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Abstract

The Hosoya index of a graph G is the total number of matchings of G, including
the empty edge set. Let B(n,A) be the set of connected n-vertex bicyclic graphs with
maximum degree A. We determine the greatest Hosoya index in B(n,A), and characterize
the corresponding extremal graphs.

1 Introduction

The Hosoya index of a graph G, denoted by Z(G), is one of well-known topological
indices in mathematical chemistry [18,20-22]. It is defined as the total number of
the matchings (independent edge subsets), including the empty edge set. The Hosoya
index was introduced by Hosoya in 1971 [18]. Since then it received much attention
by mathematical chemists (see the book [14] and the recent papers [1,3,4, 6,28, 37,

38,40,42]). It plays an important role in the study of the relation between molecular
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structure and a variety of physical and chemical properties of certain hydrocarbon
compounds [11,23-25,30-32].

It is of some importance to determine the graphs having extremal (maximal or
minimal) Hosoya indices. The first such result was obtained by one of the present
authors [7], by demonstrating that in the class of trees with a fixed number of ver-
tices, the star has minimum and the path maximum Z-value. By now, many results
along these lines have been obtained, see e. g. [1,3-6,26,28,33-35,37,38,40-43]. In
particular, Xu and Xu [41] characterized the unicyclic graphs with given maximum
degree A, maximizing the Hosoya index.

Much earlier [8], a relation > between graphs was introduced, defined so that Gy >
G5 holds if for all & > 1, the number of k-matchings of GGy is greater than or equal
to the number of k-matchings of G5. Evidently, G; = G5 implies Z(G;) > Z(Gs),
with equality if and only if the numbers of k-matchings of GGy and Gy are equal for
all k. Numerous relations for the Hosoya index were (implicitly) obtained by means
of the relation > [9,10,13,16,17]. In particular, in [9,10,13] the unicyclic, bicyclic,
and tricyclic graphs with greatest Hosoya indices were (implicitly) determined. In [6]
Deng et al. reproduced these results for unicyclic graphs, and in [4, 5] for bicyclic
graphs (but see Remark 3.1).

All graphs considered in this paper are finite and simple. Let G be such a graph
with vertex set V(G) and edge set E(G) . For a vertex v € V(G) , we denote by N¢(v)
the set of neighbors of v in G'. The cardinality of Ng(v) is called the degree of v and
is denoted by dg(v) or, shorter, by d(v). If a vertex a has degree k, then x is said
to be a k-vertex. In the following we denote by P, and C), the path graph and the
cycle graph with n vertices, respectively. For undefined notations and terminology,
the readers are referred to [2].

A connected graph of order n is bicyclic if it has n+1 edges. Let B(n) be the set of
connected bicyclic graphs of order n. Denote by B(n, A) the set of connected bicyclic
graphs of order n with maximum degree A. Any graph G € B(n,A) possesses at
least two cycles. With regard to these cycles, we distinguish between the following

three cases:
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(1) The two cycles in G have only one common vertex.

(2) The two cycles in G are linked by a path of length I > 0.

(3) The two cycles in G have a common path of length s > 0.

In Fig. 1 are depicted the graphs C,,, Cp;q and 60,,,. These correspond to
the above cases (1), (2), and (3), and are called, respectively, the main subgraphs
of G € B(n) of type (1), (2), and (3). In Section 2 some basic lemmas are listed or
proved. In Section 3 we characterize the graphs in B(n, A) with the greatest Hosoya

index, and determine the corresponding Z-values.
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Fig. 1. The three main subgraphs of G € B(n) of type (1), (2), and (3), and the
labeling of their vertices.

2 Some lemmas

In order to obtain our main results, we first introduce some new definitions and list
or prove some lemmas as necessary preliminaries.
Lemma 2.1. ([14,18]) Let G be a graph.

(1) Ifve V(G), then Z(G) = Z(G —v)+ Y, Z(G—{w,v}).

wENg(v)
(2) Ifww € E(G), then Z(G) = Z(G — w) + Z(G — {u,v}).
t
(3) If G1, Gy, ..., Gy are the components of G, then Z(G) = [] Z(Gy) .
k=1

Lemma 2.2. ([14,19]) Let F, be the n-th Fibonacci number, that is, Fy =0, F} =
F, =1, and F, = F,_1+ F,—5 forn > 3. Then Z(P,) = F,11 and Z(C,,)
Fn+1 + Fn—l .
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A tree T is said to be starlike if it contains only one vertex v of degree greater
than two [12,15,27,36,39,44]. Then v is the center of T'. If the degree of v is equal
to d, then T is said to be d-starlike. Let ¢; be the length of the i-th branch going
out from the center of a d-starlike tree, i = 1,2,...,d. We denote by R(cy, ¢, ..., ¢q)
the d-starlike tree for which zd: g =n—1. Then R(cy,c2,...,¢q) —v = Ldj P, . If
the number of branches of l(frzéth ¢y is I, then we write it as C;f in thekf_olllowing.
For example, R(2,2,3,3) will be written as R(2%,3?) for short. For convenience,
R(cy, ¢, ¢3) will be denoted by T'(¢y, ¢a, ¢3) .

If G1,Gy are two graphs with V(Gy) NV (Gs) = {v}, then G = G1vGsy is de-
fined as a new graph with V(G) = V(G,) UV (G2) and E(G) = E(G1)J E(G).
For a starlike tree T = R(K,k%2,... k), the graph GuT (where v is the center

»m

of T) can be also denoted by Gu(kl' k%, ... klm). When G = Cy, then the lat-

»Vm

ter graph will be written as Cy (k! k%, ... k) for short. For convenience, we let
Cr = C(0Y) and P,_y = C((—=1)"). Further, let Goll(kl*, k%2, ... klm) be the graph
obtained by identifying the vertex v of G with a pendent vertex of Py of the graph
R(E Ko kb 1Y) where I > 1.

In what follows any graph of one of three types (1), (2), and (3) will be always
labeled as shown in Fig. 1. For a graph M of one of the three types (1), (2), and
(3), Mu(kl*, k2) and Mu(kL, k) will be denoted by M© (Kt k2) and MO (Kl k2 |
respectively. For example, Cy(21), Cy 1 50M(12,21) | C§?§(12, 21), and 9&2,3(12, 21) are

shown in Fig. 2.

1 > I>§I <\.f

Fig. 2. Examples of graphs of the type M© (ki kl2) and MO (Kl k).



-799-

Lemma 2.3. ([38]) Let G % K, be a connected graph, and v € V(G). The graph
G(k,n — 1 — k) is obtained by attaching at v two paths of length k and n — 1 —k,
respectively. Let n = 4m + j where j € {1,2,3,4} and m > 0. Then

Z(G(1,n—-2)) < Z(GB,n—4))<---<Z(G2m+2l—1,n—2m — 21))
< Z(G2m,n—1-2m)) <--- < Z(G(2,n—3)) < Z(G(0,n — 1))

where I = [(j — 1)/2], and where G(0,n — 1) can be also viewed as a graph obtained
by attaching at v € V(G) a path of length n — 1.

