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Abstract

Some results with respect to Merrifield-Simmons index of tree-type hexagonal
systems are shown. Using these results, the tree-type hexagonal system with lower
bound of Merrifield-Simmons index is determined. These results generalize some
known results on hexagonal chains and hexagonal spiders.

1. Introduction

A hexagonal system is a 2-connected planar graph whose every interior face is bounded
by a regular hexagon. Hexagonal systems are of great importance for theoretical chemistry
because they are natural graph representations of benzenoid hydrocarbons [2]. A hexag-
onal system is a tree-type one if it has no inner vertex. Tree-type hexagonal systems are
graph representations of an important subclass of benzenoid molecules. A considerable
amount of research in mathematical chemistry has been devoted to hexagonal systems
[2-14].

In order to describe our results, we need some graph-theoretic notations and termi-
nologies. Our standard reference for any graph theoretical terminology is [1].

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). Let e and u be

an edge and a vertex of G, respectively. We will denote by G — e or G — u the graph
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obtained from G by removing e or u, respectively. Denote by N, the set {v € V(G) :
ww € E(G)} U{u}. Let H be a subset of V(G). The subgraph of G induced by H is
denoted by G[H|, and G[V \ H] is denoted by G — H. Undefined concepts and notations
of graph theory can be found in [9-14].

Two vertices of a graph G are said to be independent if they are not adjacent. A
subset I of V(QG) is called an independent set of G if any two vertices of I are independent.
Denote i(G) by the number of independent sets of G. In chemical terminology, i(G) is
called the Merrifield-Simmons index. Clearly, the Merrifield-Simmons index of a graph is
larger than that of its proper subgraphs.

We denote by V¥, the set of hexagonal chains with n hexagons. Let B, € ¥,. We
denote by V3 = V5(B,,) the set of vertices with degree 3 in B,,. Thus, the subgraph B, [V5]
is an acyclic graph. If the subgraph B,[V3] is a matching with n — 1 edges, then B, is
called a linear chain and denoted by L,. If the subgraph B,[V3] is a path, then B, is
called a zig-zag chain and denoted by Z,. If the subgraph B,[V3] is a comb, then B, is

called a helicene chain and denoted by H,,.

Denote by T, the set of tree-type hexagonal systems containing n hexagons. Let
T =UFT,, and T € T. Let H be a hexagon of . Obviously, H has at most three
adjacent hexagons in T if H has exactly three adjacent hexagons in 7', then H is called a
full-hexagon of T if H has two adjacent hexagons in 7', and, moreover, if its two vertices
with degree two are adjacent, then call H a turn-hexagon of 7; and if H has at most
one adjacent hexagon in 7', then H is called an end-hexagon of T'. It is easy to see that
the number of end-hexagons of a tree-type hexagonal system of n > 2 hexagons is two
more than the number of its full-hexagons. Let T € T and B = H{Hs ... Hy,k > 2 be a
hexagonal chain of T'. If the end-hexagon H; of B is also an end-hexagon of T, the other
end-hexagon Hy is a full-hexagon of 7', and for 2 <i < k — 1, H; is not a full-hexagon of
T, then B is called a branch of T'. Let T = H 1 Hy ... Hy, k > 2 be a hexagonal chain of T".
If both the end-hexagon H; and Hy of T are full-hexagons of 7', and for 2 < < k—1, H;
is not a full-hexagon of 7', then T is called a T— subgraph of 7". If any branch and any
T — subgraph of T are linear chains, then T is called linear tree-type hexagonal system.
If any branch and any T— subgraph of 1" are zig-zag chains, then 7' is called zig-zag
tree-type hexagonal system. A zig-zag hexagonal chain and a zig-zag hexagonal spider

are zig-zag tree-type hexagonal systems with no full-hexagon and only one full-hexagon,
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respectively.

A graph G is called a spider if it is a tree and contains only one vertex of degree greater
than 2. For positive integer ni, ng, n3, we use S(ny, nz,n3) to denote a hexagonal spider
with three legs of lengths ny, ny and ng, respectively.

If a hexagonal spider S(ny, ny,n3) whose 3 legs are linear chains, then such a graph is
called a linear hexagonal spider and denoted by L(ni, na, n3).

