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Abstract

Some results with respect to Merrifield-Simmons index of tree-type hexagonal
systems are shown. Using these results, the tree-type hexagonal system with lower
bound of Merrifield-Simmons index is determined. These results generalize some
known results on hexagonal chains and hexagonal spiders.

1. Introduction

A hexagonal system is a 2-connected planar graph whose every interior face is bounded

by a regular hexagon. Hexagonal systems are of great importance for theoretical chemistry

because they are natural graph representations of benzenoid hydrocarbons [2]. A hexag-

onal system is a tree-type one if it has no inner vertex. Tree-type hexagonal systems are

graph representations of an important subclass of benzenoid molecules. A considerable

amount of research in mathematical chemistry has been devoted to hexagonal systems

[2–14].

In order to describe our results, we need some graph-theoretic notations and termi-

nologies. Our standard reference for any graph theoretical terminology is [1].

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). Let e and u be

an edge and a vertex of G, respectively. We will denote by G − e or G − u the graph
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obtained from G by removing e or u, respectively. Denote by Nu the set {v ∈ V (G) :

uv ∈ E(G)} ∪ {u}. Let H be a subset of V (G). The subgraph of G induced by H is

denoted by G[H], and G[V \H] is denoted by G−H. Undefined concepts and notations

of graph theory can be found in [9–14].

Two vertices of a graph G are said to be independent if they are not adjacent. A

subset I of V (G) is called an independent set of G if any two vertices of I are independent.

Denote i(G) by the number of independent sets of G. In chemical terminology, i(G) is

called the Merrifield-Simmons index. Clearly, the Merrifield-Simmons index of a graph is

larger than that of its proper subgraphs.

We denote by Ψn the set of hexagonal chains with n hexagons. Let Bn ∈ Ψn. We

denote by V3 = V3(Bn) the set of vertices with degree 3 in Bn. Thus, the subgraph Bn[V3]

is an acyclic graph. If the subgraph Bn[V3] is a matching with n − 1 edges, then Bn is

called a linear chain and denoted by Ln. If the subgraph Bn[V3] is a path, then Bn is

called a zig-zag chain and denoted by Zn. If the subgraph Bn[V3] is a comb, then Bn is

called a helicene chain and denoted by Hn.

Denote by Tn the set of tree-type hexagonal systems containing n hexagons. Let

T =
⋃∞

1 Tn, and T ∈ T. Let H be a hexagon of T . Obviously, H has at most three

adjacent hexagons in T ; if H has exactly three adjacent hexagons in T , then H is called a

full-hexagon of T ; if H has two adjacent hexagons in T , and, moreover, if its two vertices

with degree two are adjacent, then call H a turn-hexagon of T ; and if H has at most

one adjacent hexagon in T , then H is called an end-hexagon of T . It is easy to see that

the number of end-hexagons of a tree-type hexagonal system of n ≥ 2 hexagons is two

more than the number of its full-hexagons. Let T ∈ T and B = H1H2 . . . Hk, k ≥ 2 be a

hexagonal chain of T . If the end-hexagon H1 of B is also an end-hexagon of T , the other

end-hexagon Hk is a full-hexagon of T , and for 2 ≤ i ≤ k − 1, Hi is not a full-hexagon of

T , then B is called a branch of T . Let Υ = H1H2 . . . Hk, k ≥ 2 be a hexagonal chain of T .

If both the end-hexagon H1 and Hk of Υ are full-hexagons of T , and for 2 ≤ i ≤ k−1, Hi

is not a full-hexagon of T , then Υ is called a Υ− subgraph of T . If any branch and any

Υ− subgraph of T are linear chains, then T is called linear tree-type hexagonal system.

If any branch and any Υ− subgraph of T are zig-zag chains, then T is called zig-zag

tree-type hexagonal system. A zig-zag hexagonal chain and a zig-zag hexagonal spider

are zig-zag tree-type hexagonal systems with no full-hexagon and only one full-hexagon,
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respectively.

A graph G is called a spider if it is a tree and contains only one vertex of degree greater

than 2. For positive integer n1, n2, n3, we use S(n1, n2, n3) to denote a hexagonal spider

with three legs of lengths n1, n2 and n3, respectively.

