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Abstract

The Hosoya index of a graph G is the total number of matchings of G , including

the empty edge set. Let B(n,Δ) be the set of connected n-vertex bicyclic graphs with

maximum degree Δ . We determine the greatest Hosoya index in B(n,Δ) , and characterize

the corresponding extremal graphs.

1 Introduction

The Hosoya index of a graph G , denoted by Z(G) , is one of well-known topological

indices in mathematical chemistry [18, 20–22]. It is defined as the total number of

the matchings (independent edge subsets), including the empty edge set. The Hosoya

index was introduced by Hosoya in 1971 [18]. Since then it received much attention

by mathematical chemists (see the book [14] and the recent papers [1, 3, 4, 6, 28, 37,

38,40,42]). It plays an important role in the study of the relation between molecular
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structure and a variety of physical and chemical properties of certain hydrocarbon

compounds [11,23–25,30–32].

It is of some importance to determine the graphs having extremal (maximal or

minimal) Hosoya indices. The first such result was obtained by one of the present

authors [7], by demonstrating that in the class of trees with a fixed number of ver-

tices, the star has minimum and the path maximum Z-value. By now, many results

along these lines have been obtained, see e. g. [1, 3–6, 26, 28, 33–35, 37, 38, 40–43]. In

particular, Xu and Xu [41] characterized the unicyclic graphs with given maximum

degree Δ , maximizing the Hosoya index.

Much earlier [8], a relation � between graphs was introduced, defined so that G1 �
G2 holds if for all k ≥ 1 , the number of k-matchings of G1 is greater than or equal

to the number of k-matchings of G2 . Evidently, G1 � G2 implies Z(G1) ≥ Z(G2) ,

with equality if and only if the numbers of k-matchings of G1 and G2 are equal for

all k . Numerous relations for the Hosoya index were (implicitly) obtained by means

of the relation � [9, 10, 13, 16, 17]. In particular, in [9, 10, 13] the unicyclic, bicyclic,

and tricyclic graphs with greatest Hosoya indices were (implicitly) determined. In [6]

Deng et al. reproduced these results for unicyclic graphs, and in [4, 5] for bicyclic

graphs (but see Remark 3.1).

All graphs considered in this paper are finite and simple. Let G be such a graph

with vertex set V (G) and edge set E(G) . For a vertex v ∈ V (G) , we denote by NG(v)

the set of neighbors of v in G . The cardinality of NG(v) is called the degree of v and

is denoted by dG(v) or, shorter, by d(v) . If a vertex x has degree k , then x is said

to be a k-vertex. In the following we denote by Pn and Cn the path graph and the

cycle graph with n vertices, respectively. For undefined notations and terminology,

the readers are referred to [2].

A connected graph of order n is bicyclic if it has n+1 edges. Let B(n) be the set of
connected bicyclic graphs of order n . Denote by B(n,Δ) the set of connected bicyclic

graphs of order n with maximum degree Δ . Any graph G ∈ B(n,Δ) possesses at

least two cycles. With regard to these cycles, we distinguish between the following

three cases:
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(1) The two cycles in G have only one common vertex.

(2) The two cycles in G are linked by a path of length l > 0 .

(3) The two cycles in G have a common path of length s > 0 .

In Fig. 1 are depicted the graphs Cp,q , Cp,l,q and θr,s,t . These correspond to

the above cases (1), (2), and (3), and are called, respectively, the main subgraphs

of G ∈ B(n) of type (1), (2), and (3). In Section 2 some basic lemmas are listed or

proved. In Section 3 we characterize the graphs in B(n,Δ) with the greatest Hosoya

index, and determine the corresponding Z-values.

Fig. 1. The three main subgraphs of G ∈ B(n) of type (1), (2), and (3), and the
labeling of their vertices.

2 Some lemmas

In order to obtain our main results, we first introduce some new definitions and list

or prove some lemmas as necessary preliminaries.

