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Abstract

Let Tn,K and Fn,K be, respectively, the set of positively
weighted trees and forests, of order n with a (fixed) to-
tal weight sum K. In this paper we determine the mini-
mal energy together with the unique extremal weighted
graph achieving the minimal energy for both the classes
Tn,K and Fn,K . We also determine the maximal energy
together with all extremal weighted graphs achieving the
maximal energy for the class Fn,K , and show that there
does not exist weighted graphs in the class Tn,K hav-
ing the largest energy. Some related problems are also
considered.

1 Introduction

Let A be a real matrix of order n and λ1, . . . , λn be the eigenvalues of A. Then the

energy of A, denoted by E(A), is defined as E(A) =
∑n

i=1 |λi|. The energy of a graph
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G is defined to be the energy of its adjacency matrix [5]. For details of the theory of

graph energy see the reviews [5,7], the recent paper [10,11,13–18] and the references

cited therein.

Nikiforov [12] first pointed out that the energy of the graph is equal to the sum

of the singular values of its adjacency matrix. Let M be an m× n real matrix. Then

MMT is a positive semi-definite matrix of order m. If we denote the eigenvalues of

MMT by σ2
1, . . . , σ

2
m with σi ≥ 0 for i = 1, . . . ,m, then σ1, . . . , σm are called the

singular values of the matrix M . For convenience, we call the sum σ1 + · · · + σm as

the singular energy of M , denoted by σ(M).

It is easy to see that if A is a real symmetric matrix with eigenvalues λ1, . . . , λn ,

then AAT = A2 has eigenvalues λ2
1, . . . , λ

2
n , and thus the singular values of A are just

the absolute values of the eigenvalues of A. Consequently, the energy of A is the same

as the singular energy of A, namely we have E(A) = σ(A) for real symmetric matrix

A.

An (edge)-weighted graph is a graph G each of whose edges has a nonzero weight.

In other words, there is a weight function w from the edge set E(G) of G to the set

of nonzero real numbers. Such weighted graph is usually denoted by (G,w).

The (weighted) adjacency matrix Aw(G) of the weighted graph (G,w) of order n

is defined as the matrix A(G) = Aw(G) = (aij) of order n with

aij =

⎧⎨⎩ w(e) if ij is an edge e of G

0 otherwise.

Similar to the unweighted graphs, the energy of a weighted graph (G,w) (some-

times simply denoted by G) is defined to be the energy of its (weighted) adjacency

matrix A(G) [9]. Since A(G) is still a real symmetric matrix for weighted graph G,

we see that the energy of G is also the same as the singular energy of A(G). Namely,

E(G) = σ(A(G)) holds also for weighted graphs.

Lemma 1.1. Let G be a graph and e be a cut edge of G with G − e = G1

·∪ G2.

Let H1 = (G,w1) and H2 = (G,w2) be two weighted graphs on G such that w2(e) =

−w1(e), and they have the same weights on all other edges of G. Then we have

E(H1) = E(H2).
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Proof. By suitably ordering the vertices of G, we may write the weighted adjacency

matrices of H1 and H2 as:

A(H1) =

(
A1 X
XT A2

)
and A(H2) =

(
A1 −X

−XT A2

)
where Ai is the weighted adjacency matrix of Gi (i = 1, 2) , and X contains exactly

one nonzero entry corresponding to the cut edge e. Now it is easy to verify that(
In1 0
0 −In2

)(
A1 X
XT A2

)(
In1 0
0 −In2

)−1

=

(
A1 −X

−XT A2

)
which means that A(H1) and A(H2) are similar. Thus A(H1) and A(H2) have the

same spectrum, and therefore E(H1) = E(H2).

From Lemma 1.1 we can see that when we study the energy of weighted trees

or forests (each of their edges is a cut edge), we can always assume that they are

positively weighted.

LetK > 0 be a fixed number and n be a fixed positive integer. Let Tn,K , and Fn,K ,

be the set of positively weighted trees, and forests, of order n with the fixed total

weight sum K, respectively. In this paper, we study the extremal energy together

with the corresponding extremal weighted graphs for the classes Tn,K and Fn,K , and

we will also study some further related problems.

