1 + I2 + I4 − I3 + I5(n)) (24)
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where I1, I2, I3, I4, I5(n) are described as follows:

I1 =

+∞∫
0

1

x2
log(D1(x))dx = 2 , (25)

I2 =

+∞∫
0

log(x2 + 1)

x2
dx = π , (26)

I3 =

+∞∫
0

log(
√
4x2 + 1)

x2
dx = π . (27)

Unlike the three first integrations whose exact values can be obtained via easy integration

by parts, for the next two we content ourselves with some bounds,

I4 =

+∞∫
0

log((4x4 + 5x2 + 1)
√
1 + 4x2 + 10x4 + 7x2 + 1)− log(2)

x2
dx

= −
+∞∫
0

(log((4x4 + 5x2 + 1)
√
1 + 4x2 + 10x4 + 7x2 + 1)− log(2)) d

(
1

x

)
x

= −
[
log((4x4 + 5x2 + 1)

√
1 + 4x2 + 10x4 + 7x2 + 1)− log(2)

x

]x→+∞

x→0

+

+∞∫
0

80x5 + 76x3 + 14x+ (40x3 + 14x)
√
1 + 4x2

16x7 + 24x5 + 9x3 + x+ (10x5 + 7x3 + x)
√
1 + 4x2

dx

=

+∞∫
0

80x4 + 76x2 + 14 + (40x2 + 14)
√
1 + 4x2

16x6 + 24x4 + 9x2 + 1 + (10x4 + 7x2 + 1)
√
1 + 4x2

dx

=

+∞∫
0

2(4x2 + 1)(10x2 + 7) + (40x2 + 14)
√
1 + 4x2

(x2 + 1)(4x2 + 1)2 + (10x4 + 7x2 + 1)
√
1 + 4x2

dx

=

+∞∫
0

(20x2 + 14)
√
1 + 4x2 + 40x2 + 14

(x2 + 1)(4x2 + 1)
√
1 + 4x2 + 10x4 + 7x2 + 1

dx . (28)

Expressing x in terms of a new variable y defined by x = 1
4

(
1
y
− y
)
, y ∈ (0, 1), leads to
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a rational integral

I4 = 4

1∫
0

(y + 1)2(y2 + 1)(5y4 + 10y3 + 26y2 + 10y + 5)

(y + 1)4(y6 + y5 + 7y4 − 2y3 + 7y2 + y + 1)
dy

= 8

1∫
0

1

(y + 1)2
dy + 4

1∫
0

3y4 + 2y3 + 10y2 + 2y + 3

y6 + y5 + 7y4 − 2y3 + 7y2 + y + 1
dy

= 4 + 4

1∫
0

3y4 + 2y3 + 10y2 + 2y + 3

y6 + y5 + 7y4 − 2y3 + 7y2 + y + 1
dy . (29)

To get a lower bound for I4, note that for all y ∈ (0, 1) we have

3y4 + 2y3 + 10y2 + 2y + 3

y6 + y5 + 7y4 − 2y3 + 7y2 + y + 1
− 15y2 − 50y + 60

20

=
(y − y2)f(y)

4y6 + 4y5 + 28y4 − 8y3 + 28y2 + 4y + 4
(30)

where

f(y) = 3y6 − 4y5 + 19y4 − 45y3 + 68y2 − 31y + 6

= 6(−y2 + 3y − 1)2 + 2(y2 − y)2 + 3y6 − 4y5 + 11y4 − 5y3 + 5y > 0 . (31)

This means that the difference in (30) is positive for all y ∈ (0, 1), therefore we deduce

that

I4 > 4 + 4

1∫
0

15y2 − 50y + 60

20
dy = 12 . (32)

By numerical integration we get a better estimate for I4 :

I4 > 12.1855 . (33)

And finally the last term is given by

I5(n) =

∞∫
0

1

x2
log

⎛⎝1 +
(4x4 + 5x2 + 1)

√
1 + 4x2 − 10x4 − 7x2 − 1

(4x4 + 5x2 + 1)
√
1 + 4x2 + 10x4 + 7x2 + 1

(
1−

√
1 + 4x2

1 +
√
1 + 4x2

)n−6
⎞⎠ dx.