Lemma 2.1. ([14, 18]) Let G be a graph.

(1) If v ∈ V (G) , then Z(G) = Z(G− v) +
∑

w∈NG(v)

Z(G− {w, v}) .

(2) If uv ∈ E(G) , then Z(G) = Z(G− uv) + Z(G− {u, v}) .

(3) If G1, G2, . . . , Gt are the components of G , then Z(G) =
t∏

k=1

Z(Gk) .

Lemma 2.2. ([14, 19]) Let Fn be the n-th Fibonacci number, that is, F0 = 0 , F1 =

F2 = 1 , and Fn = Fn−1 + Fn−2 for n ≥ 3 . Then Z(Pn) = Fn+1 and Z(Cn) =

Fn+1 + Fn−1 .
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A tree T is said to be starlike if it contains only one vertex v of degree greater

than two [12, 15, 27, 36, 39, 44]. Then v is the center of T . If the degree of v is equal

to d , then T is said to be d-starlike. Let ci be the length of the i-th branch going

out from the center of a d-starlike tree, i = 1, 2, . . . , d . We denote by R(c1, c2, . . . , cd)

the d-starlike tree for which
d∑

k=1

ck = n − 1 . Then R(c1, c2, . . . , cd) − v =
d⋃

k=1

Pck . If

the number of branches of length ck is lk , then we write it as clkk in the following.

For example, R(2, 2, 3, 3) will be written as R(22, 32) for short. For convenience,

R(c1, c2, c3) will be denoted by T (c1, c2, c3) .

If G1, G2 are two graphs with V (G1)
⋂

V (G2) = {v} , then G = G1vG2 is de-

fined as a new graph with V (G) = V (G1)
⋃

V (G2) and E(G) = E(G1)
⋃

E(G2) .

For a starlike tree T = R(kl1
1 , k

l2
2 , . . . , k

lm
m ) , the graph GvT (where v is the center

of T ) can be also denoted by Gv(kl1
1 , k

l2
2 , . . . , k

lm
m ) . When G ∼= Ck , then the lat-

ter graph will be written as Ck(k
l1
1 , k

l2
2 , . . . , k

lm
m ) for short. For convenience, we let

Ck = Ck(0
1) and Pk−1 = Ck((−1)1) . Further, let Gv[l](kl1

1 , k
l2
2 , . . . , k

lm
m ) be the graph

obtained by identifying the vertex v of G with a pendent vertex of Pl+1 of the graph

R(kl1
1 , k

l2
2 , . . . , k

lm
m , l1) where l ≥ 1 .

In what follows any graph of one of three types (1), (2), and (3) will be always

labeled as shown in Fig. 1. For a graph M of one of the three types (1), (2), and

(3), Mu(kl1
1 , k

l2
2 ) and Mv(kl1

1 , k
l2
2 ) will be denoted by M (0)(kl1

1 , k
l2
2 ) and M (1)(kl1

1 , k
l2
2 ) ,

respectively. For example, C4(2
1) , C4,1,3v

[1](12, 21) , C
(0)
3,3(1

2, 21) , and θ
(1)
2,2,3(1

2, 21) are

shown in Fig. 2.

Fig. 2. Examples of graphs of the type M (0)(kl1
1 , k

l2
2 ) and M (1)(kl1

1 , k
l2
2 ) .
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Lemma 2.3. ( [38]) Let G �∼= K1 be a connected graph, and v ∈ V (G) . The graph

G(k, n − 1 − k) is obtained by attaching at v two paths of length k and n − 1 − k ,

respectively. Let n = 4m+ j where j ∈ {1, 2, 3, 4} and m ≥ 0 . Then

Z(G(1, n− 2)) < Z(G(3, n− 4)) < · · · < Z(G(2m+ 2l − 1, n− 2m− 2l))

< Z(G(2m,n− 1− 2m)) < · · · < Z(G(2, n− 3)) < Z(G(0, n− 1))

where l = �(j − 1)/2� , and where G(0, n− 1) can be also viewed as a graph obtained

by attaching at v ∈ V (G) a path of length n− 1 .

