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Abstract

Let G = (V,E) be a graph on n vertices, and let λ1 ≥ λ2 ≥ · · · ≥ λn be

eigenvalues of G. The Hückel energy of G, HE(G), is defined as

HE(G) =

⎧⎪⎪⎨⎪⎪⎩
2

r∑
i=1

λi, if n = 2r

2
r∑

i=1
λi + λr+1, if n = 2r + 1 .

In this paper, we present some new upper bounds for HE(G), from which we can

improve some known results.

1. Introduction

All graphs considered here are finite, undirected and simple. Undefined terminol-

ogy and notation may refer to [1]. Let G = (V (G), E(G)) be a graph with V (G) =

{v1, v2, . . . , vn} and |E(G)| = m. For vi ∈ V (G), the degree of vi, written by d(vi) or di,
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is the number of edges incident with vi. The number of walks of length k starting at vi is

called k-degree of the vertex vi and is denoted by dk,i. The quantity
dk,i
di

is called average

k-degree of vi. Clearly, one has d0,1 = 1, d1,i = di, and dk+1,i =
∑

vj∈N(vi)

dk,j, where N(vi)

is the set of all neighbors of the vertex vi.

A graph G is called k-regular (or resp., k-pseudo-regular, see [4]) if there exists a

constant k such that di = k (or resp.,
d2,i
di

= k) holds for i = 1, 2, . . . , n. Further, a

graph G is called k, l-semi-regular (or resp., k, l-pseudo-semi-regular) if {di, dj} = {k, l}
(or resp., {d2,i

di
,
d2,j
dj

} = {k, l}) holds for all the edges vivj ∈ E(G). A semi-regular graph

(or resp., pseudo-semi-regular graph) that is not regular (or resp., pseudo-regular) will

henceforth be called strictly semi-regular (or resp., strictly pseudo-semi-regular).

Let A = A(G) be the adjacency matrix of a graph G, and let λ1 ≥ λ2 ≥ · · · ≥ λn be

the eigenvalues of A. The energy of G, denoted by E(G), is defined as E(G) =
n∑

i=1

|λi|,
which gives a good approximation for the total π-electron energy of a molecule whose

molecular graph is G (see [8–10, 17]). The Hückel energy of G, denoted by HE(G), is

defined as

HE(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

r∑
i=1

λi, if n = 2r

2
r∑

i=1

λi + λr+1, if n = 2r + 1 .

The concept of Hückel energy was first introduced by Hückel [12] in 1931, and explicitly

used in 1940 by Coulson [2]. In comparison with the energy of a graph the Hückel energy

of a graph gives a better approximation for the total π-electron energy of a conjugated

molecule (see, e. g., [5]). Clearly for any graph G, HE(G) ≤ E(G), and if G is bipartite

(which is the case with the vast majority of molecular graphs [9,13,14,18]), then equality

holds. Obviously, all upper bounds for the energy (see [11,15,16,19,20]) also give upper

bounds for the Hückel energy of graphs. In [6], Ghorbani, Koolen, and Yang presented

the following upper bounds for HE(G):
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HE(G) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2m

n− 1
+

√
2m(n− 2)(n2 − n− 2m)

n− 1
if m ≤ n3

2(n+ 2)

2

n

√
mn(n2 − 2m) <

4m

n
otherwise

(1)

if n is even, and

HE(G) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2m

n− 1
+

√
2mn(n2 − 3n+ 1)(n2 − n− 2m)

n(n− 1)
if m ≤ n2(n− 3)2

2(n2 − 4n+ 11)

1

n

√
2m(2n− 1)(n2 − 2m) otherwise

(2)

if n is odd.

In this paper, we obtain some new upper bounds for HE(G) of a graph G in terms

of n, m, and dk,i, from which we can improve some known results.

2. Preliminaries

In order to obtain the sharp upper bounds for the Hückel energy of a graph, we need

the following lemmas.

In [11], for a connected graph G, Hou, Tang and Woo obtained an upper bound of

λ1(G) . In fact, it also holds for any nonempty graph.

Lemma 2.1 [11]. Let G be a non-empty graph of order n and

f(k) =

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

, k ≥ 0 .

