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Abstract

The energy of a simple graph G, denoted by E(G), is defined as the sum
of the absolute values of all eigenvalues of its adjacency matrix. Gut-
man et al. [Extremal energy trees, MATCH Commun. Math. Comput.
Chem. 59 (2008), 315–320] conjectured that the fourth maximal energy
tree should be Pn(2, 6, n − 9), which is the tree consisting of three in-
ternal disjoint pendent paths starting from the unique vertex of degree
3, the length of the paths are 2, 6 and n − 9, respectively. Li and Li,
Shan and Shao showed that the fourth maximal tree must be one of the
two trees, Pn(2, 6, n − 9) and Tn(2, 2|2, 2), and these two trees are in-
comparable in the so-called quasi-order, where Tn(2, 2|2, 2) denotes the
tree of order n obtained by attaching two pendent paths of length 2 to
each end vertex of the path Pn−8, respectively. In this paper, by utiliz-
ing the Coulson integral formula and some knowledge of real analysis,
especially by employing certain combinatorial techniques, we show that
the energy of Pn(2, 6, n − 9) is greater than that of Tn(2, 2|2, 2), and
therefore completely confirm this conjecture.
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1 Introduction

Let G be a simple graph of order n, A(G) the adjacency matrix of G. The characteristic

polynomial of A(G) is usually called the characteristic polynomial of G, denoted by

φ(G, x) = det(xI − A(G)) = xn + a1x
n−1 + · · · + an .

It is well-known [3] that the characteristic polynomial of a bipartite graph G takes the

form

φ(G, x) =

�n/2�∑
k=0

a2k xn−2k =

�n/2�∑
k=0

(−1)k b2k xn−2k

where b2k = (−1)ka2k and b2k ≥ 0 for all k = 1, . . . , �n/2�, especially b0 = a0 = 1.

Moreover, the characteristic polynomial of a tree T can be expressed as

φ(T, x) =

�n/2�∑
k=0

(−1)k m(T, k) xn−2k

where m(T, k) is the number of k-matchings of T .

For a graph G, Let λ1, λ2, . . . , λn denote the eigenvalues of its characteristic polyno-

mial. The energy of a graph G is defined as

E(G) =
n∑

i=1

|λi| .

This definition was proposed formally in the 1970s by Gutman [6]. However, certain facts

and properties about graph energy were implicitly put forward before, see e. g. [1, 2, 21].

Within this early reasearch on graph energy, Gutman [4, 5] deduced the following formula

E(G) =
1

π

+∞∫
−∞

1

x2
log |xn φ(G, i/x)|dx

where i2 = −1. Furthermore, in the book of Gutman and Polansky [9], it was shown how

the above equality can (easily) be converted into an explicit formula as follows:

E(G) =
1

2π

+∞∫
−∞

1

x2
log

⎡⎣⎛⎝�n/2�∑
k=0

(−1)k a2k x2k

⎞
⎠

2

+

⎛⎝�n/2�∑
k=0

(−1)k a2k+1 x2k+1

⎞
⎠

2⎤⎦ dx .

In particular, the energy of a tree T can be expressed as

E(T ) =
2

π

+∞∫
0

x−2 log

⎡⎣1 +

�n/2�∑
k=1

m(T, k) x2k

⎤⎦ dx .
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For more results about graph energy, we refer the reader to the recent survey of Gutman,

Li and Zhang [8].

For two trees T1 and T2 of the same order, if m(T1, k) ≤ m(T2, k) for all k =

1, . . . , �n/2�, it is clear that E(T1) ≤ E(T2). Therefore, one can introduce a quasi or-

der � in the set of trees, that is, if m(T1, k) ≤ m(T2, k) holds for all k ≥ 0, then define

T1 � T2, and so T1 � T2 implies E(T1) ≤ E(T2) [5, 11, 24]. Similarly, one can generalize

the quasi order to the cases of bipartite graphs [18] and unicyclic graphs [15]. The above

quasi order method is commonly used to compare the energies of two trees, bipartite

graphs or unicyclic graphs. However, for general graphs, it is hard to define such a quasi

order. If, for two trees or bipartite graphs, the above quantities m(T, k) or |ak(G)| cannot

be compared uniformly, then the common comparing method is invalid, and this occa-

sionally happened. Recently, for these quasi-order-incomparable problems, we found an

efficient way to determine which one attains the extremal value of the energy, see [12–14].