By repeating Lemma 2.3, the following remark is easily obtained.

Remark 2.1. ([9,38]) When a tree T of size t , attached to a graph G , is replaced by

a path Pt+1 (see Fig. 3), then the Hosoya index increases.

Fig. 3. The graphs in Remark 2.1.

Lemma 2.4. ([4, 9]) Let P = u0u1u2 · · · utut+1 be a path or a cycle (if u0 = ut+1) in

a graph G , where the degrees of u1, u2, . . . ut in G are 2 , t ≥ 1 . By G1 we denote

the graph obtained by identifying ur , (0 ≤ r ≤ t) with the vertex vk of a simple path

v1v2 · · · vk . Further, G2 = G1−urur+1+ur+1v1 (see Fig. 4). Then, Z(G1) < Z(G2) .

Fig. 4. The graphs in Lemma 2.4.

-799-



Lemma 2.5. ([6]) Fn = FkFn−k+1 + Fk−1Fn−k for 1 ≤ k ≤ n .

Lemma 2.6. ([29]) Let n = 4s+ r , with s > 0 and 0 ≤ r ≤ 3 .

(1) If r ∈ {0, 1} , then

F1Fn+1 > F3Fn−1 > · · · > F2s+1F2s+r+1 > F2sF2s+r+2

> F2s−2F2s+r+4 > · · · > F4Fn−2 > F2Fn .

(2) If r ∈ {2, 3} , then

F1Fn+1 > F3Fn−1 > · · · > F2s+1F2s+r+1 > F2s+2F2s+r

> F2sF2s+r+2 > · · · > F4Fn−2 > F2Fn .

From Lemma 2.6, the following corollary is obvious.

Corollary 2.1. For a given positive integer n ≥ 4 , the maximal value of the sequence

{FkFn−k} is F1Fn−1 , the second maximal value of this sequence is F3Fn−3 .

Lemma 2.7. Let G1 and G2 be two graphs and vi be a vertex of Gi for i = 1, 2 .

If either Z(G2) ≥ Z(G1) or Z(G2 − v2) ≥ Z(G1 − v1) , then we have Z(G2v2Tl) >

Z(G1v1Tl) , where Tl is a tree of order l ≥ 2 and, in Tl , the vertex v1 in G1 is identified

with v2 in G2 .

Proof. We prove this lemma by induction on l (the order of Tl).

For l = 2 , the graph GiviTl is just the graph obtained by attaching a pendent

edge to vertex vi of Gi for i = 1, 2 . Applying Lemma 2.1 (1) to that pendent vertex,

we get

Z(G1v1Tl) = Z(G1) + Z(G1 − v1)

Z(G2v2Tl) = Z(G2) + Z(G2 − v2) .

Thus, considering the conditions in this lemma, we have

Z(G2v2Tl)− Z(G1v1Tl) = [Z(G2)− Z(G1)] + [Z(G2 − v2)− Z(G1 − v1)] > 0 .

Therefore Z(G2v2Tl) > Z(G1v1Tl) for l = 2 .
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Now we assume that Z(G2v2Tl) > Z(G1v1Tl) for l < k . In the next step we will

show that Z(G2v2Tl) > Z(G1v1Tl) for l = k . Note that there must be at least a

pendent vertex in the tree Tk of graph GiviTk . Choose a pendent vertex u1 with

the greatest distance from v1 (resp. v2) in Tk , where the neighbor vertex u1 is ut of

degree t ≥ 2 . Similarly, by applying Lemma 2.1 (2) to the pendent vertex u1 in Tk

of GiviTk , from Lemma 2.1 (3) and Lemma 2.2, we obtain

Z(G1v1Tk) = Z(G1v1Tk−1) + F t−2
2 Z(G1v1Tk−t)

= Z(G1v1Tk−1) + Z(G1v1Tk−t)

Z(G2v2Tk) = Z(G2v2Tk−1) + F t−2
2 Z(G2v2Tk−t)

= Z(G1v1Tk−1) + Z(G1v1Tk−t) .