Similarly if each leg of S(ny, n2, n3) attached to the central hexagon is a zig-zag chain,

then such graph is called a zig-zag hexagonal spider and denoted by Z(nq, na, n3).

2. Some useful results

Among tree-type hexagonal systems with extremal properties on topological indices,
L, and Z, play important roles. We list some of them about the Merrifield-Simmons

index as follows.

Theorem 2.1. ([5]). For any n > 1 and any B,, € ¥, if B, is neither L,, nor Z,, then

i(Zy) < i(By) < i(Ly).

Theorem 2.2. ([14]). For any n > 1 and any 7" € T,,, if T" is not L,,, then

i(T) <i(Ly).

Theorem 2.3. ([9]). If S(ny,n2,n3) is neither L(ny, ne,ng) nor Z(ny, ne, n3), then

i(Z(n1,n2,n3)) < i(S(n1,n2,n3)) < i(L(ng,ng,ng)).

Among many properties of i(G), we mention the following results which will be used

later.

Lemma 2.1. ([1]). Let G be a graph consisting of two components Gy and G5. Then

i(G) = i(G1)i(Gy).

Lemma 2.2. ([1]). Let G be a graph and any uwv € E(G). Then
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i(G) = i(G —u) +i(G — N,).

Lemma 2.3. ([1]). Let G be a graph. For each uv € E(G), then

i((G) —i(G—u) —i(G—u—v)<0.

Moreover, the equality holds only if v is the unique neighbor of w.

Fig. 2.1.A(z,y) ® C(p,q).

Suppose G is the union of a graph A and a 6-cycle C' in which A and C' have only

one common edge. Let this common edge be zy and the cycle C' be abedgpa (i.e.,a,b,

¢,d,q and p are vertices of C' and x = p,y = ¢) (see Fig. 2.1). We shall denote G by

Az, y) @ Clp, q).

Let A and B be any graph, C be a hexagon and G = A(z,y) ® C(p,q). Denote by

G(a,b) ® B(r, s) the graph obtained from G and B by identifying the edge ab with rs; by

G(b,c) ® B(r, s) the graph obtained from G and B by identifying the edge be with rs; by

G(c,d) ® B(r, s) the graph obtained from G and B by identifying the edge cd with rs,

where r and s are two adjacent vertices of B of at least degree two.

Lemma 2.4. ([9]). Let A and B be any graph and G = A(z,y) @ C(p,q). If i(A —z) <

i(A —y), then i(G(c,d) ® B(r,s)) < i(G(a,b) @ B(r,s)).

Lemma 2.5. ([9]). Let A and B be any graph and G = A(z,y) ® C(p, ¢). Then

(a) i(G(a,b) ® B(r,s)) < i(G(b,c) @ B(r,s))

() i(G(c,d) @ B(r, s)) < i(G(b,c) @ B(r,s)).
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Fig. 2.2.

We add some notations which are convenient to express useful results. For a hexagonal
chain L of length two, denote by a, b, ¢, d and u, v, w, o four vertices of degree two in two
end-hexagons respectively. In the present section, for a given 7" € T, we always assume
that s,t or z,y are two adjacent vertices with degree two in 7. By Lemma 2.1 and 2.2,

we have the following lemma.

Lemma 2.6. Let G = {A(z,y) ® La(w,0)}(a,b) ® B(s,t), Go = {A(z,y)® La(w,0)}
(¢,d) ® B(s,t), Gz = {A(z,y) @ La(u,v)}(c,d) @ B(s,t) and Gy = {A(z,y)® La(u,v)}
(a,b) ® B(s,t) be defined above (see Fig. 2.2). Then

iA—z—y)\" (21 13 15\ [i(B—s—1)

i(Gy) = | i(A-N,) 15 10 9 i(B—N,)
i(A—N,) 13 8 10) \ i(B—N,)
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i(A—z—y)\" (22 13 14\ [i(B—s—1)
i(GQ)—( i(A— N,) ) (13 13 8)(71(B—Nt) )
i(A-N,) 14 8 9 i(B—N,)

