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Abstract

The energy of a graph was first defined in 1977. In 2010 (but also earlier) this concept was
generalized to the energy of any complex polynomial. In this paper, we adopt new approaches to
prove both the complex form and real form of the Coulson integral formulas for the energy of a
complex polynomial. For the complex form, we use an approach which does not use the contour
integration and the Cauchy residue theorem. For the real form, we use an approach which can
completely avoid using the logarithm of a complex function. We also obtain the following new
formula for the energy of an arbitrary monic complex polynomial φ(z):

E(φ) =
1
2π

+∞∫
−∞

1
x2

log
[
p2(x) + q2(x)

]
dx +

i

π

+∞∫
−∞

1
x2

arctg
q(x)
p(x)

dx

where the real polynomials p(x) and q(x) are the real and imaginary parts of g(−ix) , while g(t)

is the so called “reverse polynomial” of φ(t) . Finally, we give some applications of these results

to the energies of digraphs.
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1 Introduction

The energy of a graph G was conceived in the 1970s by one of the present authors [4]

(see also [5]). However, the chemical aspects of this concept can be traced back until

the 1940s [1]. The energy of a graph G is defined as the sum of the absolute values of

the eigenvalues (of the adjacency matrix) of G . Since then, this definition has various

generalizations. The most recent generalization was in [11] where the energy of any

complex polynomial was defined in such a way that the energy of a graph, or a digraph,

is just the energy of its characteristic polynomial.

In a much earlier work [7], one of the present authors considered a somewhat related

problem. Among other things, in [7] was proven that if A(x) and B(x) are two monic (but

otherwise arbitrary) polynomials of equal degree n , and if a1, a2, . . . , an and b1, b2, . . . , bn

are the zeros of A(x) and B(x) , respectively, then

1

π
p.v.

+∞∫
−∞

log
A(ix)

B(ix)
dx =

n∑
j=1

[
|Re(aj)| − |Re(bj)|

]
.

This formula holds provided a1 + · · · + an = b1 + · · · + bn .

The present paper can be viewed as the elaboration and analysis of the concept of the

energy of an arbitrary polynomial, at a rigorous mathematical level.

Definition 1.1. [11] Let

φ(z) =

n∑
k=0

ak zn−k = (z − z1)(z − z2) · · · (z − zn)

be a monic complex polynomial of degree n . Then its (complex) energy E(φ) is defined

as:

E(φ) =
n∑

k=1

sgn(Re(zk)) zk (1.1)

where sgn(a) of a real number a is defined to be 1 , 0 , or −1 , according to a > 0 , a = 0 ,

or a < 0 .

The real energy Ere(φ) of φ(z) is defined to be the real part of the energy E(φ) .

Namely [11],

Ere(φ) = Re(E(φ)) .

It was pointed out in [11] that (1.1) can be rewritten as

E(φ) =
∑

Re(zk)>0

zk −
∑

Re(zk)<0

zk (1.2)
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and

Ere(φ) =
n∑

k=1

|Re(zk)| . (1.3)

In the special case where φ(z) is a real polynomial (but possibly has complex roots), then

its non-real roots occur in pairs (counting the multiplicities). In this case∑
Re(zk)>0

Im(zk) = 0 =
∑

Re(zk)<0

Im(zk) .

Thus from (1.2) we have Im(E(φ)) = 0 . So in this case one has [11]

E(φ) = Ere(φ) =
n∑

k=1

|Re(zk)| . (1.4)

If we further assume that all the roots of φ(z) are real (for example, φ(z) is the

characteristic polynomial of a symmetric real matrix, or of a graph), then Re(zk) =

zk (k = 1, . . . , n) . Then from (1.4) we further have ( see [11])

E(φ) = Ere(φ) =
n∑

k=1

|zk| .

This coincides with the original definition of the energy of a (undirected) graph, or a

symmetric real matrix.