By repeating Lemma 2.3, the following remark is easily obtained.

Remark 2.1. ([9,38]) When a tree T of size t, attached to a graph G, is replaced by

a path Py (see Fig. 3), then the Hosoya index increases.

F
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Fig. 3. The graphs in Remark 2.1.

Lemma 2.4. ([4,9]) Let P = ugujus - - - wgugy1 be a path or a cycle (if ug = ug1) in
a graph G, where the degrees of uy,us,...us in G are 2, t > 1. By Gy we denote
the graph obtained by identifying u, , (0 < r < t) with the vertex vy, of a simple path
V1V - v . Further, Gy = Gy — uptpg1 + upqvy (see Fig. 4). Then, Z(G1) < Z(Gs) .
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Fig. 4. The graphs in Lemma 2.4.
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Lemma 2.5. ([6]) F,=FFy g1+ Fe By for 1<k<n.
Lemma 2.6. ([29]) Let n =4s+r, with s >0 and 0 <r < 3.
(1) If r € {0, 1}, then

Rl > F3F 1> > Fog 1 Fogyrin > Foslogirgo

> FosoFogirps > > FuF 9 > IOF, .

(2) If r € {2,3}, then

F1F7L+1

\%

F3Fy 1 > > Fog 1 Fogyryn > Fogpolhgy,

> Fologyrqo > > FyF, o > [HE, .

From Lemma 2.6, the following corollary is obvious.

Corollary 2.1. For a given positive integer n > 4 , the mazimal value of the sequence

{FvFn_i} is FyF,_y, the second mazimal value of this sequence is F3F,_3.

Lemma 2.7. Let Gy and Go be two graphs and v; be a vertex of G; fori = 1,2.
If either Z(Gs) > Z(G4) or Z(Gy — v9) > Z(G1 — v1), then we have Z(GavsT}) >

Z(GynT,) , where Ty is a tree of order 1 > 2 and, in T, , the vertex vy in Gy is identified

with vy in Gy .

Proof. We prove this lemma by induction on [ (the order of 7).
For [ = 2, the graph G,v;T; is just the graph obtained by attaching a pendent
edge to vertex v; of G; for i = 1,2. Applying Lemma 2.1 (1) to that pendent vertex,

we get

Z(Glﬂlﬂ) = Z(Gl) + Z(Gl - 1}1)
Z(GQUQ’T[) = Z(GQ) + Z(GQ - UQ) .

Thus, considering the conditions in this lemma, we have
Z(GQUQT}) — Z(lelﬂ) = [Z(Gz) - Z(Gl)} + [Z(GQ — Ug) - Z(Gl - Ul)} >0.

Therefore Z(GovoT)) > Z(GionTh) for 1 = 2.
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Now we assume that Z(GovoT}) > Z(Gi0T;) for I < k. In the next step we will
show that Z(GovoT)) > Z(Gyv1T;) for | = k. Note that there must be at least a
pendent vertex in the tree T of graph G;v;T},. Choose a pendent vertex u; with
the greatest distance from vy (resp. wvg) in Ty, where the neighbor vertex u; is u; of
degree t > 2. Similarly, by applying Lemma 2.1 (2) to the pendent vertex u; in T}

of G;v;T}, from Lemma 2.1 (3) and Lemma 2.2, we obtain

Z(GiTy) = Z(GinTpr) + Fi 2 Z2(GronTh—y)

= Z(lelTk—l) + Z(lelTk—t)

Z(G2U2Tk) = Z(G‘ZUZTk_l) + th_ZZ(GZ/UZTk_L)
= Z(G]’Ulkal) + Z(lelkat) B

By assumption, it is obvious that Z(Gov2Ty) — Z(Ghv1Ty) > 0, which completes the

proof of this lemma. |

Remark 2.2. Let G be a graph and vy, vs be two vertices of G such that Z(G —vs) >
Z(G — 1) . Suppose that Tj is a tree of order 1 > 2. Then Z(GvoT)) > Z(GuT;) .

From Lemmas 2.1, 2.2, and 2.5, the following result can be easily obtained. Note
that a simple calculation shows the validity of the formula of Z(C,(b')) for b = 0 or

b=-1.
Lemma 2.8.

Z(T(a,b,c)) = Fayeralyr + ForFen Fy

Z(Ca(bl)) = Foppp1 +Fa1Fppn -

Lemma 2.9. ([4]) Let P = wujuy---w—1v be a path in a graph G not isomorphic
to path graph, where the degrees of uy,us, ... ,u;—1 in G are 2. By G'(a,b) is denoted
the graph obtained by identifying a pendent vertex of P,y1 with vertex u in G and a
pendent vertex of Py with vertex v in G. Then Z(G'(a,b)) < Z(Gu((a + b)')) or
Z(GYa,b)) < Z(Gv((a+ b)) .

Lemma 2.10. ([4]) If Cpiq, Cpiirq, and Cpiyq are three graphs defined as above,
then Z(prprq) > Z(prl,q) and Z(Cpﬂyq) > Z(Cp‘l)q) .
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3 Main results

We now consider the greatest Hosoya index of graphs from the class B(n,A). For
A < 2 there are no bicyclic graphs. In [4] and [10], the graphs from B(n) with greatest
Hosoya index were characterized completely. All these graphs belong to B(n, 3) (see
Remark 3.1). Thus the case A = 3 has been settled.

If A = n—1, there exist only two connected bicyclic graphs 95(‘)1)72(1”’4) and
C§f’§(1”*5 ). By a direct calculation we find that C?()U;) (1"73) has greater Hosoya index,
equal to 4n—8. For n =4, only one graph 65 » belongs to B(n) and there is nothing
to prove. For n = 5 there are two cases, i. e., A = 3 and A = 4. From the above
arguments it is easy to obtain the greatest Hosoya index of graphs from B(n,A).

Therefore, in what follows we assume that 3 < A <n—1andn >5.

Remark 3.1. Deng [4] found that the greatest Hosoya index of graphs from B(n) is
attained at 03,3 if n > 6, or at U319 or ba05 if n = 5. But the result whenn > 7 is
false. By a simple calculation, we obtain that Z(Cypn-a) = 58 > 57 = Z(031,,—3) for
n=38, Z(Cyin-a)=2Z(031n3) forn=9 and Z(Cy1-1) — Z(031,-3) = Frg >0
for n > 9. Therefore we conclude that the graph from B(n) with greatest Hosoya
index is 0319 0r Oa00 if n =5, 031,53 if n = 6,7, Cyyp-a if n =8 orn > 10,

0513 or Cygpn_a if n =9, as shown in [10] except that 0255 is missing if n ="5.