(34)

Let us proceed by a change of variable from x to z where x = 1
ez−e−z . This gives

dx = − ez + e−z

(ez − e−z)2
dz,

√
1 + 4x2 =

ez + e−z

ez − e−z
, (35)
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and

I5(n) =

∞∫
0

log

(
1 +

2ez + 4e−3z + 2e−5z

2e5z + 4e3z + 2e−z

(
ez − e−z − (ez + e−z)

ez − e−z + (ez + e−z)

)n−6
)
(ez + e−z) dz

=

∞∫
0

log

(
1 +

2e−5z(e6z + 2e2z + 1)

2e−z(e6z + 2e4z + 1)

(
−e−2z

)n−6
)
(ez + e−z) dz

=

∞∫
0

log

(
1 +

e6z + 2e2z + 1

e6z + 2e4z + 1
(−1)n−4e−2(n−4)z

)
(ez + e−z) dz . (36)

Let us treat separately two cases depending on the parity of n.

• If n is even, then n − 4 is even and equation (36) leads to the following inequality

which will be needed for the comparison of E(P 6
n) and E(Cn):

I5(n) > J+(n) =

∞∫
0

log

(
1 +

1 + e6z + 2e2z

e2z + e8z + 2e4z
e−2(n−4)z

)
(ez + e−z) dz

=

∞∫
0

log
(
1 + e−2(n−3)z

)
(ez + e−z) dz > 0 . (37)

Using the expression of log(1 + x) as a power series

log(1 + x) =
∞∑
k=1

(−1)k−1xk

k
(38)

we get

J+(n) =

∞∫
0

∞∑
k=1

(−1)k−1e−2(n−3)kz

k
(ez + e−z) dz

=
∞∑
k=1

(−1)k−1

k

∞∫
0

(
e−(2(n−3)k−1)z + e−(2(n−3)k+1)z

)
dz

=
∞∑
k=1

(−1)k−1

k

([
e−(2(n−3)k−1)z

−(2(n− 3)k − 1)

]z→∞

z→0

+

[
e−(2(n−3)k+1)z

−(2(n− 3)k + 1)

]z→∞

z→0

)

=
∞∑
k=1

(−1)k−1

k

(
1

2(n− 3)k − 1
+

1

2(n− 3)k + 1

)

= 4(n− 3)
∞∑
k=1

(−1)k−1

4(n− 3)2k2 − 1
=

∞∑
k=1

(−1)k−12
1

2(n− 3)

k2 − 1

(2(n− 3))2

. (39)
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Now, we use Euler’s partial fraction expansion of π csc(πz) for z = 1
2(n−3)

π csc
π

2(n− 3)
=

1
1

2(n− 3)

+
∞∑
k=1

(−1)k−12
1

2(n− 3)

k2 − 1

(2(n− 3))2

(40)

to find

I5(n) > J+(n) = π csc
π

2(n− 3)
− 2(n− 3) . (41)

Hence for all even integers n ≥ 6

E(P 6
n) >

4n

π
+

2

π
(I4 − 12) + 2 csc

π

2(n− 3)
− 2

π
2(n− 3)

= 2 csc
π

2(n− 3)
+

2

π
(I4 − 6) . (42)

Remark 1. Similarly, we can also obtain an upper bound for I5(n) which helps to

see that I5(n) tends to zero when n tends to infinity.