If a hexagonal spider S(n1, n2, n3) whose 3 legs are linear chains, then such a graph is

called a linear hexagonal spider and denoted by L(n1, n2, n3).

Similarly if each leg of S(n1, n2, n3) attached to the central hexagon is a zig-zag chain,

then such graph is called a zig-zag hexagonal spider and denoted by Z(n1, n2, n3).

2. Some useful results

Among tree-type hexagonal systems with extremal properties on topological indices,

Ln and Zn play important roles. We list some of them about the Merrifield-Simmons

index as follows.

Theorem 2.1. ([5]). For any n ≥ 1 and any Bn ∈ Ψn, if Bn is neither Ln nor Zn, then

i(Zn) < i(Bn) < i(Ln).

Theorem 2.2. ([14]). For any n ≥ 1 and any T ∈ Tn, if T is not Ln, then

i(T ) < i(Ln).

Theorem 2.3. ([9]). If S(n1, n2, n3) is neither L(n1, n2, n3) nor Z(n1, n2, n3), then

i(Z(n1, n2, n3)) < i(S(n1, n2, n3)) < i(L(n1, n2, n3)).

Among many properties of i(G), we mention the following results which will be used

later.

Lemma 2.1. ([1]). Let G be a graph consisting of two components G1 and G2. Then

i(G) = i(G1)i(G2).

Lemma 2.2. ([1]). Let G be a graph and any uv ∈ E(G). Then
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i(G) = i(G− u) + i(G−Nu).

Lemma 2.3. ([1]). Let G be a graph. For each uv ∈ E(G), then

i(G)− i(G− u)− i(G− u− v) ≤ 0.

Moreover, the equality holds only if v is the unique neighbor of u.

A
x

y

a

b

c

d

p

q
C

Fig. 2.1.A(x, y)⊗ C(p, q).

Suppose G is the union of a graph A and a 6-cycle C in which A and C have only

one common edge. Let this common edge be xy and the cycle C be abcdqpa (i.e., a, b,

c, d, q and p are vertices of C and x = p, y = q) (see Fig. 2.1). We shall denote G by

A(x, y)⊗ C(p, q).

Let A and B be any graph, C be a hexagon and G = A(x, y) ⊗ C(p, q). Denote by

G(a, b)⊗B(r, s) the graph obtained from G and B by identifying the edge ab with rs; by

G(b, c)⊗B(r, s) the graph obtained from G and B by identifying the edge bc with rs; by

G(c, d) ⊗ B(r, s) the graph obtained from G and B by identifying the edge cd with rs,

where r and s are two adjacent vertices of B of at least degree two.

Lemma 2.4. ([9]). Let A and B be any graph and G = A(x, y)⊗ C(p, q). If i(A− x) <

i(A− y), then i(G(c, d)⊗ B(r, s)) < i(G(a, b)⊗ B(r, s)).

Lemma 2.5. ([9]). Let A and B be any graph and G = A(x, y)⊗ C(p, q). Then

(a) i(G(a, b)⊗ B(r, s)) < i(G(b, c)⊗ B(r, s)),

(b) i(G(c, d)⊗ B(r, s)) < i(G(b, c)⊗ B(r, s)).
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Fig. 2.2.

We add some notations which are convenient to express useful results. For a hexagonal

chain L2 of length two, denote by a, b, c, d and u, v, w, o four vertices of degree two in two

end-hexagons respectively. In the present section, for a given T ∈ T, we always assume

that s, t or x, y are two adjacent vertices with degree two in T . By Lemma 2.1 and 2.2,

we have the following lemma.

Lemma 2.6. Let G1 = {A(x, y) ⊗ L2(w, o)}(a, b) ⊗ B(s, t), G2 = {A(x, y)⊗ L2(w, o)}
(c, d) ⊗ B(s, t), G3 = {A(x, y) ⊗ L2(u, v)}(c, d) ⊗ B(s, t) and G4 = {A(x, y)⊗ L2(u, v)}
(a, b)⊗ B(s, t) be defined above (see Fig. 2.2). Then

i(G1) =

⎛⎜⎝ i(A− x− y)
i(A−Ny)
i(A−Nx)