In order to continue our study, we introduce two subsets of of B(n, A). Suppose
that M is of one of the types (1), (2), and (3). Let Bi(n,A) be the set of all graphs
A/[?;El](k;lll, kl;) with l;+1lo = A—1where by = land 1 < ky <2, 0r ky =2 and ky > 2
and Iy = 1 when ky > 2. Denote by By(n, A) the set of all graphs Mu;(k!*, ki?) with
lh+lh=A—-2 where by =1land 1 < ky <2, 0rky =2and ky >2and lp =1
when ko > 2. In the following we always assume that k; and ko are positive integers

defined as above.
Lemma 3.1. Suppose that G* from B(n,A) has mazimal Hosoya index. Then we

have either G* € By(n,A) or G* € By(n, A).

Proof. Note that any bicyclic graph can be viewed as a graph obtained by attaching

some trees to some vertices of a graph M of one of three types (1), (2) and (3).
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If each A-vertex is not in V(M) of the graph G* from B(n,A), then we assume
that Ty is a subtree such that V(71) \ V(M) contains a A-vertex. By Remark 2.1, if
we replace all subtrees attached to M by paths of the same order, then the Hosoya
index will increase. Therefore, after removing the paths attached to M but not in 77,
and increasing the length of the corresponding cycle Cy in M , the obtained graph is
still in B(n, A). Then, in view of Remark 2.1 and Lemma 2.4, the Hosoya index will
increase again. By Lemma 2.3, all paths attached to the A-vertex of 77 must be of
the lengths 1 or 2 except, possibly, a unique path of length & > 2. So G* belongs to
Bi(n,A). If all the A-vertices have A — 1 neighbors of degree 1, then ky = ky = 1.

If there exists a A-vertex belonging to the main subgraph M , by a similar argu-

ment we have that G* € By(n, A). This completes the proof. |

Lemma 3.2. If M is a graph of one of the three types (1), (2), or (3), then Z(M —v)
reaches its mazimum value when v is a vertex in a cycle of M which is adjacent to

one vertex of maximum degree in M .

Proof. Assume that M = C,, with p,¢ > 3 when M is of type (1). From Lemmas

2.3 and 2.8, if w # u, it follows that Z(C),, — w) reaches its maximum value
Z(Cyl(g — 2)Y) = Z(Cyl(p — 2)1)) =Fprgn + Fpa ko

where w is a vertex in C,, ; adjacent to u, and Z(C),,—u) = F,F,. Clearly, by Lemma
2.5, we have Z(C,, — v) > Z(Cp4 — u). Therefore this lemma follows immediately
for the case when M is a graph of type (1).

We next deal with the case when M is of type (2). Assume that M = C,,;,. Set

i—1l=Landl—1—i=1Iy,1. e, l; +1o=1—2. In a similar manner as above,

= Z(C, (l - 1)1))Fp = Fp(FqH + qulFl)

Co)Z(Cy(13)) = (Fpriy 11 + Fpo1 Fiy 1) (Fpyi i1 + Fy1 Fippn)

- 7 Cp.l,q — U) = Fp—qu+l—1 + Fq—le—lF}—l >0. (1)
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If I = 1, then by inequality (1), this lemma holds immediately. If I > 2, set
A=Z(Cprg—v) = Z(Cpiq—u;) + Z(Cpyq — V') — Z(Cpyg — u;) . Then, by Lemma

2.5,

A = Z(Cprg—v) + Z(Cprg — v') — 2Z(Cpiq — w)

2Fpiqitittot + Pt Fyr ot + Fom1 Fpriy a1 — 2(Fpiiy 41 Fyro

+ FpaFy iy + Fya By By + Fpa Fy i Fy i Fiy )

26 Fo, + Fy o Fyp 1 Fiy + Fy o Fpg Fiy + By 1 Fy 1 1
+ b by — 2F By Fp 1 — 26, 10 Fl o Py

— 2Fy 1 Fy 1B,

= 260 Fpie + Foa By Fiy — For By Flon + Fpa Fy By
= Bl —2F, 1 Fyp By Py

= (FpFi1 +2F, 1 Fy) Fyp, + (FyFiyn + 28,0 F,) Fyyy

= B Fy — Fa P B — 28, 1 Py Fya Fly
= (BB + FpoFli +2F, 1 Fy ) Fp,

+ (FyrFipg + FyoFy o +2F, 1 FL,) Fpy,

= PRy, — By Py — 28, 1 Fy 1 Py Fly
= (FpoFyp1 +2F, 1 Fy)Fp, + (FpoFiyp +2F, 1 F, ) Fypy

- Fp—lF‘l1+1Fq+l2—l - FQ71E2+1FP+1171 - QprlFQ71F'll+1F‘l2+1

FpoFy 1 F g, + FyoFl, 1 Fppy — 28, 1 Fy 1 Fl i Flyn

FP—1(2E1FQ+12 - Fll+1Fq+l2—l) + Fq—1(2Flep+ll - F12+1Fp+l1—1)

v+

FP*1Fl1+1Fq+l2*2 + FP*2Fl1+1Fq+12 - prqulel1+1FI2+l

+

Fya By B0+ Fyo by 1 Fyppy — Fpoa Fya Fry 1 iy

E1+1[Fp—2Fq+lg + Fp—l(Fq—lﬂg + Fq—?Eg—l) - Fp—qu—lﬂg+l]

+

By [FyaFpin, + Fyra(Fpr Fiy + FpoaFiy 1) — Fpor Fyo1 Fiy ]

= F'll‘Fl(FP*ZFlI‘HZ - prlFlzleq%) + FlerI(Fq*QFerll - qulﬂllepfii)

F}1+1(FP*2FQF‘12+1 + prQqulFlz - prZFlrqufi% - Fp73Flrqu73)

+ Flz+1(Fq*2FpE1+1 + Fq*QFP*IFh - FQ*ZF}I*lFP*B - F473Fl171Fp73) >0.
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Note that if { =0 or l; =0, then A > 0. Therefore, we have
Z(Cprg—v) = Z(Cprg—wi) >0  or  Z(Cprqg—0") = Z(Cprg—ui) > 0.

Thus the lemma follows when M is of type (2).
Finally, we prove this lemma for the case when M is of type (3). Assume that

M 20, In view of Lemma 2.8,
2o — 1) = ZBpos — 1) = Z(T( = 1,5~ 1,t = 1)) = FyyoFy+ FEFos

By Lemma 2.9, we claim that for a 2-vertex w in 60,5,, Z(0.s; — w) reaches its
maximum value if w € {v,v’,v”}. This maximum value is one of the three values
Z(Cort((r=2)") = Frpsppmr+ For B, Z(Crpt((s = 2)Y) = Frpspir + Frpp1 Foa
or Z(Crys((t —2)Y) = Frygyi1 + Frys 1 Fy_1 . By direct calculation we find that any
one of these three values is greater than Z(0,,;, —u) = Z(0,, — u'), which implies
that this lemma holds for the case when M is of type (3). Thus the proof is completed.
|

Lemma 3.3. For any graph Gy € Bi(n,A), there exists a graph Go € By(n, A) such
that Z(Gg) > Z(Gl) .