Then f(k) is an increasing sequence and λ1 ≥ f(k) with equality for k ≥ 1 if and only if

G is pseudo-regular or strictly pseudo-semi-regular.
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Lemma 2.2 [3]. A graph G has only one distinct eigenvalue if and only if G is an

empty graph. A graph G has two distinct eigenvalues μ1 > μ2 with multiplicities s1 and

s2 if and only if G is the direct sum of s1 complete graphs of order μ1 + 1. In this case,

μ2 = −1 and s2 = s1μ1.

Lemma 2.3 [6]. Let G be a graph with n vertices and m edges. Suppose r := �n/2�,
and α :=

r∑
i=1

λ2
i . For m ≥ n− 1 ≥ 2, we have

m

r
≥
√

α

r
.

Lemma 2.4 [6]. Let G be a graph with n vertices and m edges where n is odd.

Suppose r := �n/2�, α :=
r∑

i=1

λ2
i , and β := λr+1. For m ≥ n − 1 ≥ 4, we have

2m− α ≥ (r + 1)β2.

3 The Hückel Energy of Graphs

In this section, we will present some new upper bounds for HE(G) of a graph G in

terms of n, m, and dk,i according to the parity of n, respectively.

3.1 The Upper Bound for Even Order Graphs

In this subsection, we give an upper bound for HE(G) of an even order graph G and

characterize those graphs for which this bound is best possible. Denote

Me =

(n+ 2)
n∑

i=1

d2k+1,i

2n
n∑

i=1

d2k,i

.
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Theorem 3.1. Let G be a graph on n = 2r vertices and m edges, where r ≥ 2. Then

HE(G) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

n− 1

⎛⎜⎜⎜⎝
√√√√√√√

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

+

√√√√√√√(n− 2)

⎛⎜⎜⎝2m(n− 1)

n
−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠ if m ≥ Me

√√√√√√√2n

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠ otherwise.

(3)

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G, then
n∑

i=1

λi = 0 and

n∑
i=1

λ2
i = 2m. Let α =

r∑
i=1

λ2
i , then 2m−α =

n∑
i=r+1

λ2
i . By the Cauchy–Schwarz inequality,

HE(G) = 2
r∑

i=1

λi ≤ 2λ1 + 2
√
(r − 1)(α− λ2

1) .

The function x �→ x+
√

(r − 1)(α− x2) decreases on the interval
√

α
r
≤ x ≤ √

α. From

Lemma 2.3, we have m
r
≥
√

α
r
. By Lemma 2.1, we have

√
α

r
≤ m

r
=

2m

n
≤

√√√√ n∑
i=1

d2i

n
= f(0) ≤ f(k) ≤ λ1 (∗)

thus

HE(G) ≤ f1(α) := 2

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

+ 2

√√√√√√√(r − 1)

⎛⎜⎜⎝α−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠.

On the other hand,

HE(G) = −2
n∑

i=r+1

λi ≤ 2

√√√√r

(
n∑

i=r+1

λ2
i

)
≤ f2(α) := 2

√
r(2m− α) .

Let f(α) := min{f1(α), f2(α)}. We determine the maximum of f . Note that f1 and

f2 are increasing and decreasing function in α, respectively. Therefore, max f = f(α0)
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where α0 is the unique point with f1(α0) = f2(α0). So in the following, we find the

solution of equation f1(α) = f2(α). To do so, let

σ =

√√√√√√√α−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

and consider the equation√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

+
√

(r − 1)σ =

√√√√√√√r

⎛⎜⎜⎝2m− σ2 −

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠.

This equation has the roots

σ1,2 = − 1

2r − 1

⎛⎜⎜⎜⎝
√√√√√√√

(r − 1)
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

∓

√√√√√√√2r

⎛⎜⎜⎝2mr −m−
r

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠ .

If m ≥ Me, i. e.,

m ≥
(r + 1)

n∑
i=1

d2k+1,i

2r
n∑

i=1

d2k,i

then σ1 ≥ 0 and so

HE(G) ≤ 2

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

+ 2
√
r − 1σ1

=
n

n− 1

⎛⎜⎜⎜⎝
√√√√√√√

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

+

√√√√√√√(n− 2)

⎛⎜⎜⎝2m(n− 1)

n
−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠. (4)
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Otherwise, f1(α) > f2(α), then f(α) = f2(α). Hence, for m < Me,

HE(G) ≤ 2

√√√√√√√r

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠ =

√√√√√√√2n

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠. (5)

This complete the proof of theorem 3.1.

Remark 3.2. Here we show that the equality in (4) holds if and only if G ∼= n
2
K2 or

G is a strongly regular graph with parameters (n, k, λ, μ) = (4t2+4t+2, 2t2+3t+1, t2+

2t, t2+2t+1) for some positive integer t and no graph can attain the upper bond in (5).