In §3, we determine the minimal energy together with the unique extremal weight-

ed graph achieving this minimal value for both the classes Tn,K and Fn,K . In §4, we
use the continuity property of the energy as a function of the weights to prove that

there do not exist weighted graphs in Tn,K (and Fn,K) having the second smallest

energy. In §5, we study the maximal energy problem. We determine the maximal

energy together with all the extremal weighted graphs achieving this maximal value

for the class Fn,K , and also show that there do not exist weighted graphs in the

class Tn,K having the maximal energy. We also answer the analogous maximal energy

problems for the class of all weighted connected graphs of order n with the total

weight sum K, as well as the class of all weighted graphs of order n with the total

weight sum K.
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2 The quasi order of weighted bipartite graphs

Lemma 2.1. [8] Let G be a weighted bipartite graph on n vertices. Then its charac-

teristic polynomial can be written as:

φ(G, x) =

�n/2�∑
k=0

(−1)k b(G, k) xn−2k (2.1)

where b(G, k) ≥ 0 for all k.

From the Coulson integral formula for the energy of graphs [8], we can see that if

G is a weighted bipartite graph with the characteristic polynomial as in (2.1), then:

E(G) =
2

π

+∞∫
0

1

x2
ln

⎛⎝�n/2�∑
k=0

b(G, k) x2k

⎞⎠ dx . (2.2)

Formula (2.2) holds for both simple and weighted bipartite graphs. It is much used in

the study of the energy of bipartite graphs (see [11] and the references cited therein).

It follows that E(G) is a strictly monotonically increasing function of those num-

bers b(G, k) (k = 0, 1, . . . , �n
2
�) for weighted bipartite graphs. Thus we can also define

the quasi-ordering relation ”�” for weighted bipartite graphs as the following. (The

analogous quasi ordering of simple graphs, first conceived in [4], is nowadays much

used in the theory of graph energy, see [10,13–16,18] and the references cited therein.)

Let G1 and G2 be two weighted bipartite graphs of order n. If b(G1, k) ≤ b(G2, k)

for all k with 1 ≤ k ≤ �n
2
�, then we write G1 � G2. (Note that b(G, 0) = 1 for all

weighted bipartite graphs G). Furthermore, if G1 � G2 and there exists at least one

index j such that b(G1, j) < b(G2, j), then we write G1 ≺ G2. If b(G1, k) = b(G2, k)

for all k, we write G1 ≈ G2.

According to the Coulson integral formula (2.2), we see that if G1 and G2 are

two weighted bipartite graphs of order n, then G1 � G2 implies E(G1) ≤ E(G2) and

G1 ≺ G2 implies E(G1) < E(G2).
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3 The minimal energy problems for Tn,K and Fn,K

Lemma 3.1. Let G be a weighted bipartite graph. Then we have

b(G, 1) =
∑

e∈E(G)

w(e)2 .

Proof. By the symmetry of the spectrum of G with respect to the origin, we see that

the characteristic polynomial of G can be written as

φ(G, λ) = λn−2r(λ2 − c1) · · · (λ2 − cr) (ci > 0, i = 1, . . . , r) . (3.1)

Thus in this form we have b(G, 1) =
∑r

i=1 ci.

Let λ1, . . . , λn be all the eigenvalues of G. Then from (3.1) we also have

tr(A(G)2) =
n∑

j=1

λ2
j = 2

r∑
i=1

ci = 2b(G, 1) . (3.2)

On the other hand, since A(G) is symmetric, we have

tr(A(G)2) =
n∑

i=1

n∑
j=1

a2ij = 2
∑

e∈E(G)

w(e)2 . (3.3)

Comparing (3.2) and (3.3) we get the result.

Lemma 3.2. Let x1, . . . , xk and y1, . . . , yk be real numbers satisfying:

(1) x1 + · · ·+ xk = y1 + · · ·+ yk

(2) y1 = · · · = yk

(3) (x1, . . . , xk) �= (y1, . . . , yk) .

Then x2
1 + · · ·+ x2

k > y21 + · · ·+ y2k .

Proof. First we have

(x1 + · · ·+ xk)
2 +

∑
1≤i<j≤k

(xi − xj)
2 = k(x2

1 + · · ·+ x2
k) .

So

k(x2
1 + · · ·+ x2

k)− k(y21 + · · ·+ y2k)

=
∑

1≤i<j≤k

(xi − xj)
2 −

∑
1≤i<j≤k

(yi − yj)
2 =

∑
1≤i<j≤k

(xi − xj)
2 > 0 .

-883-



An equally weighted star S in Tn,K is a weighted star S = (K1,n−1, w) of order n

each of whose edges has the weight K
n−1

.

Lemma 3.3. Let S be the equally weighted star in Tn,K. Then b(S, 1) = K2

n−1
, and

b(S, k) = 0 for all k ≥ 2.

Proof. First, by Lemma 3.1 we have b(S, 1) =
∑

e∈E(S) w(e)
2 = K2

n−1
.

Second, it is easy to see that the rank of the adjacency matrix A(S) of S is 2. So

S has n− 2 zero eigenvalues, and thus b(S, k) = 0 for all k ≥ 2.