Proof. Suppose that G5 € Bi(n,A) has the maximal Hosoya index and the main
subgraph of G7 is M. Then it suffices to show that there exists a graph G, €
By(n, A) such that Z(Gs2) > Z(G5). By Lemma 3.2, Remark 2.2, and the definition
of By(n, A), we claim that a graph G must be of the form Mv® (k| k2) with I, +1, =
A —1, where v is a vertex in a cycle of M adjacent to one vertex of maximum degree
in it. In the following we assume that Tp = R(k! ™' k).

We first consider the case when M is of type (1). Let M = C,,. Then we have
Gt = Cp oMK KR) =2 €, u((k + k) )w, Ty as shown in Fig. 5. Now we choose a
graph G = Cotitir,quiTo € Ba(n, A), which is obtained from G by deleting the

edge uv and adding an edge uvy. Suppose that
Go = Cpikhrg — w1 — uvy = Cpv((k + ki)' — wy —uv .
From Lemma 2.4, we have Z(Cpigir,.q) > Z(Cpqv((k+ k1)')) . Set

A1 = Z(Cp+k+k1,q - ’LUl) - Z(Cp,qv((k + kl)l) - ’LU1) .
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By Lemmas 2.1 (2) and 2.5,

Z(Cpihibrg —w1) = Z(Go) + FyFpiilh,
Z(Cp,q’l)((k' + kl)l) - ’U)l) = Z(Go) + Fqu_le_lel+1

A = Fy(FpwFyy — Py Fii By )

= F(F,Fop1Fyy + Fpor Fu By, — Fyoi Fyei Fyyy — Fp o Fio1 1) >0 .

From Lemma 2.7 it follows that Z(G(;)) > Z(Gy), as desired.

¢ ¥ )
et NS

T[> w1

& U . Vo
Gi y G o
The graphs G} and G‘{?} when M is of type (1)

o, }f

TgDé (51
* Yo :
G G

(3 ]

The graphs G} and ng} when M is of type (2)

Fig. 5. Graphs used for proving Lemma 3.3.

Next we consider the case when M is of type (2). Suppose that M = C,,, ,. Based

on Lemma 3.2 and Remark 2.2, we claim that
G = Cpu ™ (k1 k) = Cppqu((k + k1) Ty
as shown in Fig. 5. Now we choose a graph

G(zz) & Cpththr 1q01 Lo € Ba(n, A)
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that is obtained from G7 by deleting the edge uv and adding an edge uvy. Let
Go = Cpipsmig — w1 — uvg =2 Cpyv((k+ k)" —wy —uv .

Set
Ay = Z(Cpikinig — 1) — Z(Cpugv((k + k1)') —wy) .
We then have
Z(Cpiriming) > Z(Cpugo((k +k1)'))
Z(Cprrstrig —w1) = Z(Go) + Z(Cylk — 1)) Fprpr Fi,y

Z(Cp,l,qv((k + kl)l) —wy) = Z(Gy)+ Z(Cq(k - 1)1)Fp—1Fka1+1

Ay = Z(Cylk = D)) EpFiFly + Fpa Fen By = Fpa FeFly — Fyp 1 FieFi )
> Fy oF By + By By Fyy — Fy  FFy
= %(2FI,,2F;€F;€1 —Fy 1 FyFyy 1+ Fy12F 1 Fyy — Fy 1 FFyy 1) >0
Thanks to Lemma 2.7, we have Z(G(;)) > Z(G7), as desired.
Finally we turn to the case when M is of type (3). Suppose that M =6, ,,. In
view of Lemma 3.2 and Remark 2.2, we claim that

GI = 97«15,t'l}[k](kl117 kl22) = Qrﬁs,tv((k + kl)l)wlTo

as shown in Fig. 6. By symmetry, we only need to consider the case when v is on the
path P,y in 6, ., and is adjacent to u. Choose the graph G(;') = O gt spwi Ty €
By (n, A), obtained from 0, ; ;v((k + ki) )w, Ty by deleting the edge uv and adding an
edge uvy . Let

Go = Ory ity sn — w1 — uvp =2 O, o((k+ ki)' —wy — uv .
First we consider the case when r > 2. Set
As = Z(Orspskrsg — w1) — Z(Orsav((k 4 k1)') —wi) .
Then,
ZOrihstss) > Z(0nsv((k+k)Y)

Z(9r+k+k1,s,t — wl) = Z(Go) + FkIZ(T(’I‘ +k—2,s—1,t— 1))

Z(0rsv((k+ k)" —wi) = Z(Go) + Fryn W Z(T(r — 2,8 — 1,1 — 1))
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Ay = Fy(FoiFrin + Fo B Fogpo) — Frp1 Fi(FoiFroy + FoFF )
= Fore(Fo Frppmr — Fan FuFrm) + FsB(Fy Fris — By B o)
= FoulFu (FoFy + FraFy) — Fi FiFroy — F 1 FFoy]

+ FE[Fy (FroiFy+ FrooFyoy) — Fy FyFooo — Fiyy 1 FFy_s)
= FoulFunFraoFe + Fy FooiFroy — Fiy 1 FRFy]

+ FFR[(Fo — Fo)Fu by + By F o Fy — By Fr oy
Therefore, we have

1
Az = 5F5+t(Fk12Fr—2Fk — By 1B Fy +2F Fo 1 Fy oy — Fyy 1 FFoy)
1
+ §FSFL(2FT73F1€1F]C — Fyy 1B oF, +2F, F oF)

- Fkller72Fk) 2 0 if r 2 4

Ay = Fop(F Fr + Fi, Froy — Fiy21 Fy) + FoFy(Fyy Fre—y — Fiy -1 Fy)
> FoFy(Fy, Frn — Fryo1 Fy + Fy Froy — Fiy—1Fy)

= FSF;g(Flek — Fkl—le + Fk12Fk—1 - Fkl—le) Z 0 if r=3.

Moreover it is easily checked that A3 > 0 when r = 2 and k; = 1. Therefore, by

Lemma 2.7, Lemma 3.3 holds immediately for the cases r > 2 as well as r = 2 and

Fig. 6. Graphs used for proving Lemma 3.3.