Let φ(z) = φG(z) be the characteristic polynomial of a graph G . Coulson [1] obtained

the following integral formula for the energy of the graph G:

E(G) = E(φ) =
1

π
p.v.

+∞∫
−∞

[
n − iy φ′(iy)

φ(iy)

]
dy (1.5)

where the principal value (p.v.) of the integral
+∞∫
−∞

means lim
M→+∞

M∫
−M

. Note that if φ(z)

has purely imaginary roots ib1, . . . , ibr (with b1 < · · · < br) , then the p.v. of the integral

in (1.5) will mean:

lim
M→+∞

εj→0(j=1,··· ,r)

b1−ε1∫
−M

+
r−1∑
j=1

bj+1−εj+1∫
bj+εj

+

M∫
br+εr

.

In [10] and [11], Mateljević et al. proved that the integral formula (1.5) also holds

for any complex polynomial φ(z) , by using partial fraction decomposition, the Cauchy

residue formula, the Jordan lemma and complex integration along semicircle.

For convenience, we call (1.5) the complex form of the Coulson integral formula (or

simply complex integral formula) for the energy of a polynomial.
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In [11], Mateljević et al. also gave a real integral formula for the real energy of a

polynomial.

In this paper we give new proofs for both the complex integral formula and the real

integral formula for the energy, and real energy, of a polynomial.

In §2, we give a new proof of the complex integral formula without using the contour

integration, the Cauchy residue formula and the Jordan lemma.

In §3, we outline an approach that completely avoids the use of the logarithm of a

complex function when proving the real form of the integral formula for the real energy

of a complex polynomial. There we also obtain the following new formula for the energy

of an arbitrary monic complex polynomial φ(z) :

E(φ) =
1

2π

+∞∫
−∞

1

x2
log
[
p2(x) + q2(x)

]
dx +

i

π

+∞∫
−∞

1

x2
arctg

q(x)

p(x)
dx

where the real polynomials p(x) and q(x) are the real and imaginary parts of g(−ix) ,

while g(t) is the so called “reverse polynomial” of φ(t) .

Note that the complex function log z is a multi-valued function. We usually need to

take a specific branch of log z to study it. This will sometimes cause difficulties. For

example, log (ab) = log a + log b is not always true for complex numbers a and b , when

0 ≤ arg(a) < 2π , 0 ≤ arg(b) < 2π , but arg(a)+arg(b) > 2π (as was pointed out in [11]).

2 The complex Coulson integral formula

In this section, we give a new proof of the following complex form (2.1) of Coulson

integral formula for the energy of an arbitrary complex polynomial φ(z) , without using

contour integration, or the Cauchy residue formula for the integration of complex variable

functions. A simplified consideration along the same lines was reported already in the

paper [4], and eventually reproduced on pp. 55–56 of the book [3].

What first needs to be noted is that formula (2.1) is a proper generalization of formula

(1.5):

E(φ) =
1

π

+∞∫
−∞

[
n − iy φ′(iy)

φ(iy)

]
dy . (2.1)

Recall that sgn(a) denotes the sign of a real number a .
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Lemma 2.1. For any real numbers a and b ,
+∞∫

−∞

a

(x − b)2 + a2
dx = π · sgn(a) .

Proof. The result holds obviously if a = 0 . So we now assume that a 	= 0 .

Using a = |a|sgn(a) , and taking y = (x − b)/|a| , we have

+∞∫
−∞

a

(x − b)2 + a2
dx = sgn(a)

+∞∫
−∞

1(
x−b
|a|

)2

+ 1
d

(
x − b

|a|
)

= sgn(a)

+∞∫
−∞

1

y2 + 1
dy = sgn(a) arctg y

∣∣∣∣+∞

−∞
= π · sgn(a) .

Lemma 2.2. For any real numbers a and b ,

lim
M→+∞

M∫
−M

x − b

(x − b)2 + a2
dx = 0 .