Let us keep the notation of the proof of Theorem 3.1. If G ∼= n
2
K2 or G is a strongly

regular graph with parameters (n, k, λ, μ) = (4t2+4t+2, 2t2+3t+1, t2+2t, t2+2t+1),

it is easy to check that the equality (4) holds. Conversely, if the equality (4) holds. Let

m ≥ Me. Then

1. λ1 =

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

2. λ2 = λ3 = · · · = λr =
σ1√
r − 1

3. λr+1 = λr+2 = · · · = λn = − 1√
r

√√√√√√√2m− σ2
1 −

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

.

Note that G at least has two distinct eigenvalues, we are reduced to the following two

possibilities:

(i) G has two distinct eigenvalues.

If G has only two distinct eigenvalues, then λ1 = λ2 = · · · = λr. Since λr+1 = λr+2 =

· · · = λn ,
n∑

i=1

λi = 0 and
n∑

i=1

λ2
i = 2m, we have λ1 = λ2 = · · · = λr =

√
2m/n and

λr+1 = λr+2 = · · · = λn = −
√

2m/n . By Lemma 2.2,
√

2m/n = 1. Hence 2m = n,

which implies G ∼= n
2
K2 .
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(ii) G has three distinct eigenvalues.

Since λ1 > λi, λi �= 0 for i = 2, 3, . . . , n, G must be regular (else G has 0 as an

eigenvalue) and non-bipartite (else G at least has four distinct eigenvalues). Hence G is

λ1-regular (λ1 = 2m/n) and has three distinct eigenvalues. From [Lemma 10.2.1 in [7]],

we haveG is a strongly regular graph. From [Lemma 10.3.5 in [7]], we haveG is a strongly

regular graph with parameters (n, k, λ, μ) = (4t2+4t+2, 2t2+3t+1, t2+2t, t2+2t+1).

If m < Me, then the equality (5) holds if and only if

1. λ1 =

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

2. λ2 = λ3 = · · · = λr = 0

3. λr+1 = λr+2 = · · · = λn = − 1√
r

√√√√√√√2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

.

The first condition shows that G is pseudo-semi-regular. Since G is a graph with only

one positive eigenvalue. Then from [Theorem 6.7 in [3]], G is a complete multipartite

graph. As the rank of a complete multipartite graph equals the number of its parts, G

must have r+1 parts. Such a graph can not be pseudo-semi-regular, then no graph can

attain the bound in (5).

3.2 The Upper Bound for Odd Order Graphs

In this subsection, we give an upper bound for HE(G) of an odd order graph G and

discuss the equality case. Denote

Mo =

(n2 − 4n+ 11)
n∑

i=1

d2k+1,i

2(n2 − 6n+ 9)
n∑

i=1

d2k,i

.
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Theorem 3.3. Let G be a graph with n = 2r+1 vertices and m edges, where r ≥ 2.

Then

HE(G) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

n− 1

⎛⎜⎜⎜⎝
√√√√√√√

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

+

√√√√√√√n2 − 3n+ 1

n

⎛⎜⎜⎝2m(n− 1)

n
−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠if m ≥ Mo

√√√√√√√(2n− 1)

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠ otherwise.

(6)

Proof. Let α =
r∑

i=1

λ2
i , β = λr+1 . From Lemma 2.4, we have 2m− α ≥ (r+ 1)β2 .

By the Cauchy–Schwarz inequality, we have

HE(G) = 2
r∑

i=1

λi + λr+1 ≤ 2λ1 + 2
√

(r − 1)(α− λ2
1) + β .

The function x �→ 2x+2
√
(r − 1)(α− x2)+β decreases on the interval

√
α
r
≤ x ≤ √

α .

Since √
α

r
≤

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

≤ λ1

then

HE(G) ≤ f1(α, β) := 2

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

+ 2

√√√√√√√(r − 1)

⎛⎜⎜⎝α−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠+ β .

In a similar manner as the proof of Theorem 3.1, we have

HE(G) ≤ f2(α, β) := 2
√
r(2m− α− β2)− β .

Let

f(α, β) := min {f1(α, β), f2(α, β)} .
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We determine the maximum of f over the compact set

D :=

⎧⎪⎪⎨⎪⎪⎩(α, β) : α ≥

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

, 2m− (r + 1)β2 ≥ α

⎫⎪⎪⎬⎪⎪⎭ .