Now we consider the case when r = 2 and k; = 2. In this case we find that
Gt = 0y, (2272 k1) 2 0y o sv((k+2) ) wr Ty where Tj) = R(2273 k3) . We construct
a graph Cyyy1400T) € Ba(n, A) which is obtained from G} = 6y v((k + 2)")w; Ty
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by deleting the edge uv and adding an edge u'vy and moving the tree T from w; to

vertex vy as shown in Fig. 6. Let
Go = 0o 50((k + 2)1) —uv 2 Cypp s — U'vg
and
Ay = Z(Cogiya) — o) — Z('92,s.,f,w1((k + 2)1) —wy) .

Then in a similar manner as before we have

Z(Coyrrra) = Z(Go) + FrysForr = Z (090 0((k + 2)1))
Z(Cssipra) —v0) = Z(Cope(k+ 2)1) = Fortpiys + Forro1Fiys
Z(Bzspwr((k+2)") —wr) = 2202501 (k —1)") = 2(Z(Cose (k) + ForiFy)

= 2(Foppint1 + Fopr1 Frpr + Foyi F)

Ay = Foyp + Fop i Fy — 2F Fy,

= Fobyy — FoF+2F g 1 Fr — Fo ), > 0.
Moreover, Ay = 0 holds if and only if s +¢ =3 and k = 1. Thus by Lemma 2.7,
Z(CiytgoravoTy) > Z (095 0((k + 2))wi Ty)

except when s+t =3 and k=1.

As in the case when s+t = 3 and k = 1, note that G = 0o 20(3")v, T} where
vy is a vertex in a pendent path Pj of 92,1721)(31) which is adjacent to v. We consider
a graph Cyqu T} € By(n, A) where u; is a vertex in Cy4 adjacent to the 4-vertex u
of Cyy. With a same method as above, we have Z(CyqvoT}) > Z(0a5,0(3Y)01Ty),

which completes the proof of the lemma. |
From Lemmas 3.1 and 3.3, the following result is obvious.

Lemma 3.4. Suppose that G has mazimal Hosoya index in B(n,A). Then G €
Bz (TL, A) .

Let Béi)(n, A) = {G : G € By(n,A),the main subgraph of G is of type (i)} for
i =1,2,3. Now we state a lemma in which the possible forms of the graphs from

Bs(n, A) with greatest Hosoya index are specified.
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Lemma 3.5. For any graph G € By(n, A), Z(G) reaches its mazimum when G is of
the form C,(,?g(klllﬂ k?) with I} +15 = A—4, or of the form vallq)’t(QA’?’7 k3) with ky > 2.

Proof. From the definition of BY (n, A) fori = 1,2,3, we have By(n, A) = |J BY (n, A) .
i=1
Assume that T = R(K}, k%) with [} + 1, = A — 2. In order to obtain our result, we

first need to prove the following three claims.

Claim 1. For any graph G € Béz)(m A) there exists a graph G; € BS)(m A),
such that Z(Gy) > Z(Q).

Proof of Claim 1. By Lemma 3.2 and Remark 2.2, we find that if G € Bg)(m A),
then the maximum of Z(G) is attained when G is of the form C, ;0T where v is a
vertex on one cycle, say C,, of C},;, adjacent to one of 3-vertices in Cp;,. Thus
it suffices to show that there exists a graph Gy € Bf) (n,A), such that Z(Gy) >
Z(CpygvT) .

Choose G =2 CpyyquiT where vy is a vertex of Cpyy in Cpyy,y adjacent to the

unique 4-vertex of Cpyyq. By Lemma 2.10 and Lemma 2.1 (2),
Z(Cpirg) > Z(Cpug)
Z(Cpiig—01) = Z(Cy((p+1=2)")) = Fprgrin + FyrFprion = Z(Cpig — ) -

By Lemma 2.7 we have Z(Gy) = Z(CprqnT) > Z(CpyqavT) = Z(G), which com-

pletes the proof of this claim.

Claim 2. For any graph G € BS)(m A), Z(G) reaches its maximum value when
G is of the form O (k' k2) with &) + 1, = A — 4.

Proof of Claim 2. By Lemma 3.2 and Remark 2.2, we find that if G € Bil)(m A),
then the maximum value of Z(G) is attained when G is of the form C, ,vT, or of the
form Cp yuT" where T == R(kll/l, kl;) with I{ + 1, = A — 4. Therefore, it suffices to
show that for any graph G of the form C), ,vT, there exists a graph Gy of the form
Cp guT", such that Z(G1) > Z(G).

Let G = Ch (K, k) 2 CpvT and Gy = C, L, (01 kE™Y) 2 Cpagy sy T

where Ty 2 R(K! ™, k™). Note that G' = C,, yv(k}, k3)vT) . From Lemma 2.4,

Z(Cp+k1+k21Q) > Z(Cp,qv(k}? k21)) .



-811-

Set Ay = Z(Cpitythng — 1) — Z(Cpqv(ki, k3) — v) . Then we have
Z(Cpitrthag — W) = FprpinFy
Z(Cpqu(ki ky) =v) = FiyFrnZ(Cy((p—2)")

= FanFron(Fpga + by )

Al = FpigaroFy — Foigo1 — Frys1 Frpp1 (Fpygo1 + Fpo1Fyq)
= (FpFrsnirhs + Fpo1 B Fy — Figpr Fio st (B Fy + 28,1 Fy 1)
= [ FFFry + Fy \ FoFy iy — 2F 1 By P Fymy
Direct calculation shows that Ay > 0if ki =k =1, 0r ky =1 and ky = 2.
Therefore, by Lemma 2.7, we have Z(G1) > Z(G) as desired, except when &y = 2.
If k1 = 2, then
G =CMA3 (k+2)") = Cp (2%, (k+2)" W
where T} & R(247°). We choose the graph
Gr=Cgy(22 7, (p+a+k)') = Cagul((p + 4+ )Ty
and set
Ay = Z(Cazu((p+a +k)') —u) = Z(Cpqu(2®, (k +2)") - v)
and
By = Z(Cszul((p+a+k)")) = Z(Cpqu(2®, (k +2))) .
Similarly as before, we have
Z(C3,3U((p +q+ k)l) —u) = 4F) gk
Z(Coqv(2®, (k+2)") —v) = AFp3(Fyg1+ Fp1Fy 1)
Z(Csgu((p+q+k)")) = 4Fpiginr +8Fpiqinit + 4Fp gk

- 4(Fp+q+k+3 + Fp+q+k+1)

Z(Cpqu(2%, (k+2)1) = 4Fi3Z(Cy((p — 2)')) + 4Fei2Z(Co((p = 2)1))
+ AFsFy 1 Fy+ 2FsFes Z(Cy((p — 2)1)) + 4F52(Co((p — 3)Y))
= 4Fk+5(Fp+q71 + prqufl) + 4Fk+3(Fp+qf2 + prZqul + prqu)