Gutman [5] determined the first and second maximal-energy trees of order n. Li and

Li [16] determined the third maximal energy tree. Gutman et al. [10] conjectured that the

fourth maximal energy tree should be Pn(2, 6, n− 9), which is a tree of order n consisting

of three internal disjoint pendent paths starting from the unique vertex of degree 3, the

lengths of the paths are 2, 6 and n − 9, respectively. Li and Li [17], and, independently,

Shan and Shao [22, 23] showed that the fourth maximal tree must be one of the two trees,

Pn(2, 6, n− 9) and Tn(2, 2|2, 2), and these two trees are incomparable in the above quasi-

order, where Tn(2, 2|2, 2) denotes the tree of order n obtained by attaching two pendent

paths of length 2 to each end vertex of the path Pn−8, respectively (as shown in Figure

1). Actually, this problem was also mentioned in a lecture of Gutman, when he visited

Nankai University in the fall of 2009, and later on. In this paper, we will employ the

Coulson integral formula and some knowledge of real analysis, especially by using certain

combinatorial techniques, to show that the conjecture is true, and hence get a complete

solution to this open problem.
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Figure 1. Trees Tn(2, 2|2, 2) and Pn(2, 6, n − 9).

2 Main results

In the following, we list some basic properties of the characteristic polynomial φ(G, x) ,

which can be found in [3].

Lemma 2.1. Let uv be an edge of G . Then

φ(G, x) = φ(G − uv, x) − φ(G − u − v, x) − 2
∑

C∈C(uv)

φ(G − C, x)

where C(uv) is the set of cycles containing uv . In particular, if uv is a pendent edge with

pendent vertex v , then φ(G, x) = x φ(G − v, x) − φ(G − u − v, x) .

By Lemma 2.1, one easily obtains:

Lemma 2.2. Let G be a forest and e = uv be an edge of G . The characteristic polynomial

of G satisfies φ(G, x) = φ(G − e, x) − φ(G − u − v, x) .

The following lemma is a well-known result due to Coulson and Jacobs [2], see also

[7, 19, 20], which will be used in the sequel.

Lemma 2.3. If G1 and G2 are two graphs with the same number of vertices, then

E(G1) − E(G2) =
1

π

+∞∫
−∞

log
φ(G1, ix)

φ(G2, ix)
dx .

In [10], Gutman et al. proposed the following conjecture on the fourth maximal energy

tree of order n.

Conjecture 2.4. For n ≥ 14, the fourth maximal-energy tree is Pn(2, 6, n − 9).
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Recently, Shan and Shao [22] showed:

Theorem 2.5. If n ≥ 14, then the fourth maximal-energy tree of order n is one of the

two trees Pn(2, 6, n − 9) and Tn(2, 2|2, 2).

We completely settle this problem by showing:

Theorem 2.6. For n ≥ 14, the fourth maximal energy tree is Pn(2, 6, n − 9).

Before showing our main result, we give some useful lemmas. For brevity, we introduce

some notations. We use TA(n) and TB(n) to denote Pn(2, 6, n − 9) and Tn(2, 2|2, 2),

respectively. One can obtain the characteristic polynomials of TA(n) and TB(n) for n =

10, 11 as follows:

φ(TA(10), x) = x10 − 9x8 + 27x6 − 31x4 + 12x2 − 1

φ(TA(11), x) = x11 − 10x9 + 35x7 − 52x5 + 32x3 − 6x

φ(TB(10), x) = x10 − 9x8 + 26x6 − 30x4 + 13x2 − 1

φ(TB(11), x) = x11 − 10x9 + 34x7 − 48x5 + 29x3 − 6x .