Theorem 3.1. Let S be the equally weighted star in Tn,K, and T be any weighted tree

in Tn,K with T �= S (as weighted graphs). Then S ≺ T .

Proof. First we always have b(S, 0) = b(T, 0) = 1. Also by Lemma 3.3 we have

b(S, k) = 0 ≤ b(T, k) (for all k ≥ 2) .

We now consider the case k = 1.

Case 1: T is not equally weighted.

Then by Lemma 3.1 and Lemma 3.2 we have

b(T, 1) =
∑

e∈E(T )

w(e)2 >
∑

e∈E(S)

w(e)2 = b(S, 1) .

Thus we have S ≺ T .

Case 2: T is equally weighted.

Then the underlying unweighted graph of T (say, denoted by H) is not a star.

By the well-known quasi-ordering fact for unweighted trees we have K1,n−1 ≺ H,

since H is not a star. It follows from this that S ≺ T since S and T are both equally

weighted.

It is not difficult to verify that the equally weighted star S ∈ Tn,K has the energy

2K√
n−1

.

Next we show that this S is also the unique weighted forest with the minimal

energy in Fn,K .

Theorem 3.2. Let S be the equally weighted star in Tn,K and F be a weighted forest

in Fn,K. If F �= S, then E(F ) > E(S).
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Proof. Case 1: F is connected (i.e., F is a tree). Then the result follows from

Theorem 3.1.

Case 2: F is not connected. Suppose T1, . . . , Tr (r ≥ 2) are all the components of

F , where Ti has order ni and total weight sum Ki. Then
∑r

i=1 ni = n and
∑r

i=1 Ki =

K.

Let Si be the equally weighted star of order ni with the total weight sum Ki, then

by Theorem 3.1 we have E(Si) ≤ E(Ti). Thus

E(F ) =
r∑

i=1

E(Ti) ≥
r∑

i=1

E(Si) =
r∑

i=1

2Ki√
ni − 1

>

r∑
i=1

2Ki√
n− 1

=
2K√
n− 1

= E(S) .

4 The non-existence of the second smallest energy

in Tn,K and Fn,K

The following inequality about the singular energy for the sum of two matrices is due

to Ky Fan [3], for details see [17]:

Lemma 4.1. [3] (The Ky Fan inequality): Suppose the matrices A,B,C satisfy

C = A+ B. Then

σ(C) ≤ σ(A) + σ(B) .

Equality holds if and only if there exists a unitary matrix P , such that both PA and

PB are positive semi-definite.

The following lemma is a simple generalization of the Ky Fan inequality.

Lemma 4.2. (a variation of Ky Fan inequality): Suppose the matrices A,B,C satisfy

C = A+ B. Then

|σ(C)− σ(A)| ≤ σ(B) . (4.1)

Proof. σ(C) − σ(A) ≤ σ(B) is the Ky Fan inequality. On the other hand, we have

A = C + (−B), so

σ(A) ≤ σ(C) + σ(−B) = σ(C) + σ(B)

which implies that σ(C)− σ(A) ≥ −σ(B).
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Using Lemma 4.2, we can show that E(G) is a continuous function of the weights

of all edges (supposing that the weight of each edge is an independent variable).

Theorem 4.1. Let G be a weighted graph with m edges e1, . . . , em, where w(ei) =

xi (i = 1, . . . ,m), and x1, . . . , xm are viewed as independent variables. Let

f(x1, . . . , xm) = E(G) . Then f(x1, . . . , xm) is (multi-variabled) continuous.

Proof. Let A(G(x1, . . . , xm)) be the weighted adjacency matrix of G. Let Ge be the

spanning (unweighted) subgraph of G containing a single edge e. Then we have:

A(G(x1 +Δx1, . . . , xm +Δxm))− A(G(x1, . . . , xm)) =
m∑
i=1

Δxi A(Gei) .

Thus from Lemma 4.2 and Ky Fan inequality we have:

|f(x1 +Δx1, . . . , xm +Δxm)− f(x1, . . . , xm)|

= |σ(A(G(x1 +Δx1, . . . , xm +Δxm)))− σ(A(G(x1, . . . , xm)))|

≤ σ

(
m∑
i=1

ΔxiA(Gei)

)
≤

m∑
i=1

σ(ΔxiA(Gei)) = 2
m∑
i=1

|Δxi| .