⎞⎟⎠
T ⎛⎜⎝ 21 13 15

15 10 9
13 8 10

⎞⎟⎠
⎛⎜⎝ i(B − s− t)

i(B −Nt)
i(B −Ns)

⎞⎟⎠ ,
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i(G2) =

⎛⎜⎝ i(A− x− y)
i(A−Ny)
i(A−Nx)

⎞⎟⎠
T ⎛⎜⎝ 22 13 14

13 13 8
14 8 9

⎞⎟⎠
⎛⎜⎝ i(B − s− t)

i(B −Nt)
i(B −Ns)

⎞⎟⎠ ,

i(G3) =

⎛⎜⎝ i(A− x− y)
i(A−Ny)
i(A−Nx)

⎞⎟⎠
T ⎛⎜⎝ 21 15 13

13 10 8
15 9 10

⎞⎟⎠
⎛⎜⎝ i(B − s− t)

i(B −Nt)
i(B −Ns)

⎞⎟⎠
and

i(G4) =

⎛⎜⎝ i(A− x− y)
i(A−Ny)
i(A−Nx)

⎞⎟⎠
T ⎛⎜⎝ 22 14 13

14 9 8
13 8 13

⎞⎟⎠
⎛⎜⎝ i(B − s− t)

i(B −Nt)
i(B −Ns)

⎞⎟⎠ .

By applying Lemma 2.1 and Lemma 2.2, it is easy to obtain the result.

Lemma 2.7. Suppose Gi(i = 1, 2, 3, 4) is defined in Lemma 2.6 . Then

(a) i(G1) < i(G2) or i(G3) < i(G2),

(b) i(G1) < i(G4) or i(G3) < i(G4).

Proof. (a) We assume that i(B −Nt) ≥ i(B −Ns). By Lemma 2.6, we have

Δ1 = i(G2)− i(G1) =

⎛⎜⎝ i(A− x− y)
i(A−Ny)
i(A−Nx)

⎞⎟⎠
T ⎛⎜⎝ 1 0 −1

−2 3 −1
1 0 −1

⎞⎟⎠
⎛⎜⎝ i(B − s− t)

i(B −Nt)
i(B −Ns)

⎞⎟⎠
and

Δ2 = i(G2)− i(G3) =

⎛⎜⎝ i(A− x− y)
i(A−Ny)
i(A−Nx)

⎞⎟⎠
T ⎛⎜⎝ 1 −2 1

0 3 0
−1 −1 −1

⎞⎟⎠
⎛⎜⎝ i(B − s− t)

i(B −Nt)
i(B −Ns)

⎞⎟⎠ .

If i(A−Nx) ≥ i(A−Ny), we get

Δ1 > i(A−Ny)[3i(B −Nt)− 3i(B −Ns)] ≥ 0.

Otherwise, in order to prove that Δ1 > 0 or Δ2 > 0, it suffices to show that Δ1+Δ2 >

0. Note that

Δ1 +Δ2 =

⎛⎜⎝ i(A− x− y)
i(A−Ny)
i(A−Nx)

⎞⎟⎠
T ⎛⎜⎝ 2 −2 0

−2 6 −1
0 −1 −2

⎞⎟⎠
⎛⎜⎝ i(B − s− t)

i(B −Nt)
i(B −Ns)

⎞⎟⎠ .
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Both A− x and A− y are proper subgraphs of A− xy and by Lemma 2.3, we obtain

Δ1 +Δ2 > i(A−Ny)[3i(B −Nt)− 3i(B −Ns)] ≥ 0.

If i(B −Nt) < i(B −Ns), the proof of (a) is similar as above.

(b) A similar proof as in (a), we have i(G1) < i(G4) or i(G3) < i(G4) and the proof of

Lemma 2.7 is complete.

3. Preliminary results and proofs

Suppose Bn ∈ Ψn. Let C1, C2, ..., Cn be n hexagons of Bn such that Ck−1 and Ck are

adjacent for k = 2, ..., n. We use xk−1, yk−1, ak, bk, ck and dk to denote vertices of Ck such

that xk−1yk−1 is the common edge of Ck and Ck−1, and xk−1ak, akbk, bkck, ckdk and dkyk−1

are edges of Ck. Moreover, we require that xk and xk−1 have the distance two.