(A—z—y)\" (21 15 13\ [i(B—s—1)
z‘(Gg)_( i(A—=N,) ) (13 10 8) ( i(B—N,) )
i(A—N,) 15 9 10) \ i(B-N,)

i(A—z—y)\" (22 14 13\ [i(B—s—1)
i(G4)—(i(A—Ny) ) (14 9 8)(1‘(3—1\@)).
i(A—N,) 13 8 13) \ i(B-N,)

By applying Lemma 2.1 and Lemma 2.2, it is easy to obtain the result.

and

Lemma 2.7. Suppose G;(i = 1,2,3,4) is defined in Lemma 2.6 . Then
(a) i(Gy) < i(Gs) or i(G3) < i(Ga),
(b) i(G1) < i(Gy) or i(G3) < i(Gy).
Proof. (a) We assume that i(B — N;) > i(B — Ny). By Lemma 2.6, we have
(i(A—a;—y))T ( 1 0 —1) (i(B—s—t))
Ay =i(Gy) —i(Gh) = | i(A—N,) 23 1| iB-N)

i(A—N,) 1 0 —1)\ i(B-N,)

and

iA-z—y)\" /1 -2 1 i(B—s—1t)
i(A—N,) -1 -1 -1} \ i(B-N,)
If i(A— N,) > i(A— N,), we get

Ay > i(A— N,)[3i(B — N,) — 3i(B — N,)] > 0.

Otherwise, in order to prove that A; > 0 or Ay > 0, it suffices to show that A; + Ay >
0. Note that

A—z—p)\" /2 =2 0\ [i(B-s—1)
Alwz_(im%)) ( ; 1)(“3]%))_
i(A—N,) 0 -1 —2)\ iB-N,)
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Both A — 2 and A — y are proper subgraphs of A — zy and by Lemma 2.3, we obtain
Ay + Ay > i(A— Ny)[3i(B — N;) — 3i(B — Ng)] > 0.
If i(B — N;) < i(B — N,), the proof of (a) is similar as above.

(b) A similar proof as in (a), we have i(G) < i(G4) or i(G3) < i(G4) and the proof of

Lemma 2.7 is complete.

3. Preliminary results and proofs

Suppose B,, € V,,. Let (4, (s, ..., C,, be n hexagons of B,, such that Cj_; and C}, are
adjacent for k = 2,...,n. We use xx_1, Yr_1, @k, bg, ¢x and di to denote vertices of Cj, such
that xp_1yx_1 is the common edge of Cy, and Cy_1, and xy_jay, agby, bpCr, cxdy and diyx_1
are edges of Cf. Moreover, we require that xj; and xp_; have the distance two.

Suppose T1, To € T and B, € V,,. p;, ¢ and u;,v; are two adjacent vertices with
degree two in T; and B,, i = 1,2, respectively. Firstly, we denote by T} (p1, ¢1) ® By, (u1, v1)
the tree-type hexagonal system obtained from 77 and B,, by identifying p; with uq, and ¢
with vy, respectively. Secondly, we denote by {73 (p1, ¢1) ® By (u1,v1)}(u2,v9) @ To(po, g2)
the tree-type hexagonal system obtained from 7T} (p1, ¢1) @ By, (u1, v1) and Ty by identifying
up with po, and vy with go, respectively (see Fig. 3.1). For given Ty, 7o € T and any
B, € ¥, we shall use ® to denote the set of all tree-type hexagonal systems of the form
{Ti(p1, @1) ® Bilur, v1) Huz, va2) @ To(p2. ¢a).
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Theorem 3.1. Suppose T,,;, € ¢ has the minimum Merrifield-Simmons index among all

tree-type hexagonal systems of ®. Then B, is a zig-zag hexagonal chain.