Define

Y1(x) =
x +

√
x2 − 4

2

Y2(x) =
x −√

x2 − 4

2

A1(x) =
Y1(x)φ(TA(11), x) − φ(TA(10), x)

(Y1(x))12 − (Y1(x))10

A2(x) =
Y2(x)φ(TA(11), x) − φ(TA(10), x)

(Y2(x))12 − (Y2(x))10

B1(x) =
Y1(x)φ(TB(11), x) − φ(TB(10), x)

(Y1(x))12 − (Y1(x))10

B2(x) =
Y2(x)φ(TB(11), x) − φ(TB(10), x)

(Y2(x))12 − (Y2(x))10
.

It is easy to verify that Y1(x) + Y2(x) = x and Y1(x) Y2(x) = 1.
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By Lemmas 2.1 and 2.2, we can easily obtain

Lemma 2.7. φ(TA(n), x) = x φ(TA(n − 1), x) − φ(TA(n − 2), x) and φ(TB(n), x) =

xφ(TB(n − 1), x) − φ(TB(n − 2), x).

Lemma 2.8. For n ≥ 10 and x 	= ±2, the characteristic polynomials of TA(n) and TB(n)

have the following form

φ(TA(n), x) = A1(x)(Y1(x))n + A2(x)(Y2(x))n

and

φ(TB(n), x) = B1(x)(Y1(x))n + B2(x)(Y2(x))n .

Proof. By Lemma 2.7, we notice that both φ(TA(n), x) and φ(TB(n), x) satisfy the recur-

sive formula f(n, x) = xf(n − 1, x) − f(n − 2, x). Therefore, the general solution of this

linear homogeneous recurrence relation is f(n, x) = C1(x)(Y1(x))n + C2(x)(Y2(x))n. By

some elementary calculations, we can easily obtain that Ci(x) = Ai(x) for φ(TA(n), x), and

Ci(x) = Bi(x) for φ(TB(n), x), i = 1, 2, from the corresponding initial values φ(TA(10), x),

φ(TA(11), x); φ(TB(10), x), φ(TB(11), x).

We recall some knowledge from real analysis, for which we refer to [26].

Lemma 2.9. For any real number X > −1, we have

X

1 + X
≤ log(1 + X) ≤ X .

Proof of Theorem 2.6: By Lemma 2.3, the difference between the energies of these two

trees is

E(TB(n)) − E(TA(n)) =
1

π

+∞∫
−∞

log
φ(TB(n), ix)

φ(TA(n), ix)
dx

=
1

π

+∞∫
−∞

log
B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
dx . (1)
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By the definition of Y1(x) and Y2(x), Y1(ix) = x+
√

x2+4
2

i , Y2(ix) = x−√
x2+4
2

i . For

convenience, we define Z1(x) = −iY1(ix) = x+
√

x2+4
2

, Z2(x) = −iY2(ix) = x−√
x2+4
2

, and

f10 = −φ(TA(10), ix) = x10 + 9x8 + 27x6 + 31x4 + 12x2 + 1

f11 = iφ(TA(11), ix) = x11 + 10x9 + 35x7 + 52x5 + 32x3 + 6x

g10 = −φ(TB(10), ix) = x10 + 9x8 + 26x6 + 30x4 + 13x2 + 1

g11 = iφ(TB(11), x) = x11 + 10x9 + 34x7 + 48x5 + 29x3 + 6x .

Thus, it follows that

A1(ix) =
Z1(x)f11 + f10

(Z1(x))10((Z1(x))2 + 1)
, A2(ix) =

Z2(x)f11 + f10

(Z2(x))10((Z2(x))2 + 1)

B1(ix) =
Z1(x)g11 + g10

(Z1(x))10((Z1(x))2 + 1)
, B2(ix) =

Z2(x)g11 + g10

(Z2(x))10((Z2(x))2 + 1)
.

When n → ∞,

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B1(ix)

A1(ix)
if x > 0

B2(ix)

A2(ix)
if x < 0 .