Proof. Case 1: a = 0 . Then the integral should be understood as the following principal

value:

lim
M→+∞

ε→0

⎡⎣ b−ε∫
−M

1

x − b
dx +

M∫
b+ε

1

x − b
dx

⎤⎦ = lim
M→+∞

ε→0

[
log |x − b|

∣∣∣b−ε

−M
+ log |x − b|

∣∣∣∣M
b+ε

]

= lim
M→+∞

ε→0

log

∣∣∣∣M − b

M + b

∣∣∣∣ = 0 .

Case 2: a 	= 0 . Then we have

M∫
−M

x − b

(x − b)2 + a2
dx =

1

2
log[(x − b)2 + a2]

∣∣∣∣M
−M

=
1

2
log

[
(M − b)2 + a2

(M + b)2 + a2

]
→ 0 (when M → +∞) .

Theorem 2.1. For any complex polynomial φ(z) = (z − z1) · · · (z − zn) , the complex

Coulson integral formula (2.1) holds.
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Proof. Let zk = ak + bki (ak, bk are real numbers, k = 1, . . . , n) and let

f(z) = n − z φ′(z)

φ(z)
.

Then

f(z) = n −
n∑

k=1

z

z − zk

=
n∑

k=1

zk

zk − z

implying

1

π

+∞∫
−∞

[
n − iyφ′(iy)

φ(iy)

]
dy =

1

π

+∞∫
−∞

f(iy) dy =
1

π

n∑
k=1

+∞∫
−∞

zk

zk − iy
dy . (2.2)

By using Lemmas 2.1 and 2.2 we get

+∞∫
−∞

zk

zk − iy
dy =

+∞∫
−∞

ak + bki

ak − (y − bk)i
dy

=

+∞∫
−∞

a2
k − bk(y − bk) + [ak(y − bk) + akbk]i

(y − bk)2 + a2
k

dy

= πak · sgn(ak) + πbk · sgn(ak)i = π · sgn(ak)(ak + bki)

= π · sgn(ak) zk . (2.3)

Substituting (2.3) into (2.2), we arrive at

1

π

+∞∫
−∞

[
n − iyφ′(iy)

φ(iy)

]
dy =

1

π

n∑
k=1

π · sgn(ak) zk =
n∑

k=1

sgn(Re(zk)) zk = E(φ) .

3 The real integral formulas

In this section, we put forward an approach that can completely avoid using the logarithm

of a complex function to prove the real form of the integral formula for the real energy

of a complex polynomial. We also obtain the following new formula for the energy of an

arbitrary monic complex polynomial φ(z):

E(φ) =
1

2π

+∞∫
−∞

1

x2
log
[
p2(x) + q2(x)

]
dx +

i

π

+∞∫
−∞

1

x2
arctg

q(x)

p(x)
dx
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where the real polynomials p(x) and q(x) are the real and imaginary parts of g(−ix) ,

while g(t) is the so called “reverse polynomial” of φ(t) .

Now let φ(z) =
∑n

k=0 ak zn−k be a complex polynomial with a0 = 1 and ak = bk + ck i ,

where bk and ck are real numbers (k = 0, 1, · · · , n). Also we write f(z) = n−z φ′(z)/φ(z) .

Then we have:

f(z) = n − zφ′(z)

φ(z)
= n −

n∑
k=0

(n − k) ak zn−k

n∑
k=0

ak zn−k

=

n∑
k=0

k ak zn−k

n∑
k=0

ak zn−k

=

n∑
k=0

k ak (1/z)k

n∑
k=0

ak (1/z)k

. (3.1)

Let g(t) =
∑n

k=0 ak tk be the polynomial obtained from φ(t) by reversing the order of

the coefficients of φ(t) . For convenience, we call g(t) the “reverse polynomial” of φ(t) .

Then from (3.1) we have:

f(1/t) =

n∑
k=0

k ak tk

n∑
k=0

ak tk
=

t g′(t)
g(t)

.