0 < I5(n) <

∞∫
0

log

(
1 +

1 + e6z + 2e4z

1 + e6z + 2e4z
e−2(n−4)z

)
(ez + e−z) dz

=

∞∫
0

log
(
1 + e−2(n−4)z

)
(ez + e−z) dz

= π csc

(
π

2(n− 4)

)
− 2(n− 4) . (43)

• If n is odd, then n− 4 is also odd and equation (36) leads to

0 > I5(n) > J−(n) =

∞∫
0

log

(
1− 1 + e6z + 2e4z

1 + e6z + 2e4z
e−2(n−4)z

)
(ez + e−z) dz

=

∞∫
0

log
(
1− e−2(n−4)z

)
(ez + e−z) dz . (44)

We still can use the power series

log(1− x) = −
∞∑
k=1

xk

k
(45)

to obtain

J−(n) = −
∞∫
0

∞∑
k=1

e−2(n−4)kz

k
(ez + e−z) dz . (46)
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Similar way as in the previous case, using the Euler’s partial fraction expansion of

πz cot(πz) instead of that of π csc(πz) leads to

J−(n) = π cot
π

2(n− 4)
− 2(n− 4) . (47)

Therefore, for this case we have the following lower bound for E(P 6
n):

E(P 6
n) >

4n

π
+

2

π
(I4 − 12) + 2 cot

π

2(n− 4)
− 2

π
2(n− 4)

> 2 cot
π

2(n− 4)
+

2

π
(I4 − 4) . (48)

3 Energy of the cyclic graph with vertices n

Let us denote by Cn the cyclic graph with n vertices. The eigenvalues of Cn can be

computed explicitly [8], they are

λk = 2 cos
2iπk

n

= e
2iπk
n + e−

2iπk
n , k = 0, 1, · · · , n− 1 . (49)

Summing the geometric series one obtains

E(Cn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4 cot π
n
if n = 4l ,

2 csc π
2n

if n = 4l + 1 or n = 4l + 3 ,

4 csc π
n
if n = 4l + 2 .

(50)

4 Comparison between E(P 6
n) and E(Cn)

We are only concerned with n ≥ 6 corresponding to π
n
∈ (0, π

6
].

• For n = 4l, 2 ≤ l ∈ N, the Taylor expansion of cot shows that for π
2
> x > 0

cot(x) <
1

x
, (51)

from equations (32) and (37) we know that I4 > 12 and I5(4l) > 0, respectively.

Hence, it follows that

E(C4l) = 4 cot
π

4l
<

16l

π
+

2

π
(I4 − 12 + I5(4l)) = E(P 6

4l) . (52)
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• For n = 4l + 2, 1 ≤ l ∈ N inequality (42) and equation (50) lead to

E(P 6
n)− E(Cn) > D(n) = 2 csc

π

2(n− 3)
− 4 csc

π

n
+

2

π
(I4 − 6) . (53)

Computing the particular value of D(n) at n = 4 · 3 + 2 using the lower bound for

I4 in equation (33) we have

D(14) ≥ 0.01532 . (54)

Let us define a function fD : [6,∞) → R by

fD(x) = 2 csc
π

2(x− 3)
− 4 csc

π

x
+

2

π
(I4 − 6) . (55)

Note that for all integers n ∈ [6,∞) we have fD(n) = D(n). Clearly fD is differen-

tiable in [6,∞). Aiming to prove that the sequence (D(n))6≤n is increasing we are

going to prove that fD is an increasing function in [6,∞). The derivative of fD at

any point x ∈ [6,∞) is given by

f ′
D(x) =

2π

2(x− 3)2
cos

π

2(x− 3)
csc2

π

2(x− 3)
− 4π

x2
cos

π

x
csc2

π

x

=
4

π

(
π

2(x− 3)

)2

cos
π

2(x− 3)
csc2

π

2(x− 3)
− 4

π

(π
x

)2
cos

π

x
csc2

π

x

=
4

π

(
f

(
π

2(x− 3)

)
− f

(π
x

))
(56)

where the function f is defined by

f(x) = x2 cosx csc2 x (57)

and for all x the expression of its derivative is

f ′(x) =
(2x cosx− x2 sin x) sin2 x− 2x2 cosx sin x cosx

sin4 x

=
2x cosx sin x− x2 sin2 x− 2x2 cos2 x

sin3 x

=
x(2 cosx sin x− x− x cos2 x)

sin3 x

≤ x(2x cosx− x− x cos2 x)

sin3 x

= −x2(1− cos x)2

sin3 x
< 0 (58)
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meaning that f is a decreasing function on (0, π
6
]. Equation (56) implies that for all

x ∈ [6,∞) we have f ′
D(x) > 0. Therefore, for all l ≥ 3 we have

D(4l + 2) ≥ D(14) > 0 . (59)

Finally, this implies that whenever l ≥ 3 the inequality

E(P 6
4l+2) > E(C4l+2) (60)

holds.