When n is even, since Y1(ix) · Y2(ix) = 1, we have

log
B1(ix)(Y1(ix))n+2 + B2(ix)(Y2(ix))n+2

A1(ix)(Y1(ix))n+2 + A2(ix)(Y2(ix))n+2
− log

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

= log

(
1 +

K0(x)

H0(n, x)

)
where K0(x) = (A1(ix)B2(ix) − A2(ix)B1(ix)) ((Y2(ix))2 − (Y1(ix))2) and H0(n, x) =

φ(TA(n + 2), ix) · φ(TB(n), ix). Then, by some calculations,

K0(x) =
(f11g10 − f10g11)(x

2 + 4)x

((Z1(x))2 + 1)((Z2(x))2 + 1)
= (f11g10 − f10g11)x

= 2x16 + 22x14 + 89x12 + 168x10 + 156x8 + 66x6 + 9x4 > 0

no matter whether x is positive or negative. According to the expression of the character-

istic polynomial of trees, it is easy to observe that H0(n, x) is a polynomial such that each
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term is of even degree of x and all coefficients are negative. Obviously, log
(
1 + K0(x)

H0(n,x)

)
≤

0 for all x and even n. So, the integrand of Eq.(1) is monotonically decreasing on n when

n is even. Therefore,

+∞∫
−∞

log
φ(TB(n), ix)

φ(TA(n), ix)
dx ≤

+∞∫
−∞

log
φ(TB(14), ix)

φ(TA(14), ix)
dx .

By computer-aided calculations, E(TB(14))
.
= 17.00079, E(TB(14))

.
= 17.04710, and then

+∞∫
−∞

log
φ(TB(14), ix)

φ(TA(14), ix)
dx = π(E(TB(14)) − E(TA(14)))

.
= −0.14549 < 0 .

Suppose now that n is odd and x > 0. Then we have

log
B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
− log

B1(ix)

A1(ix)
= log

(
1 +

K1(n, x)

H1(n, x)

)
where K1(n, x) = (A1(ix)B2(ix) − A2(ix)B1(ix)) · (Y2(ix))n and H1(n, x) = φ(TA(n), ix) ·
B1(ix). Notice that K1(n, x) = (f11g10−f10g11)(Z2(x))n

√
x2+4

· in and H1(n, x)/in is a polynomial

such that each term is of odd degree of x and all coefficients are positive. Then K1(n,x)
H1(n,x)

< 0

for all x > 0 and odd n, since at this time (Z2(x))n =
(

x−√
x2+4
2

)n

< 0 and f11g10−f10g11 =

2x15 + 22x13 + 89x11 + 168x9 + 156x7 + 66x5 + 9x3 > 0. Similarly, we can show that

log
B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
− log

B2(ix)

A2(ix)
< 0

for all x < 0 and odd n. Therefore, we have proved that the integrand of Eq. (1) is not

greater than the corresponding limit function when n is odd.

Since 1 + B1(ix)−A1(ix)
A1(ix)

= B1(ix)
A1(ix)

> 0 for x > 0 and 1 + B2(ix)−A2(ix)
A2(ix)

= B2(ix)
A2(ix)

> 0 for

x < 0, B1(ix)−A1(ix)
A1(ix)

> −1 and B2(ix)−A2(ix)
A2(ix)

> −1. In terms of Lemma 2.9 and by some

computer-aided calculations, we obtain that

+∞∫
0

log
B1(ix)

A1(ix)
dx <

+∞∫
0

B1(ix) − A1(ix)

A1(ix)
dx

.
= −0.07713

and
0∫

−∞

log
B2(ix)

A2(ix)
dx <

+∞∫
0

B2(ix) − A2(ix)

A2(ix)
dx

.
= −0.07713 .
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Therefore, when n is odd,

+∞∫
−∞

log
B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n
dx

≤
+∞∫
0

log
B1(ix)

A1(ix)
dx +

0∫
−∞

log
B2(ix)

A2(ix)
dx < −0.15426 < 0 .

The proof is thus complete.
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