Suppose T1, T2 ∈ T and Bn ∈ Ψn. pi, qi and ui, vi are two adjacent vertices with

degree two in Ti and Bn i = 1, 2, respectively. Firstly, we denote by T1(p1, q1)⊗Bn(u1, v1)

the tree-type hexagonal system obtained from T1 and Bn by identifying p1 with u1, and q1

with v1, respectively. Secondly, we denote by {T1(p1, q1)⊗Bn(u1, v1)}(u2, v2)⊗ T2(p2, q2)

the tree-type hexagonal system obtained from T1(p1, q1) ⊗Bn(u1, v1) and T2 by identifying

u2 with p2, and v2 with q2, respectively (see Fig. 3.1). For given T1, T2 ∈ T and any

Bn ∈ Ψn, we shall use Φ to denote the set of all tree-type hexagonal systems of the form

{T1(p1, q1)⊗ Bn(u1, v1)}(u2, v2)⊗ T2(p2, q2).

T1

T2

T1 T2

T1 T2

� � �

� � �

� � �

Bn

Ln Zn

� �

Fig. 3.1.
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Theorem 3.1. Suppose Tmin ∈ Φ has the minimum Merrifield-Simmons index among all

tree-type hexagonal systems of Φ. Then Bn is a zig-zag hexagonal chain.

Proof. Suppose not. Let Tmin = {T1(p1, q1) ⊗ Bn(u1, v1)}(u2, v2) ⊗ T2(p2, q2) have the

minimum Merrifield-Simmons index among all tree-type hexagonal systems of Φ, Bn =

C1C2...Cn and k be the least integer such that Bk = C1C2...Ck(3 ≤ k ≤ n) is not a zig-zag

chain. Then

Bn = {Zk−3(xk−3, yk−3)⊗ L2(w, o)}(c, d)⊗ {Bn − Zk−1}(xk−1, yk−1)

or

Bn = {Zk−3(xk−3, yk−3)⊗ L2(w, o)}(b, c)⊗ {Bn − Zk−1}(xk−1, yk−1).

Let A = T1(p1, q1)⊗ Zk−3(u1, v1) and B = {Bn − Zk−1}(u2, v2)⊗ T2(p2, q2). Then

Tmin = {A(xk−3, yk−3)⊗ L2(w, o)}(b, c)⊗ B(xk−1, yk−1)

or

Tmin = {A(xk−3, yk−3)⊗ L2(w, o)}(c, d)⊗ B(xk−1, yk−1).

By Lemma 2.5 and 2.7, we get

i({A(xk−3, yk−3)⊗ L2(w, o)}(a, b)⊗ B(xk−1, yk−1)) < i(Tmin)

or

i({A(xk−3, yk−3)⊗ L2(u, v)}(c, d)⊗ B(xk−1, yk−1)) < i(Tmin).

Since {A(xk−3, yk−3)⊗L2(w, o)}(a, b)⊗B(xk−1, yk−1) and {A(xk−3, yk−3)⊗L2(u, v)}(c, d)
⊗B(xk−1, yk−1) ∈ Φ, we obtain a contradiction.

By using Lemma 2.4, 2.5 and 2.7, and a similar proof as for Theorem 3.1, we have

Theorem 3.2. Suppose Tmax ∈ Φ has the maximum Merrifield-Simmons index among

all tree-type hexagonal systems of Φ. Then Bn is a linear hexagonal chain.

4. Tree–type hexagonal systems

Let T ∈ T. Denote by L∗ the linear tree-type hexagonal system obtained from T

whose every branch and Υ− subgraph are replaced by linear hexagonal chains with same
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number of hexagons, respectively. We shall use Z∗ to denote the set of zig-zag tree-type

hexagonal systems obtained from T whose every branch and Υ− subgraph are replaced

by zig-zag hexagonal chains with same number of hexagons, respectively.

Theorem 4.1. Suppose T ∈ Tn with n hexagons. There must exist a Z∗ ∈ Z∗ with n

hexagons such that

i(T ) ≥ i(Z∗).

Proof. Suppose not. T must exist a branch or Υ− subgraph which is not a zig-zag

chain. By Theorem 3.1, there exists the tree-type hexagonal system T
′
obtained from T

by replacing this branch or Υ− subgraph by a zig-zag chain with the same number of

hexagons such that i(T
′
) < i(T ). Repeating this operation, we end up with a hexagonal

system Z∗ ∈ Z∗ such that i(Z∗) < i(T ), which is a contradiction.