Proof. Suppose not. Let Ty = {T1(p1,¢1) @ Bn(ur,v1)}Hug, v2) @ To(ps, ¢2) have the
minimum Merrifield-Simmons index among all tree-type hexagonal systems of ®, B, =
C1C,...C,, and k be the least integer such that By, = C1C5...C1(3 < k < n) is not a zig-zag
chain. Then

By, = {Z—s(xr—3, yr—3) ® La(w,0)}(c,d) @ {Bn — Z—1}(Tp—1, Yr—1)
B, ={Z—3(xr—3,Yk—3) ® La(w,0)}(b,¢) @ { By, — Zk—1}(Tr—1, Y—1)-

Let A=Ti(p1,q1) @ Zi—3(ur,v1) and B = {B,, — Zj_1}(uz, v2) @ Ta(pa, g2). Then

Tonin = {A(2r—3, Yp—3) ® La(w, 0)}(b,¢) @ B(xp—1,Yr-1)
or
Tnin = {A(Zp—3, Yr—3) ® Lao(w, 0)}(c,d) @ B(xp—1, Yr—1)-

By Lemma 2.5 and 2.7, we get

i({A(xk-3,Yr—3) ® L2(w, 0)}(a,b) @ B(xx-1,Yr-1)) < i(Tinin)
or

i({A(z-3,Yr—3) ® La(u,v)}(c, d) @ B(xp-1,Yr—1)) < i(Tonin)-
Since {A()-3,Yr-3) @ La(w,0)}(a,0) @ B(wp—1, yx—1) and {A(zx-3, ys—3) @ La(u, v) }(c, d)
®@B(zg-1,yr—1) € D, we obtain a contradiction.

By using Lemma 2.4, 2.5 and 2.7, and a similar proof as for Theorem 3.1, we have

Theorem 3.2. Suppose T},,, € ® has the maximum Merrifield-Simmons index among

all tree-type hexagonal systems of ®. Then B, is a linear hexagonal chain.

4. Tree—type hexagonal systems

Let T € T. Denote by L* the linear tree-type hexagonal system obtained from 7'

whose every branch and T— subgraph are replaced by linear hexagonal chains with same
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number of hexagons, respectively. We shall use Z* to denote the set of zig-zag tree-type
hexagonal systems obtained from 7" whose every branch and YT— subgraph are replaced

by zig-zag hexagonal chains with same number of hexagons, respectively.
Theorem 4.1. Suppose T" € T,, with n hexagons. There must exist a Z* € Z* with n
hexagons such that

i(T) > i(Z%).

Proof. Suppose not. 7 must exist a branch or T— subgraph which is not a zig-zag
chain. By Theorem 3.1, there exists the tree-type hexagonal system 7" obtained from T
by replacing this branch or YT— subgraph by a zig-zag chain with the same number of
hexagons such that i(T") < i(T). Repeating this operation, we end up with a hexagonal

system Z* € Z* such that ¢(Z*) < i(T"), which is a contradiction.
By using Theorem 3.2, and a similar proof as for Theorem 4.1, we have

Theorem 4.2. Suppose T € T,, with n hexagons. Then

i(T) < i(LY).

Moreover, the equality holds if and only if 7" = L*.

Corollary 4.1. Suppose S(ni, ns, n3) has the minimum Merrifield-Simmons index among

all hexagonal spiders. Then S(nq, ny, n3) is a zig-zag hexagonal spider.

Corollary 4.2. Suppose S(ny, na, n3) has the maximum Merrifield-Simmons index among

all hexagonal spiders. Then S(nq,n2,n3) is a linear hexagonal spider.

Corollary 4.3. Suppose B,, € ¥,,. If B,, is neither L,, nor Z,,, then

i(Zy) < i(By) < i(Ly).

In next section, we want to establish the lower bound for Merrifield-Simmons index of

tree-type hexagonal systems.
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5. Zig—zag tree—type hexagonal systems

In the present section, for a zig-zag chain Z;, with k hexagons, denote by xy,, 21, v and

, . . . . .
y,, four clockwise successive vertices with degree two in one of end-hexagons.

Theorem 5.1. ([15]). For any T' € T and any k > 3, then

T(s,t) @ Zi(wy_1, Th-1)),
T(s,t) ® Zk(f;c_p Tk-1)),
i(T(s,t) @ Z(wy_y, 1))

(a) i(T'(s,t) @ Zi(r, yn)) > i
(b) i(T(s,t) @ Zyxy, 21)) > i
(€) i(T(5,) © Zi(yr, up))

(
> i
>

The proof of this theorem can be found in [15] where it is given with full detail.