By assumption, it is obvious that Z(G2v2Tk)− Z(G1v1Tk) > 0 , which completes the

proof of this lemma. �

Remark 2.2. Let G be a graph and v1, v2 be two vertices of G such that Z(G− v2) >

Z(G− v1) . Suppose that Tl is a tree of order l ≥ 2 . Then Z(Gv2Tl) > Z(Gv1Tl) .

From Lemmas 2.1, 2.2, and 2.5, the following result can be easily obtained. Note

that a simple calculation shows the validity of the formula of Z(Ca(b
1)) for b = 0 or

b = −1 .

Lemma 2.8.

Z(T (a, b, c)) = Fa+c+2Fb+1 + Fa+1Fc+1Fb

Z(Ca(b
1)) = Fa+b+1 + Fa−1Fb+1 .

Lemma 2.9. ( [4]) Let P = uu1u2 · · · ut−1v be a path in a graph G not isomorphic

to path graph, where the degrees of u1, u2, . . . , ut−1 in G are 2. By Gt(a, b) is denoted

the graph obtained by identifying a pendent vertex of Pa+1 with vertex u in G and a

pendent vertex of Pb+1 with vertex v in G . Then Z(Gt(a, b)) < Z(Gu((a + b)1)) or

Z(Gt(a, b)) < Z(Gv((a+ b)1)) .

Lemma 2.10. ( [4]) If Cp,l,q , Cp,l+q , and Cp+l,q are three graphs defined as above,

then Z(Cp,l+q) > Z(Cp,l,q) and Z(Cp+l,q) > Z(Cp,l,q) .
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3 Main results

We now consider the greatest Hosoya index of graphs from the class B(n,Δ) . For

Δ ≤ 2 there are no bicyclic graphs. In [4] and [10], the graphs from B(n) with greatest

Hosoya index were characterized completely. All these graphs belong to B(n, 3) (see
Remark 3.1). Thus the case Δ = 3 has been settled.

If Δ = n − 1 , there exist only two connected bicyclic graphs θ
(0)
2,1,2(1

n−4) and

C
(0)
3,3(1

n−5) . By a direct calculation we find that C
(0)
3,3(1

n−5) has greater Hosoya index,

equal to 4n−8 . For n = 4 , only one graph θ2,1,2 belongs to B(n) and there is nothing

to prove. For n = 5 there are two cases, i. e., Δ = 3 and Δ = 4 . From the above

arguments it is easy to obtain the greatest Hosoya index of graphs from B(n,Δ) .

Therefore, in what follows we assume that 3 < Δ < n− 1 and n > 5 .

Remark 3.1. Deng [4] found that the greatest Hosoya index of graphs from B(n) is
attained at θ3,1,n−3 if n > 6 , or at θ3,1,2 or θ2,2,2 if n = 5 . But the result when n > 7 is

false. By a simple calculation, we obtain that Z(C4,1,n−4) = 58 > 57 = Z(θ3,1,n−3) for

n = 8 , Z(C4,1,n−4) = Z(θ3,1,n−3) for n = 9 and Z(C4,1,n−4) − Z(θ3,1,n−3) = Fn−9 > 0

for n > 9 . Therefore we conclude that the graph from B(n) with greatest Hosoya

index is θ3,1,2 or θ2,2,2 if n = 5 , θ3,1,n−3 if n = 6, 7 , C4,1,n−4 if n = 8 or n ≥ 10 ,

θ3,1,n−3 or C4,1,n−4 if n = 9 , as shown in [10] except that θ2,2,2 is missing if n = 5 .