By using Theorem 3.2, and a similar proof as for Theorem 4.1, we have

Theorem 4.2. Suppose T ∈ Tn with n hexagons. Then

i(T ) ≤ i(L∗).

Moreover, the equality holds if and only if T ∼= L∗.

Corollary 4.1. Suppose S(n1, n2, n3) has the minimum Merrifield-Simmons index among

all hexagonal spiders. Then S(n1, n2, n3) is a zig-zag hexagonal spider.

Corollary 4.2. Suppose S(n1, n2, n3) has the maximumMerrifield-Simmons index among

all hexagonal spiders. Then S(n1, n2, n3) is a linear hexagonal spider.

Corollary 4.3. Suppose Bn ∈ Ψn. If Bn is neither Ln nor Zn, then

i(Zn) < i(Bn) < i(Ln).

In next section, we want to establish the lower bound for Merrifield-Simmons index of

tree-type hexagonal systems.

-845-



5. Zig–zag tree–type hexagonal systems

In the present section, for a zig-zag chain Zk with k hexagons, denote by x
′
k, xk, yk and

y
′
k four clockwise successive vertices with degree two in one of end-hexagons.

Theorem 5.1. ([15]). For any T ∈ T and any k ≥ 3, then

(a) i(T (s, t)⊗ Zk(xk, yk)) > i(T (s, t)⊗ Zk(x
′
k−1, xk−1)),

(b) i(T (s, t)⊗ Zk(x
′
k, xk)) > i(T (s, t)⊗ Zk(x

′
k−1, xk−1)),

(c) i(T (s, t)⊗ Zk(yk, y
′
k)) > i(T (s, t)⊗ Zk(x

′
k−1, xk−1)).

The proof of this theorem can be found in [15] where it is given with full detail.

We shall use Z∗
n to denote the set of all zig-zag tree-type hexagonal systems with n

hexagons. For a zig-zag tree-type system Z∗(∈ Z∗
n), we denote by Z⊥ the graph obtained

from Z∗ whose every branch is transformed by transformation I.

� ��

T1

T2

T1

T2

Hk

Hk−1

H1

�

�

��

Hk
H1

H2

H
H

s1
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u1 v1
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s2

t2

u2

v2

Hk−3

T T
′

� ��

T1

Hk

Hk−1

H1

�

�

�

T2

T1

Hk

Hk−1 �

�

�

T2

H3
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H2
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��

H
H

T
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T
′′′
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T1

Hk

Hk−1
�

�

�

T2

H

H1

H2or

Fig.5.1. T ransformation I.

Transformation I. Let Zk = H1H2 · · ·Hk and Zk
⊗

H be a branch of T . The graph

T
′
is obtained from T − Zk and Zk by identifying the edge u1v1 of Hk−1 with the edge

s1t1 of H. Repeating this operation, we end up with a graph T
′′′
. If T = Zn, we only let

H = H1(see Fig. 5.1).

Now we can establish the best currently known lower bound for Merrifield-Simmons

index of tree-type hexagonal systems.

Theorem 5.2. For any Z∗ ∈ Z∗
n with n hexagons and any n ≥ 4, then

i(Z⊥) ≤ i(Z∗).

Proof. Note that the graph Z⊥ is obtained from Z∗ whose every branch is transformed

by transformation I, and by Theorem 5.1, we get i(Z⊥) ≤ i(Z∗).

By repeating to apply transformation I on a hexagonal spider Z(n1, n2, n3) and Zn, and

according to Theorem 5.1, we will also obtain good lower bound of Merrifield-Simmons

index of Zn and Z(n1, n2, n3) as follows.

Theorem 5.3. For any Z(n1, n2, n3) with n hexagons and any n ≥ 4, then

i(Z⊥(n1, n2, n3)) ≤ i(Z(n1, n2, n3)).

Moreover, the equality holds if and only if Z⊥(n1, n2, n3) ∼= Z(n1, n2, n3).

Theorem 5.4. For any Zn with n hexagons and any n ≥ 4, then

i(Z⊥) < i(Zn).
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