= A5 (Fprg1 + 1 Fymr) + 8F sy



-812-
Ay = MFr3Fpg1 = FepsFpig1 — FrysFyp 1 Fyo1 + FroFpiq2)

(
= d(Fpalp 1 Fy+ Fryoly ol 1 — Frpo by 1 Fy oy — P By Fy )
= AFysoFy1Fyo+ FipoFy oFy 1 — Fy Fp1Fyy)

(

= 2FpaFy 12F, 5 — FosrFy 1 Fy 1 + Fie22F, 9Fy  — Fyp1 Fy 1 Fyq) >0

By = A[Fpyginis — Frs(Fpig + FpaFya)]

+ AFrslprg1 + Fiopolprgo — 2Fislpi02)

Il
'S

Fk+4F p+q—2 — Fk+4F —1Fq—1 - Fk+3Fp—1Fq—1)

+
S

Fk+2Fp+q—2 - Fk+3Fp+q—4)
= A FppaFp i Fy + FrgaFy o Fy 1 — FryuFy  Fyoy — Figs Fy 1 Fyy)

(
(
(
(
(Frt2Fprq—2 = FrasFpig—a)
(
(
(

+
e

= A(FppaFp 1 Fyo+ FryaFpoFyy — FiysFp 1 Fy 1)

+ A(Fr2Fpig—2 — FipsFpiqa)

2(Fppaly12Fy 2 — FrysFy 1 Fyoy + Fia2F, oFy 1 — FysFy 1 Fyy)
4(FisaFproms — FrorFyprg1)

4F 1 Fpig 5> 0.

_l’_

Note that the last inequality holds because of the fact that p + ¢ > 6. Using

Lemma 2.7, we have
Z(Gh) = Z(Cazu((p+ g+ k) uTy) > Z(Cpv(22, (k +2) W) = Z(G)

which completes the proof of Claim 2.
By Lemma 3.2 and Remark 2.2, we find that if G € Bég)(n, A), then the maximum
0, (K k2) with Iy +1, = A—2 and

7,8t

value of Z(@) is attained when G is of the form

r > 2. In order to obtain this lemma, it suffices to prove:

Claim 3. For any graph G € B (n, A) of the form 9512,(kl11,k"22) with k& = 1,

there exists a graph G; € BS)(n, A), such that Z(G,) > Z(G).
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Proof of Claim 3. Suppose that G = Hiig)yt(k;lll, k2) with k&, =1 and r > 2. We

now construct a graph
G = C£U+).s+t—1,k2+2(1l1717 klzrl) = Crysit1kor2uly
where T = R(1571 k2 7Y) . Note that G = 6, ,,v(1', k3)vTy . Setting
A3 = Z(Cristi—thgra — u) — Z(Hnsﬁf,z)(ll7 k;) — )

and

BS = Z(Or+s+t71,k2+2) - Z(er,s,tv(llv k;))

we arrive at

Z(Orsav(1', k3)) (Fiey + 2Fiy41) Z(Coe((r — 2)1))

+ FonZ(T(r = 2,5 = 1,t = 1)) + Fip 1 Z(Copa((r — 3)1))

= Foro(Frisito1 + FroiFspio1) + Frgp1t (Frgsy—1 + Fro1Fap1)

+ Foppi(FopFror + FoFLF o) + Fry (Frgsii—2 + FroFo1)

= Fupe(Frpsm + FoFop)
(

+ Fr1(Frgspt + Frpsio + B Foy 1 + FLFF )

Z(Crisit—1kat2) = FrgroFrisiti1+2Fn i1 Frisii1 +2F5, 0F 112

= Fk2+2Fr+s+L + 2Fk2+1Fr+s+L—1 + Fk2+2FT+s+L—2

Z(0psv(1', k) —v) = Firp1Z(Copi((r = 2)") = Fry1 (Frpsri1 + FraFapia)

Z(Cr+.s+t—1‘k2+2_u) = Fk2+2FT+S+f,—1

A3 = FkQFr+s+L71 - Fk2+1Fr71Fs+L71
= FngrF.H»t + szF’!‘*lFS‘Ft*l - Fk2+1FT71Fs+t71

= FnbFFoy—Fr 1l 1Foy 1 >0
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By = FiyioFriert +2F 1 F s+ FroroFrisii—2
= BB + FaFai) = Fon(Frs + Frispio
+ FaFoya + FoFF )
= Foy(Frpsrt + Frosyi—o) + Frop1 QF 1 Fogen
+ 2FaF — B Py — FoFF ) — Figuo(Frpsr + FroiFogi)
= BBt + Frvoreon) + Fynt (B Fope + Frvope — B F )
= Frpo(Frpsyir + FooiFoy)
= Fiplivsn — FioFrysri + By Frpsiima + By (B Fopy — FF )
= PP Fopa
= 20, P+ Py (Fh Py — FalF ) — Fiopo P Py

> 2P, Fryerio+ Fryi B FsFy — FrypoFr 1 Fogeo
It is not difficult to check that
2F Fryovi—o+ Fry 1 Fo Bl — Fry o Fyy 1 >0

if ko =1 or ky = 2, that is to say, B3 > 0 when ko = 1 or ky = 2.
Thanks to Lemma 2.7 again, we have Z(G;) > Z(G), as desired. This completes
the proof of Claim 3.

Combining Claims 1, 2 and 3, Lemma 3.5 follows immediately. |

Lemma 3.6. For any graph G of the form 9,‘..1;(%*3,/«;) with r > 2 and ky > 2,
there exists a graph Gy € BS (n, A), such that Z(Gy) > Z(G).

Proof. In order to obtain the result in this lemma, we have to prove the following

two claims.

Claim 1. For a graph Gy = ot

7,8,

(22-2) of the same order as Gy, such that Z(Gi,l,)s,.t,(QA*Z)) > Z(Gy) .

(2273, (k +2)') with k > 0, there exists a graph
1
0y
Proof of Claim 1. Let 7} = R(2%7%) . Note that Gy = 95‘1‘2,tfu((k+2)1)vT1 . From
the fact that s +¢ > 3 in ﬁii,)’tv((k: + 2))oT, we find that one of the two positive

integers s and ¢ is greater than 1. Without loss of generality, we may assume that
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s>2. Letr =r,s =s+Fk,and t' =t. Choose the graph G = 6£15+kt(2A*2).
Clearly, G = 97 arraV(2 DTy . Now we only need to prove that
(GT arniV(2 DoTy) > Z(QT 5 tv((k +2)Ty) .
Set
Ay =Z(0,04,0(2") = 0) = Z(00((k+2)") = v)

and

By = Z(6),,0(2") = Z(68) 0 ((k+2)")) .
Then by Lemmas 2.1, 2.5, and 2.8,
(9m+k:”( =) = BZ(Cork((r—2)") = Fs(Frporipr + Foprpe Froa)