• For the two cases 6 ≤ n = 4l + 1 or 6 ≤ n = 4l + 3, using the corresponding

expression of E(Cn) in (50) and the inequality (48) we obtain

E(P 6
n)− E(Cn) > D(n) = 2 cot

π

2(n− 4)
− 2 csc

π

2n
+

2

π
(I4 − 4) . (61)

Exactly as in the previous case, we can associate a continuous function fD to the

sequence (D(n))6≤n defined by

fD : [6,∞) −→ R

x �−→ 2 cot
π

2(x− 4)
− 2 csc

π

2x
+

2

π
(I4 − 4)

which has a derivative at any point x ∈ [6,∞) given by

f ′
D(x) = 2

π

2(x− 4)2

sin2 π

2(x− 4)

− 2

π

2x2
cos

π

2x

sin2 π

2x

>
4

π

⎛⎜⎝
π

2(x− 4)

sin
π

2(x− 4)

⎞⎟⎠
2

− 4

π

⎛⎝ π

2x

sin
π

2x

⎞⎠2

. (62)

Since the function g(x) = x/ sin x is positive and increasing and 2(x − 4) < 2x

inequality (62) gives f ′
D(x) > 0 . Therefore fD, and consequently the sequence

(D(n))6≤n, is increasing. This implies that for all integers l ≥ 4 we have

D(4l + 3) ≥ D(4l + 1) ≥ D(17) ≈ 0.0066 > 0 . (63)

It follows that for all integers l ≥ 4 we have

E(P 6
4l+1) > E(C4l+1) (64)

and

E(P 6
4l+3) > E(C4l+3) . (65)
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Remark 2. From equation (43) for even n and equation (47) for odd n, it follows that

lim
n→+∞

I5(n) = 0 , (66)

and therefore in view of equations (24) and (50) we deduce that

lim
n→+∞

E(P 6
n)− E(Cn) =

2

π
(I4 − 12) > 0 . (67)

In summary, the results (52), (60), (64), (65) and Theorem 1 lead clearly to the

following theorem

Theorem 2. Among all connected unicyclic bipartite graphs on n ≥ 6 vertices the graph

P 6
n has maximal energy except for n = 10.

We believe that a similar method can be used to improve the result in [9] aiming to

prove claims in [10] on the n-vertex unicyclic bipartite graph with second or third maximal

energy.

Acknowledgement

I would like to thank Prof. Stephan Wagner for his guidance and suggestions leading to

these results. This material is based upon work supported financially by the Faculty of

Science of Stellenbosch University and the African Institute for Mathematical Sciences.

References

[1] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry , Springer–

Verlag, Berlin, 1986.

[2] W. Yan, L. Ye, On the minimal energy of trees with a given diameter, Appl. Math.

Lett. 18 (2005) 1046–1052.

[3] Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. 29 (2001) 163–168.

[4] F. Li, B. Zhou, Minimal energy of unicyclic graphs of a given diameter, J. Math.

Chem. 43 (2008) 476–484.

[5] Y. Hou, I. Gutman, C. W. Woo, Unicyclic graphs with maximal energy, Lin. Algebra

Appl. 356 (2002) 27–36.
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[7] G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search

for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput.

Sci. 39 (1999) 984–996.

[8] N. Biggs, Algebraic Graph Theory , Cambridge Univ. Press, Cambridge, 1993.

[9] H. Hua, Bipartite unicyclic graphs with large energy, MATCH Commun. Math. Com-

put. Chem. 58 (2007) 57–73.

[10] I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal, second–

maximal, and third–maximal energy, MATCH Commun. Math. Comput. Chem. 58

(2007) 75–82.

-926-