In order to continue our study, we introduce two subsets of of B(n,Δ) . Suppose

that M is of one of the types (1), (2), and (3). Let B1(n,Δ) be the set of all graphs

Mv
[l]
i (k

l1
1 , k

l2
2 ) with l1+ l2 = Δ−1 where k1 = 1 and 1 ≤ k2 ≤ 2 , or k1 = 2 and k2 ≥ 2

and l2 = 1 when k2 > 2 . Denote by B2(n,Δ) the set of all graphs Mvi(k
l1
1 , k

l2
2 ) with

l1 + l2 = Δ − 2 , where k1 = 1 and 1 ≤ k2 ≤ 2 , or k1 = 2 and k2 ≥ 2 and l2 = 1

when k2 > 2 . In the following we always assume that k1 and k2 are positive integers

defined as above.

Lemma 3.1. Suppose that G∗ from B(n,Δ) has maximal Hosoya index. Then we

have either G∗ ∈ B1(n,Δ) or G∗ ∈ B2(n,Δ) .

Proof. Note that any bicyclic graph can be viewed as a graph obtained by attaching

some trees to some vertices of a graph M of one of three types (1) , (2) and (3) .
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If each Δ-vertex is not in V (M) of the graph G∗ from B(n,Δ) , then we assume

that T1 is a subtree such that V (T1) \ V (M) contains a Δ-vertex. By Remark 2.1, if

we replace all subtrees attached to M by paths of the same order, then the Hosoya

index will increase. Therefore, after removing the paths attached to M but not in T1 ,

and increasing the length of the corresponding cycle C0 in M , the obtained graph is

still in B(n,Δ) . Then, in view of Remark 2.1 and Lemma 2.4, the Hosoya index will

increase again. By Lemma 2.3, all paths attached to the Δ-vertex of T1 must be of

the lengths 1 or 2 except, possibly, a unique path of length k > 2 . So G∗ belongs to

B1(n,Δ) . If all the Δ-vertices have Δ− 1 neighbors of degree 1, then k1 = k2 = 1 .

If there exists a Δ-vertex belonging to the main subgraph M , by a similar argu-

ment we have that G∗ ∈ B2(n,Δ) . This completes the proof. �

Lemma 3.2. If M is a graph of one of the three types (1) , (2) , or (3) , then Z(M−v)

reaches its maximum value when v is a vertex in a cycle of M which is adjacent to

one vertex of maximum degree in M .

Proof. Assume that M ∼= Cp,q with p, q ≥ 3 when M is of type (1). From Lemmas

2.3 and 2.8, if w �= u , it follows that Z(Cp,q − w) reaches its maximum value

Z(Cp((q − 2)1)) = Z(Cq((p− 2)1)) = Fp+q+1 + Fp−1Fq−1

where w is a vertex in Cp,q adjacent to u , and Z(Cp,q−u) = FpFq . Clearly, by Lemma

2.5, we have Z(Cp,q − v) > Z(Cp,q − u) . Therefore this lemma follows immediately

for the case when M is a graph of type (1).

We next deal with the case when M is of type (2). Assume that M ∼= Cp,l,q . Set

i− 1 = l1 and l − 1− i = l2 , i. e., l1 + l2 = l − 2 . In a similar manner as above,

Z(Cp,l,q − u) = Z(Cq((l − 1)1))Fp = Fp(Fq+l + Fq−1Fl)

Z(Cp,l,q − v) = Z(Cq((p+ l − 2)1)) = Fp+q+l−1 + Fq−1Fp+l−1

Z(Cp,l,q − v′) = Z(Cp((q + l − 2)1)) = Fp+q+l−1 + Fp−1Fq+l−1

Z(Cp,l,q − ui) = Z(Cp(l
1
1))Z(Cq(l

1
2)) = (Fp+l1+1 + Fp−1Fl1+1)(Fq+l2+1 + Fq−1Fl2+1)

Z(Cp,l,q − v) − Z(Cp,l,q − u) = Fp−1Fq+l−1 + Fq−1Fp−1Fl−1 > 0 . (1)
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If l = 1 , then by inequality (1), this lemma holds immediately. If l ≥ 2 , set