Note that for (α, β) ∈ D one has −β0 ≤ β ≤ β0, where

β0 =

√√√√√√√ 2

n+ 1

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠.

Neither the gradient of f1 nor that of f2 has a zero in interior of D. So the maximum of

f occurs in the set

L = {(α, β) : f1(α, β) = f2(α, β)}

where the gradient of f does not exist or it occurs in the boundary of D consisting of

D1 =

⎧⎪⎪⎨⎪⎪⎩(α, β) : α =

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

,−β0 ≤ β ≤ β0

⎫⎪⎪⎬⎪⎪⎭
D2 =

{
(α, β) : α = 2m− (r + 1)β2,−β0 ≤ β ≤ β0

}
.

First we examine max f|L. Let

p =

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

and σ =
√
α− p2 .

In order to determine (α, β) satisfying f1(α, β) = f2(α, β), it is enough to find the zeros

of the following quadratic form:

2(n− 2)σ2 + 2
√

2(n− 3)(p+ β)σ + (n+ 1)(p2 + β2) + 4pβ − 2m(n− 1) = 0 .
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The zeros are

σ1,2 =
−
√

2(n− 3)(p+ β)±
√

(n− 1)[4(n− 2)m− 4pβ − 2(n− 1)(p2 + β2)]

2(n− 2)
.

Note that σ2 < 0 and so is not feasible. Let h(β) = (n+ 1)(p2 + β2) + 4pβ − 2m(n− 1).

Then σ1 ≥ 0 if and only if h(β) ≤ 0. Moreover h(β) ≤ h(β0).

If m ≥ Mo , i. e.,

m ≥
(n2 − 4n+ 11)

n∑
i=1

d2k+1,i

2(n2 − 6n+ 9)
n∑

i=1

d2k,i

then we have h(β0) ≤ 0 and σ1 ≥ 0. Thus, with this condition on m, f1(α, β) becomes

f1(σ1, β) := 2

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

+ 2
√
r − 1σ1 + β

where f1(σ1, β) is a function of β. If f ′
1(σ1, β) ≥ 0, we have

(n− 1)(n2 − 3n+ 1)β2 + 2(n2 − 3n+ 1)β

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

+ (n− 1)

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

− 2m ≤ 0 .

The roots of f ′
1(σ1, β) = 0 are

β1,2 = − 1

n− 1

⎛⎜⎜⎜⎝
√√√√√√√

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

∓

√√√√√√√ 1

n2 − 3n+ 1

⎛⎜⎜⎝2m(n− 1)−
n

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠ .

Note that if β2 ≤ β ≤ β1, then f ′
1(σ1, β) ≥ 0; if β ≥ β1 or β ≤ β2, then f ′

1(σ1, β) ≤ 0.

Since f ′
1(σ1, β0) ≥ 0 and f ′

1(σ1,−β0) ≥ 0, we have −β0 ≤ β2 ≤ β1 ≤ β0. Moreover,

β1 ≤ 0. Note that f1(σ1, β) decreases for β1 ≤ β ≤ β0, and −β0 ≤ β ≤ β1; increases

for β2 ≤ β ≤ β1. In order to find max f1(σ1, β), we only need compare f1(σ1, β1) and
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f1(σ1,−β0). It is easily seen that f1(σ1, β0) ≥ f1(σ1,−β0), then f1(σ1, β1) ≥ f1(σ1,−β0).

Therefore, f|L = f1(σ1, β1). Thus for m ≥ Mo, we have

max f|L =
n

n− 1

⎛⎜⎜⎜⎝
√√√√√√√

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

+

√√√√√√√(n2 − 3n+ 1)

⎛⎜⎜⎝2m(n− 1)

n2
−

n∑
i=1

d2k+1,i

n
n∑

i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠ . (7)

Otherwise, σ1 < 0, and f1(α, β) > f2(α, β), then f(α, β) = f2(α, β). We have for any

(α, β) ∈ D,

f2(α, β) ≤ f2

⎛⎜⎜⎝
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

, β

⎞⎟⎟⎠ .

It is easily seen that the maximum of f2 occurs at

β3 = −

√√√√√√√ 1

2n− 1

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠.

Therefore,

max f2 = f2

⎛⎜⎜⎝
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

, β3

⎞⎟⎟⎠ =

√√√√√√√(2n− 1)

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠.