Z(erst”((k +2)) =) = FusZ(Coni((r —2)") = Fes(Frpapiar + Forr1 Froy)

Z00) . 02Y) = (B4 DZ(Cosran((r —2)") + BZ(T(r — 2,5+ k — 1,t — 1))
+ BZ(Coun((r—3)Y)
= Fy(Frysptrn—1 + Fopron Fror) + Fs(Fra Fopn + FrooFoi F)

+ F3(Frispirh—2 + Foprpn1Fr_2)

Z(aTstv((k +2)) = Fea(Frysp + FouaFoot) + Fops(FroaFoy + Fo o FUF)

+ Fros(Frpsreo + Fo 1 Fra)

A = FsFigiin — FrpsFrospi + Foi(FsFopppn-1 — FrpsFop1)

F3Fp 1 Frgsyo 1 + B3Py 0 — FsFei Frgoyoy — FoFL g

+ Ea(FsEFe Fopr1 + FsFEFop 0 — FsFy i Foypon — FoFFo )

FyFrpori s+ F1(2F 40— Fory 1) >0

By = A+ Fisiiin — FepoFryori1 + Foot(Foppn1 — FipoFapir)

+ Fra(FsFopipn— — Fralp) + Froa (B3 Faprir — FrasFor)
+ Fo oF((F3Fsi — FrysFs) + F3Frisitin—2 — FrysFrisit—2

= A1+ Fy(Frgsst—2 — Frypspi1) + Fra Fi(Fogpo — Fiopy1)

+ FoFu(2Fspi0— Fopy1) + Fooi Fr(2F 1 — Fopy)

+ BB FL(2F 1 — Fo) + Fr2E a3 — Fryspioa)
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= FkFr+S+t74 + E‘*1(2Fs+t72 - Fs+t71) - FkFT+s+t73 - FrlekFT+s+t73
+ Foolp(2F o — Fopen) + B F(2F 1 — Foyy)

Fo oFyFy(2Fs—1 — Fo) + Fi(2F 46113 — Frpsri—a)

FyFrpst—a+ Fo 1 (2F 12 — Fopo1) — FiFriopi-s
Fo oFy(2F 9 — Foyy1) + Fr o B FL(2F 1 — )
Fk(QFH»s#»tfiS - Fr+s+t—2)

= F1(2F0— Fopu1) + B oFu(2F 0 — Fopi)

+ o+

+ F_,FF(2F,—F,)>0.

From Lemma 2.7 it follows that Z(G) > Z(G), which completes the proof of Claim
1.

Claim 2. For a graph G = oL (2272) with r > 2 there exists a graph C’é?q)(QA*“)

7,8,

of the same order as G, such that Z(C,(,?Q)(QA’4)) > Z(G).

Proof of Claim 2. Let T» = R(227%). Note that G = 95,15?,tv(22)’z)T2. Let
p=3and ¢g=r+s+t+ 1. We choose a graph G; = C’é?T)HHH(QA"‘). Clearly,
G = C5451441uls . Now we only need to prove that

Z(CypypipruTy) > Z(00) (220 T) .
Set
Ay = Z(Cypiarrs —u) = Z(0000(2%) = v)
and
By = Z(Chpyarinr) — Z(01)0(2)
and then we have
Z(CS,T+5+L+1 - U) = 2F st

Z(00,0(2%) —v) = 4Z(Corr(r — 2)V)) = A(Frssrimr + Fr1Fygy)

Z(Cyppsrir1) = 2Fispipr +2Fpsripn +4F s = 4F oyiio
Z0:00(2) = (A+DZ(Conl(r = 2)) +4Z(Conal(r = 3)1))
+ 4Z(T(r—2,s—1,t—1))

= 8(Frqsti1+ FriFopy1) +4(2F 4540 + FyF F o)
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Ay = 2( rrstt—2 — 2o 1 Fo 1)

= 2F P~ BB+ FaFoy o — FraFoy )
= 2FoF 1 — FroiFoys)

= 2(F, oFsy o—F. 3Fs4 3) >0 whenr>3

By = A(Frjsrpe = 2Fiapi = 2F 1 Fopy1 = 2F o0 — FoF F, )
= MFFoy+EFEaFoy —2F, 1 Fo — FoFF )

= A(F,Fyy— F\Fyory — FyFF )

(F,

> 4 r— 1Fs+t - Fr—lFs+t—1) >0.

Again, by Lemma 2.7, Z(G;) > Z(G), and the proof of Claim 2 is complete.

Combining Claims 1 and 2, Lemma 3.6 follows immediately. |

Let Gy = {GZM(QA’Z) cs,t>0and s+t =n—2A+3> 3}. From Lemmas
3.4, 3.5, 3.6, and the proof of Claim 1 in Lemma 3.6, the following lemma holds

immediately.

Lemma 3.7. Suppose that G € B(n,A) has mazimal Hosoya index. Then G must
be either of the form C;,?,;(klf, kl;) with Iy + 1y = A — 4, or must belong to the set Gy .

In the following two theorems the graphs from B(n,A) with maximal Hosoya

index are completely characterized.

Theorem 3.1. If A > (n+3)/2, then the graph G € B(n, A), mazimizing the Hosoya
index, is Cyo) (172737 2718 with Z(C{(17A73-7, 20 1-8)) = (3A —n — 1)272.

Proof. When A > (n+3)/2, we claim that the graph G from B(n, A) with maximal
Hosoya index must be of the form Cpq( k) with [y 4+ 1, = A — 4. If not, then by
Lemma 3.7, G must be Gélst(QA %) with s +¢ > 3. But the order of 02”(2A’2) is
2+s5+t+2(A—2)>2A+1>n+4>n. This is impossible since G has n vertices.
Suppose that G = nggl)(klf,ké?) with Iy + 1, = A —4. We claim that k; = 1.
The other option would be k; = 2. However, then the order of G would be at least
2(A —4)+5=2A+ 3> n, which again contradicts the fact that G € B(n,A).
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If ky = 2, then we can assume that G = C,(J?,}(l’”ﬂy) with x,y > 0 and 2 +y =
A —4. If one of p and ¢ is greater than 4, without loss of generality, we assume that
p>4. Set
A=Z(CV, (1771 2571 — Z(C (17, 2v)) .

By Lemmas 2.1 and 2.5, we have

Z(CY)(1",2Y)) = 2VF,F,+2F, (F2" +2F,F, 2" + y2' ' F,F, + 22'F,F,
= 2(E, g+ Fy B+ F,Fy) + (20 +y)2Y ' ELF,
Z(ng(l)l,q(”il’ 2y+1)) - 2y+1(Fp+q71 + FpaFy+ FpaFya)

+ (2o +y—1)2"F, ,F,

A = 2(2F, 41 +2F, oF, +2F, 1 Fy 1 — Fpyy— F, 1 Fy— FyFy 1)
+ (v +y) 2 F, F, — (20 +y)2VF,Fy, — 2YF, .\ F,
= 2(Fprqs+ FysFy+ F, 3F, 1) + (22 +y)2Y ' (2F, \F, — F,F,) — 2YF, | F,
= 2U(E, oF, +2F, 3F, 1 + F, 4F, — F, .1 F)) + (2x + y)2Y ' F, 3 F,

> 2V (Fp 32F -1 — Fp,SFq + Fp,4Fq) >0.