A = Z(Cp,l,q − v)− Z(Cp,l,q − ui) + Z(Cp,l,q − v′)− Z(Cp,l,q − ui) . Then, by Lemma

2.5,

A = Z(Cp,l,q − v) + Z(Cp,l,q − v′)− 2Z(Cp,l,q − ui)

= 2Fp+q+l1+l2+1 + Fp−1Fq+l1+l2+1 + Fq−1Fp+l1+l2+1 − 2(Fp+l1+1Fq+l2+1

+ Fp−1Fl1+1Fq+l2+1 + Fq−1Fl2+1Fp+l1+1 + Fp−1Fq−1Fl1+1Fl2+1)

= 2Fp+l1Fq+l2 + Fq−1Fp+l1+1Fl2+1 + Fq−1Fp+l1Fl2 + Fp−1Fq+l2+1Fl1+1

+ Fp−1Fq+l2Fl1 − 2Fq−1Fl2+1Fp+l1+1 − 2Fp−1Fl1+1Fq+l2+1

− 2Fp−1Fq−1Fl1+1Fl2+1

= 2Fp+l1Fq+l2 + Fq−1Fp+l1Fl2 − Fq−1Fp+l1+1Fl2+1 + Fp−1Fq+l2Fl1

− Fp−1Fq+l2+1Fl1+1 − 2Fp−1Fq−1Fl1+1Fl2+1

= (FpFl1+1 + 2Fp−1Fl1)Fq+l2 + (FqFl2+1 + 2Fq−1Fl2)Fp+l1

− Fp−1Fl1+1Fq+l2+1 − Fq−1Fl2+1Fp+l1+1 − 2Fp−1Fq−1Fl1+1Fl2+1

= (Fp−1Fl1+1 + Fp−2Fl1+1 + 2Fp−1Fl1)Fq+l2

+ (Fq−1Fl2+1 + Fq−2Fl2+1 + 2Fq−1Fl2)Fp+l1

− Fp−1Fl1+1Fq+l2+1 − Fq−1Fl2+1Fp+l1+1 − 2Fp−1Fq−1Fl1+1Fl2+1

= (Fp−2Fl1+1 + 2Fp−1Fl1)Fq+l2 + (Fq−2Fl2+1 + 2Fq−1Fl2)Fp+l1

− Fp−1Fl1+1Fq+l2−1 − Fq−1Fl2+1Fp+l1−1 − 2Fp−1Fq−1Fl1+1Fl2+1

= Fp−2Fl1+1Fq+l2 + Fq−2Fl2+1Fp+l1 − 2Fp−1Fq−1Fl1+1Fl2+1

+ Fp−1(2Fl1Fq+l2 − Fl1+1Fq+l2−1) + Fq−1(2Fl2Fp+l1 − Fl2+1Fp+l1−1)

≥ Fp−1Fl1+1Fq+l2−2 + Fp−2Fl1+1Fq+l2 − Fp−1Fq−1Fl1+1Fl2+1

+ Fq−1Fl2+1Fp+l1−2 + Fq−2Fl2+1Fp+l1 − Fp−1Fq−1Fl1+1Fl2+1

= Fl1+1[Fp−2Fq+l2 + Fp−1(Fq−1Fl2 + Fq−2Fl2−1)− Fp−1Fq−1Fl2+1]

+ Fl2+1[Fq−2Fp+l1 + Fq−1(Fp−1Fl1 + Fp−2Fl1−1)− Fp−1Fq−1Fl1+1]

= Fl1+1(Fp−2Fq+l2 − Fp−1Fl2−1Fq−3) + Fl2+1(Fq−2Fp+l1 − Fq−1Fl1−1Fp−3)

= Fl1+1(Fp−2FqFl2+1 + Fp−2Fq−1Fl2 − Fp−2Fl2−1Fq−3 − Fp−3Fl2−1Fq−3)

+ Fl2+1(Fq−2FpFl1+1 + Fq−2Fp−1Fl1 − Fq−2Fl1−1Fp−3 − Fq−3Fl1−1Fp−3) > 0 .
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Note that if l1 = 0 or l2 = 0 , then A > 0 . Therefore, we have

Z(Cp,l,q − v)− Z(Cp,l,q − ui) > 0 or Z(Cp,l,q − v′)− Z(Cp,l,q − ui) > 0 .