By changing the variable t = 1/x in the integration, writing DM = (−∞,− 1
M

) ∪
( 1

M
, +∞) , and using the complex integral formula (2.1), we have

M∫
−M

f(it) dt =

−1/M∫
−∞

f(i/x)
dx

x2
+

+∞∫
1/M

f(i/x)
dx

x2
=

∫
DM

(x/i) g′(x/i)

g(x/i) x2
dx

=

∫
DM

(g(x/i))′

x g(x/i)
dx −→ π E(φ) (when M → +∞) . (3.2)

Now we write

g(x/i) = g(−ix) = p(x) + i q(x)

recalling that p(x) and q(x) are real polynomials. Then (g(x/i))′ = p′(x) + i q′(x) . Thus

the real part of the integrand in (3.2) is:

Re

[
(g(x/i))′

x g(x/i)

]
= Re

(
p′(x) + iq′(x)

x[p(x) + iq(x)]

)
=

p(x) p′(x) + q(x) q′(x)

x(p2(x) + q2(x))

=

[
1

2x
log
[
p2(x) + q2(x)

]]′
+

1

2x2
log
[
p2(x) + q2(x)

]
. (3.3)
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Here the function inside log is a real function.

Since g(t) =
∑n

k=0 ak tk =
∑n

k=0 bk tk + (
∑n

k=0 ck tk) i , we have

g(−ix) =
n∑

k=0

bk(−ix)k +

(
n∑

k=0

ck(−ix)k

)
i .

From this and the assumption a0 = b0 + c0 i = 1 we obtain

p(x) =

�n/2�∑
k=0

(−1)k b2k x2k +

�(n−1)/2�∑
k=0

(−1)k c2k+1 x2k+1 = 1 + c1 x + · · · (3.4)

q(x) =

�(n−1)/2�∑
k=0

(−1)k+1 b2k+1 x2k+1 +

�n/2�∑
k=0

(−1)k c2k x2k = −b1 x + · · · (3.5)

Thus there exists some real polynomial h(x) , such that

p2(x) + q2(x) = 1 + 2c1 x + x2 h(x) .

Then lim
x→0

1
2x

log [p2(x) + q2(x)] = c1 , and thus

lim
ε→0

1

2x
log
[
p2(x) + q2(x)

]∣∣∣∣ε
−ε

= c1 − c1 = 0 . (3.6)

It is also easy to see that

lim
x→∞

1

2x
log
[
p2(x) + q2(x)

]
= 0 . (3.7)

From (3.6) and (3.7) we have:∫
DM

[
1

2x
log
[
p2(x) + q2(x)

]]′
dx

=
1

2x
log
[
p2(x) + q2(x)

]∣∣∣∣−1/M

−∞
+

1

2x
log
[
p2(x) + q2(x)

]∣∣∣∣+∞

1/M

= − 1

2x
log
[
p2(x) + q2(x)

]∣∣∣∣1/M

−1/M

→ 0 (when M → +∞) . (3.8)

Finally, taking the real parts for both sides of (3.2) and substituting (3.3) and (3.8)

into it, leads to:

Ere(φ) =
1

π
lim

M→+∞

∫
DM

Re

[
(g(x/i))′

x g(x/i)

]
dx

=
1

π
lim

M→+∞

∫
DM

([
1

2x
log
[
p2(x) + q2(x)

]]′
+

1

2x2
log
[
p2(x) + q2(x)

])
dx

=
1

2π

+∞∫
−∞

1

x2
log
[
p2(x) + q2(x)

]
dx . (3.9)
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This is what we call the real form of Coulson integral formula (for real energy of a

complex polynomial), where the last integral in (3.9) should be understood as the principal

value at x = 0 .

Remark 1. In general, for the imaginary part of the energy E(φ) , we first note that

p(x) q′(x) − q(x) p′(x)

p2(x) + q2(x)
=

(
arctg

q(x)

p(x)

)′
.