Therefore, decreasing by one the length of one cycle of length greater than 4 in
C (0)(1“” 2¥) and replacing one pendent edge attached to the 4-vertex in it by a path
Pj, the obtained graph has a greater Hosoya index than C,(,Oq)(lf 2Y). By repeating
this transformation, we find that G' must be C'(O)(l2A 3on on—l=Ay,

For the case of ks = 1, we claim that p > 3 or¢ >3in G = C,(,?q)(lA’“i) since
A < n—1. Using a similar method as above, we can construct a new graph G’ having

a greater Hosoya index than G. This is a contradiction to the choice of G .

By Lemma 2.1 and by a simple calculation, we obtain
Z(C(128737 2178y = (3A — i — 1)277

which completes the proof of the theorem. |
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Theorem 3.2. Suppose that 4 < A < (n+ 3)/2 and that the graph G has mazimal
Hosoya index in B(n,A). Then
() if n/2< A< (n+3)/2, or 4 <A <10, then G = Cf) 56227

(b)if 11 <A <n/2, then G is any graph from {Oé};t(QA’Q) ts,t>0and s+t =
n—2A+3} .

Proof. From Lemma 3.7 and the proof of Theorem 3.1, we find that if 4 < A <
(n + 3)/2, then the graph G is either of the form O,(,?q)(2A‘5,k%) with ky > 2, or

belongs to the set Gy. Now we prove:

Claim 1. For a graph G| = C’,EO(I)(QA 5 (k+2)') with k > 0, there exists a graph
Gy of the same order as Gy, such that Z(G2) > Z(G,) .

Proof of Claim 1. Let T = R(22-). Clearly, Gy = C)((k + 2)")uT . Now we

(284 = 0 (2T Set

consider a graph Gy = c® otk

pt+k.q
= Z2(Co(2) —w) = Z(CO(k +2)") — )

and

By = Z(C), ,(2Y) = Z(CO((k +2)"))

which by Lemmas 2.1, 2.5, 2.8, and Corollary 2.1, yields

Z2(CSh,2) —u) = FyFuF,

)

Z(Ch((k+2)") —u) = FusF,F,

Z( p+kq( )) = (F; + 1)Fp+qu + 2F3Fp+k,1Fq + 2F3Fp+qu,1
Z(Cp((k+2))

Ay = F(FsFyy — Fraly,) >0

= (Fays + Fey2)FyFy 4 2FysFy 1 Fy + 2F s F,Fy
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By = Ay + EyiFy— FonFyFy+ 2FyFyy 1 Fy+ FyFy Fyy)

— 2 FhysFy 1 Fy + FiysFyFy )
= Ay + 28, F)(2F,_y — Fy_y) + 2F, 1 Fy(2F,y — F,) + Fyo1 Fy — FyyaF,F)
= F,FuF, s+ 2FFy(2F, 5 — Fy 1) + 2F, 1 FyFy 5 — FyFuF,
= F,FyFy s+ 2F, \FyFy s+ FFy(3F, 5 — 2F, 1)
= FyFu(2F, 5 — Fy1) + 2F, 1 FiFy s
> F,Fu(2F, g — Fyy + Fy_g) = FyFyFy_y > 0 .

Therefore, by Lemma 2.7, Z(G5) > Z(G), and Claim 1 follows.

Considering Claim 1, G is either of the form C[()EL)(QA"‘) with p,g >3 and p+q =

n—2A+9, or belongs to Gy . From Lemmas 2.1 and 2.5 it follows that p+q = n—2A+9

and we have

Z(CWN(257Y) = 287F,F, 4+ 2°72F, 1 F, + 2°72F, 1 F, + (A — 4)2*°F,F,
= 287F,  + 2°7YF, \F, + F, 1F)) + (A — 4)227°E,F,
DA (Bpy b Fprgn) + 220((A — B F, + 25, 1 Fy]
= 287U (Fpig + Fpigoa + Fpigo1) +2°7°(A = 6)F,F,
= 28730, onio +2°7%(A — 6)F,Fy ongeyp -
From Lemma 2.6, we find that Z (C;()EL)(ZA%)) reaches its maximum value at p = 3,
and that
Z(C§?2—2A+6(2A74)) =227 F an0 +287(A — 6) Faanse -
For any graph Gy = 953,1&(2A72) € Go, from Lemmas 2.1 and 2.2, considering s + ¢ =
n —2A + 3, we have

Z(Go) = 2272Z(Cyiy) + (A = 2)2°72Z(Coyy) +2°7222(Poyi 1)
A2A73(f7‘1l.—2A-%—4 + FIL—2A+2) + 2A71FIL—2A+3 .
If n/2 < A < (n+3)/2, then we claim that G is not in Gy. Otherwise the order
of G = 9;}3,,5(2A’2) would be s +t+14+2(A—=2) =s+t+2A -3 > 2A > n, which is

impossible. From the above arguments, we conclude that G = C’:,()OTLQ A +6(2A’4) with

Z(CF)_yp16(2274) = 229 F, ang + 257HA — 6) Fuaass
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Set D = Z(Cgﬁ_m%(QA"l)) - Z(Gg,lz,t(QA’z))A For the case when A < n/2, we

have

D = 227Y2F, onto+ (A = 6)Fy_onte — 2A(Fuonsa + Fr_onsa) — SFu_ons]
= 2872FyFy_onss + FsFronys) — 6Fy_onts — 8Fhzass
+ A(Foats — 2F,_ops0)]

= 2A74[4F1L—2A+2 - AFH—QA] .

It is easy to see that D > 0if 4 <A <1lor A=n/2,and D <0if 11 <A <n/2.

Therefore our result in this theorem follows immediately. |

* ok ok ok k

As a concluding remark we note that the chemically interesting cases are A = 3
and A = 4. This is because the usual molecular graphs to which the Hosoya index
is applied have maximum vertex degrees not greater than 4. The case A = 3 was
implicitly resolved long time ago [9, 10], see at the beginning of Section 3. The
bicyclic molecular graphs with maximal Hosoya index and A = 4 are determined
within Theorem 3.2 (a).

Acknowledgement. K. X. thanks for support by NUAA Research Foundation, No.

NS2010205. I. G. thanks for support by the Serbian Ministry of Science (Grant No.
144015G).
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