Thus for m < Mo, we have

HE(G) ≤

√√√√√√√(2n− 1)

⎛⎜⎜⎝2m−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠. (8)

In the rest of proof, we determine max f for m ≥ Mo .
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On D1, we have

max f|D1 ≤ f1

⎛⎝ n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

, β0

⎞⎠ = 2

√√√√ n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

+

√√√√√ 2
n+1

⎛⎝2m−
n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

⎞⎠. (9)

On D2, one has

f1(β) = 2

√√√√ n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

+ 2

√√√√√(r − 1)

⎛⎝2m− (r + 1)β2 −
n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

⎞⎠+ β

f2(β) = (n− 1)|β| − β .

In order to find max f|D2 , we look for the points where f1(β) = f2(β).

For β ≤ 0, if f1(β) ≤ f2(β), we have

2(n2 − 1)β2 + 4(n+ 1)

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

β +

2(n− 1)
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

− 4(n− 3)m ≥ 0 .

The solution of f1(β) = f2(β) is

β4,5 = − 1

n− 1

⎛⎜⎜⎜⎝
√√√√√√√

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

∓

√√√√√√√n− 3

n+ 1

⎛⎜⎜⎝2m(n− 1)−
n

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠ .

If f1(β) ≤ f2(β), then β ≥ β4 or β ≤ β5. Since f1(−β0) ≤ f2(−β0), we have −β0 ≤ β5.

It is seen that f2(β4) ≤ f2(β5).

For β ≥ 0, if f1(β) ≤ f2(β), we have

2(n2 − 4n+ 3)β2 − 4(n− 3)

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

β +

2(n− 1)
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

− 4(n− 3)m ≥ 0 .

The solution of f1(β) = f2(β) is

β6,7 =
1

n−1

⎛⎜⎝
√√√√ n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

±

√√√√√ 1
n−3

⎛⎝2m(n2 − 4n+ 3)− (n2 − 3n+ 4)

n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

⎞⎠
⎞⎟⎠ .
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If f1(β) ≤ f2(β), then β ≥ β6 or β ≤ β7. Since f1(β0) ≤ f2(β0), we have β0 ≥ β6.

It is seen that f2(β6) ≥ f2(β7). Moreover f2(β5) > f2(β6) (we can easily show that

−nβ5 ≥ (n− 2)β6). Therefore max f|D2 = f2(β5). Thus for m ≥ Mo, we have

max f|D2 =
n

n−1

⎛⎜⎝
√√√√ n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

+

√√√√√n−3
n+1

⎛⎝2m(n− 1)−
n

n∑

i=1
d2k+1,i

n∑

i=1
d2k,i

⎞⎠
⎞⎟⎠ . (10)

Comparing (7), (9), and (10), for m ≥ Mo , we get

HE(G) ≤ n

n− 1

⎛⎜⎜⎜⎝
√√√√√√√

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

+

√√√√√√√n2 − 3n+ 1

n

⎛⎜⎜⎝2m(n− 1)

n
−

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

⎞⎟⎟⎠
⎞⎟⎟⎟⎠ . (11)

This complete the proof of theorem 3.3.

Remark 3.4. Here we show that no graph can attain the bound in (8) and (11).

Let us keep the notation of the proof of Theorem 3.3. First let m ≥ Mo. Then

1. λ1 =

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

2. λ2 = λ3 = · · · = λr =
σ1√
r − 1

3. λr+1 = β5

4. λr+2 = λr+3 = · · · = λn = − 1√
r

√√√√√√√2m− β2
5 − σ2

1 −

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

.

Since λ1 > λi, λi �= 0 for i = 2, 3, . . . , n, G must be regular (λ1 = 2m/n). Since

λr+1 = β5 < 0, by a similar argument as [Remark 6 in [6]], we have no graph can attain

the upper bond in (11).
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If m < Mo, then the equality holds if and only if

λ1 =

√√√√√√√
n∑

i=1

d2k+1,i

n∑
i=1

d2k,i

λ2 = · · · = λr = 0 ; λr+1 = β3

and

λr+2 = · · · = λn = − 1√
r

√√√√√√√2m− β2
3 −

n∑
i=1

d2k+1,i

n∑
i=1

d2k,i

.

By a similar argument as Remark 3.2, we have no graph can attain the upper bond in

(8).

Note 3.5. By (∗), the bounds (3) and (6) are better than (1) and (2), respectively.
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