So, similar to (3.3),

Im

[
(g(x/i))′

x g(x/i)

]
= Im

(
p′(x) + iq′(x)

x[p(x) + iq(x)]

)
=

p(x) q′(x) − q(x) p′(x)

x[p2(x) + q2(x)]

=

(
1

x
arctg

q(x)

p(x)

)′
+

1

x2
arctg

q(x)

p(x)
.

From (3.4) and (3.5) it follows

lim
x→0

1

x
arctg

q(x)

p(x)
= −b1

and it is also obvious that

lim
x→∞

1

x
arctg

q(x)

p(x)
= 0 .

So, similar to (3.8) we have∫
DM

(
1

x
arctg

q(x)

p(x)

)′
dx =

1

x
arctg

q(x)

p(x)

∣∣∣∣−1/M

−∞
+

1

x
arctg

q(x)

p(x)

∣∣∣∣+∞

1/M

= −1

x
arctg

q(x)

p(x)

∣∣∣∣1/M

−1/M

−→ b1 − b1 = 0 (when M → +∞) .

Thus from (3.2) we get:

Im(E(φ)) =
1

π
lim

M→+∞

∫
DM

Im

[
(g(x/i))′

x g(x/i)

]
dx

=
1

π
lim

M→+∞

∫
DM

(
1

x
arctg

q(x)

p(x)

)′
dx +

1

π
lim

M→+∞

∫
DM

1

x2
arctg

q(x)

p(x)
dx

=
1

π

+∞∫
−∞

1

x2
arctg

q(x)

p(x)
dx (3.10)

where (same as in the case of (3.9)) the last integral in (3.10) should be understood as

the principal value at x = 0 .

Combining (3.9) and (3.10), we finally obtain:

-857-



Theorem 3.1. Let φ(z) =
∑n

k=0 ak zn−k be a complex polynomial with a0 = 1 and ak =

bk + ck i , where bk, ck are real numbers (k = 0, 1, . . . , n). Let the real polynomials p(x)

and q(x) be defined as in (3.4) and (3.5). Then

E(φ) =
1

2π

+∞∫
−∞

1

x2
log
[
p2(x) + q2(x)

]
dx +

i

π

+∞∫
−∞

1

x2
arctg

q(x)

p(x)
dx .

Remark 2. If φ(z) is a real polynomial, then p(x) and q(x) have the following simple

forms:

p(x) =

�n/2�∑
k=0

(−1)k a2k x2k , q(x) =

�(n−1)/2�∑
k=0

(−1)k+1 a2k+1 x2k+1 . (3.11)

Also in this case, arctg[q(x)/p(x)] is an odd function, so (again) we have E(φ) = Ere(φ)

for real polynomials.

4 Some applications to the energies of digraphs

In [12], the energy of a digraph D is defined as

E(D) =
n∑

k=1

|Re(zk)|

where z1, . . . , zn are the eigenvalues of the adjacency matrix A(D) of D .

By (1.3), we see that E(D) = Ere(φ) , where φ(x) is the characteristic polynomial of

the adjacency matrix A(D) of the digraph D . Since φ(x) is now a real polynomial, by

the arguments in §1, we see that E(D) = Ere(φ) = E(φ) .

In [12], Peña and Rada used a corollary of the complex form of Coulson integral

formula to obtain an integral formula for the energy of a digraph D , all of whose cycles

have length h , where h ≡ 2 (mod 4). In that formula, all the terms inside the logarithm

in the integrand have non-negative coefficients. But the corollary they used still contains

the logarithm of some complex function.

In this section, we generalize their result to the digraphs in which every cycle has length

an odd multiple of h , where h ≡ 2 (mod 4) is a fixed positive integer. Furthermore, the

approach we use to prove this generalization is to apply our real form (3.9) of the integral

formula for energies. Thus we can avoid using the logarithm of a complex function in the

proof of this generalization.
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Let φ(x) =
∑n

k=0 ak xn−k be the characteristic polynomial of a digraph D . Then the

well-known Sachs formula is [2]:

ak =
∑
L∈Lk

(−1)comp(L) (4.1)

where Lk is the set of all linear subdigraphs of D with k vertices, and comp(L) denotes

the number of components of L .