We shall use Z;, to denote the set of all zig-zag tree-type hexagonal systems with n
hexagons. For a zig-zag tree-type system Z*(€ Z7), we denote by Z*+ the graph obtained

from Z* whose every branch is transformed by transformation 1.
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or

Fig.5.1. Transformation I.

Transformation I. Let Z, = H{Hy--- H, and Z, @ H be a branch of T. The graph
T is obtained from 7' — Z;, and Z; by identifying the edge ujvy of Hj_; with the edge
sity of H. Repeating this operation, we end up with a graph 7. If T = Z,,, we only let
H = Hi(see Fig. 5.1).

Now we can establish the best currently known lower bound for Merrifield-Simmons

index of tree-type hexagonal systems.
Theorem 5.2. For any Z* € Z; with n hexagons and any n > 4, then
i(Zh) <i(z").

Proof. Note that the graph Z* is obtained from Z* whose every branch is transformed

by transformation I, and by Theorem 5.1, we get i(Z+) < i(Z*).

By repeating to apply transformation I on a hexagonal spider Z(ny, ns, n3) and Z,,, and
according to Theorem 5.1, we will also obtain good lower bound of Merrifield-Simmons

index of Z,, and Z(ny,na, ng) as follows.

Theorem 5.3. For any Z(ny, ny, n3) with n hexagons and any n > 4, then

/l‘(ZL(TL17n27 ng)) S Z(Z('ﬂh Nna, ng))

Moreover, the equality holds if and only if Z*(ny,ny, n3) = Z(n1, na, n3).
Theorem 5.4. For any Z,, with n hexagons and any n > 4, then

i(Z4) < i(Z,).



-848-

Acknowledgments

The author is very grateful to Pro. Heping Zhang and Pro. Waichee Shiu for helpful

suggestions, and the two referees for valuable comments.

References

[1]

2]

(10]

(1]

(12]

(13]

(14]

(15]

J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, London
and Elsevier, New York, 1976.

I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons,
Springer, Berlin, 1989.

A. A. Dobrynin, I. Gutman, The average Wiener index of hexagonal chains, Comput.
Chem. 23 (1999) 571-576.

[. Gutman, On Kekulé structure count of cata—condensed benzenoid hydrocarbons,
MATCH Commun. Math. Comput. Chem. 13 (1982) 173-181.

I. Gutman, Extremal hexagonal chains, J. Math. Chem. 12 (1993) 197-210.

H. Hosoya, Topological index as a common tool for quantum chemistry, statistical
mechanics, and graph theory, in: N. Trinajsti¢ (Ed.), Mathematics and Computa-
tional Concepts in Chemistry, Horwood, Chichester, 1986, pp. 110-123.

R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New
York, 1989.

W. C. Shiu, P. C. B. Lam, L. Z. Zhang, Extremal k* — —cycle resonant hexagonal
chains, J. Math. Chem. 33 (2003) 17-28.

W. C. Shiu, Extremal Hosoya index and Merrifield-Simmons index of hexagonal
spiders, Discr. Appl. Math. 156 (2008) 2978-2985.

L. Z. Zhang, The proof of Gutman’s conjectures concerning extremal hexagonal
chains, J. Systems Sci. Math. Sci. 18 (1998) 460-465.

L. Z. Zhang, F. Tian, Extremal hexagonal chains concerning largest eigenvalue, Sci.
China Ser. A 44 (2001) 1089-1097.

F. J. Zhang, Z. M. Li, L. S. Wang, Hexagonal chains with minimal total 7—electron
energy, Chem. Phys. Lett. 337 (2001) 125-130.

F. J. Zhang, Z. M. Li, L. S. Wang, Hexagonal chains with maximal total 7m—electron
energy, Chem. Phys. Lett. 337 (2001) 131-137.

L. Z. Zhang, F. Tian, Extremal catacondensed benzenoids, J. Math. Chem. 34 (2003)
111-122.

S. Z. Ren, Merrifield-Simmons index of zig-zag tree-type hexagonal systems, Sci.
Magna. 2 (2009) 45-49.