From Theorem 4.1 we have:

Theorem 4.2. Let S be the equally weighted star in Tn,K. For any ε > 0, there exists

some weighted star T �= S of order n in Tn,K such that

E(S) < E(T ) < E(S) + ε . (4.2)

Proof. Take any two edges e1 and e2 of the star K1,n−1, define weights w(e1) =
K

n−1
+δ

and w(e2) =
K

n−1
− δ, and w(e) = K

n−1
for all other edges of K1,n−1. Take T to be such

a weighted star. Then by the continuity of E(T ) with respect to δ we see that T will

satisfy (4.2) if δ > 0 is sufficiently small.

From Theorem 4.2 we can immediately see that among all weighted graphs in Tn,K

(or in Fn,K), there do not exist graphs with the second smallest energy.
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5 The maximal energy problems for Tn,K and Fn,K

To study the maximal energy problems for Tn,K and Fn,K , we first need the following

matrix version of a result by Day and So [2, Theorem 2.6(i)]:

Lemma 5.1. [2] Let A be a symmetric real matrix of the form A =

(
A1 X
XT A2

)
,

where A1 is a non-singular square matrix. Let B =

(
O X
XT A2

)
. Then we have

σ(A) ≤ σ(B) + σ(A1), where equality holds if and only if X = O.

From Lemma 5.1 we have:

Corollary 5.1. Let G be a connected weighted graph of order n ≥ 3, and e be an

edge of G with w(e) �= 0. Then E(G) < E(G− e) + 2|w(e)| .

Proof. Without loss of generality, we may assume that e = v1v2. Then we can write

A(G) as:

A(G) =

(
H X
XT A2

)
where H =

(
0 w(e)

w(e) 0

)
is non-singular since w(e) �= 0, and A(G − e) =(

O X
XT A2

)
. Since G is connected of order n ≥ 3, we have X �= O. Thus by

Lemma 5.1 we have σ(A(G)) < σ(A(G− e)) + σ(H) which is equivalent to (5.1).

Theorem 5.1. Let G be a weighted graph of order n each of whose edges has nonzero

weight, and e1, . . . , em be all the edges of G. Then

E(G) ≤ 2
m∑
i=1

|w(ei)|

where equality holds if and only if each connected component of G has at most two

vertices.

Proof. Let Ge be the spanning (weighted) subgraph of G containing a single edge e.

Then A(G) =
∑m

i=1 A(Gei). Thus by the Ky Fan inequality,

E(G) = σ(A(G)) ≤
m∑
i=1

σ(A(Gei)) = 2
m∑
i=1

|w(ei)| .
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Next we prove the equality case. For sufficiency, let Gi be the component of G

containing the (single) edge ei. Then

E(G) =
m∑
i=1

E(Gi) = 2
m∑
i=1

|w(ei)| .

For the necessity part, suppose that some component H1 of G contains at least

three vertices (thus at least two edges). Assume that e1 is an edge of H1, and

H2, . . . , Hr are all the other components of G. Then by Corollary 5.1 we have

E(H1) < E(H1 − e1) + 2|w(e1)|, implying

E(G) =
r∑

i=2

E(Hi) + E(H1) <
r∑

i=2

E(Hi) + E(H1 − e1) + 2|w(e1)|

= E(G− e1) + 2|w(e1)| ≤ 2
m∑
i=2

|w(ei)|+ 2|w(e1)| = 2
m∑
i=1

|w(ei)| .

From Theorem 5.1 we have:

Theorem 5.2. Let n ≥ 3 and K > 0 be fixed. Let Cn,K, and Gn,K, be the set of

all positively weighted connected graphs, and all positively weighted graphs, of order n

with the total weight sum K, respectively. Then we have:

(1) A weighted graph G in Fn,K, or in Gn,K, has the maximal energy in Fn,K,

or in Gn,K, if and only if each component of G is K1 or K2. And the value of the

maximal energy in Fn,K, or in Gn,K, is 2K.

(2) There do not exist weighted graphs in Tn,K (or Cn,K) having the maximal energy

in Tn,K (or Cn,K).

Proof. We have now
∑

e∈E(G) |w(e)| =
∑

e∈E(G) w(e) = K.

(1) follows directly from Theorem 5.1.

For (2), from Theorem 5.1 and n ≥ 3, we see that E(T ) < 2K for all T ∈ Tn,K (or

Cn,K) since T is now connected of order n ≥ 3. On the other hand, for each ε > 0,

take sufficiently small δ > 0 and take Tδ ∈ Tn,K such that one edge of Tδ has weight

K − (m− 1)δ, and all the other (m− 1) edges have weight δ. Then by the continuity

of the energy function (Theorem 4.1), we have

2K − ε < E(Tδ) < 2K (if δ > 0 is sufficiently small) .
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This shows that no weighted graph in Tn,K (or Cn,K) has the largest energy in Tn,K

(or Cn,K).
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