Theorem 4.1. Let h ≡ 2 (mod 4) be a fixed positive integer, and φ(x) =
∑n

k=0 ak xn−k

(where a0 = 1) be a real polynomial of the following form:

φ(x) =

�n/h�∑
k=0

ahk xn−hk . (4.2)

Note that at 	= 0 implies that t is a multiple of h . Then we have:

E(φ) =
1

π

+∞∫
−∞

log

⎡⎣�n/h�∑
k=0

(−1)k ahk xhk

⎤⎦ dx

x2
. (4.3)

Proof. Using formula (3.11), we have q(x) = 0 since h is even. This implies that all the

coefficients a2k+1 are equal to zero.

On the other hand, if some a2k 	= 0 , then h|2k , so there exists some integer t , such

that k = 1
2
ht . Thus from (3.11) it follows:

p(x) =

�n/2�∑
k=0

(−1)k a2k x2k =

�n/h�∑
t=0

(−1)
1
2
ht aht x

ht =

�n/h�∑
t=0

(−1)t aht x
ht (4.4)

since 1
2
h is an odd number.

Substituting (4.4) and q(x) = 0 into the real integral formula (3.9), we obtain (4.3).

Lemma 4.1. Let h be a positive integer and D be a digraph of order n . Let φ(x) =

φD(x) =
∑n

k=0 ak xn−k be the characteristic polynomial of D . Then φ(x) has the form

(4.2) if and only if the length of every cycle of D is a multiple of h .

Proof. Sufficiency : If at 	= 0 , then Lt 	= ∅ by the Sachs formula (4.1). Take L ∈ Lt .

Then t is the sum of the lengths of the cycles of L . Thus t is a multiple of h by hypothesis.
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Necessity : Suppose to the contrary that the length of some cycle of D is not a multiple

of h . Let t be the minimal such length. Then it can be verified that any linear subdigraph

L ∈ Lt must consist of exactly one cycle (of length t). Thus we have

at =
∑
L∈Lt

(−1)comp(L) = −ct 	= 0

where ct is the number of t-cycles of D , a contradiction.

We now arrive at the following generalization of Theorem 5.3 from [12].

Theorem 4.2. Let h ≡ 2 (mod 4) be a fixed positive integer, and D be a digraph of order

n each of whose cycles has length an odd multiple of h . Let φ(x) =
∑n

k=0 ak xn−k be the

characteristic polynomial of D . Then we have:

(1) E(D) = E(φ) has the from (4.3).

(2) (−1)k ahk ≥ 0 for all k = 0, 1, . . . , �n/h� .

Proof. The result (1) follows directly from Theorem 4.1 and Lemma 4.1.

For result (2), take any L ∈ Lhk . Let h c1, . . . , h cr be the lengths of all the cycles of

L . Then c1, . . . , cr are all odd and c1 + · · · + cr = k . Thus we have

(−1)comp(L) = (−1)r = (−1)c1+···+cr = (−1)k .

This implies

ahk =
∑

L∈Lhk

(−1)comp(L) = (−1)k |Lhk| .

Thus (−1)k ahk = |Lhk| ≥ 0 .

Remark 3. From (4.3) and (−1)k ahk ≥ 0 , we see that E(D) is a strictly increasing

function of those numbers |ahk| .

Note: If we take h = 2 , then the hypothesis in Theorem 4.2 can be restated as: The

length of every cycle of D is even, but not a multiple of 4 .
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[10] M. Mateljević, I. Gutman, Note on the Coulson and Coulson–Jacobs integral formu-

las, MATCH Commun. Math. Comput. Chem. 59 (2008) 257–268.
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