Thus the lemma follows when M is of type (2).

Finally, we prove this lemma for the case when M is of type (3). Assume that

M ∼= θr,s,t . In view of Lemma 2.8,

Z(θr,s,t − u) = Z(θr,s,t − u′) = Z(T (r − 1, s− 1, t− 1)) = Fr+sFt + FrFsFt−1 .

By Lemma 2.9, we claim that for a 2-vertex w in θr,s,t , Z(θr,s,t − w) reaches its

maximum value if w ∈ {v, v′, v′′} . This maximum value is one of the three values

Z(Cs+t((r− 2)1) = Fr+s+t−1 +Fs+t−1Fr−1 , Z(Cr+t((s− 2)1) = Fr+s+t−1 +Fr+t−1Fs−1

or Z(Cr+s((t− 2)1) = Fr+s+t−1 + Fr+s−1Ft−1 . By direct calculation we find that any

one of these three values is greater than Z(θr,s,t − u) = Z(θr,s,t − u′) , which implies

that this lemma holds for the case whenM is of type (3). Thus the proof is completed.

�

Lemma 3.3. For any graph G1 ∈ B1(n,Δ) , there exists a graph G2 ∈ B2(n,Δ) such

that Z(G2) > Z(G1) .

Proof. Suppose that G∗
1 ∈ B1(n,Δ) has the maximal Hosoya index and the main

subgraph of G∗
1 is M . Then it suffices to show that there exists a graph G2 ∈

B2(n,Δ) such that Z(G2) > Z(G∗
1) . By Lemma 3.2, Remark 2.2, and the definition

of B1(n,Δ) , we claim that a graph G∗
1 must be of the formMv[k](kl1

1 , k
l2
2 ) with l1+l2 =

Δ− 1 , where v is a vertex in a cycle of M adjacent to one vertex of maximum degree

in it. In the following we assume that T0
∼= R(kl1−1

1 , kl2
2 ) .

We first consider the case when M is of type (1). Let M ∼= Cp,q . Then we have

G∗
1 = Cp,qv

[k](kl1
1 , k

l2
2 )

∼= Cp,qv((k + k1)
1)w1T0 as shown in Fig. 5. Now we choose a

graph G
(1)
2

∼= Cp+k+k1,qw1T0 ∈ B2(n,Δ) , which is obtained from G∗
1 by deleting the

edge uv and adding an edge uv0 . Suppose that

G0 = Cp+k+k1,q − w1 − uv0 ∼= Cp,qv((k + k1)
1)− w1 − uv .

From Lemma 2.4, we have Z(Cp+k+k1,q) > Z(Cp,qv((k + k1)
1)) . Set

A1 = Z(Cp+k+k1,q − w1)− Z(Cp,qv((k + k1)
1)− w1) .
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By Lemmas 2.1 (2) and 2.5,

Z(Cp+k+k1,q − w1) = Z(G0) + FqFp+kFk1

Z(Cp,qv((k + k1)
1)− w1) = Z(G0) + FqFp−1Fk−1Fk1+1

A1 = Fq(Fp+kFk1 − Fp−1Fk−1Fk1+1)

= Fq(FpFk+1Fk1 + Fp−1FkFk1 − Fp−1Fk−1Fk1 − Fp−1Fk−1Fk1−1) > 0 .

From Lemma 2.7 it follows that Z(G
(1)
2 ) > Z(G∗

1) , as desired.

Fig. 5. Graphs used for proving Lemma 3.3.

Next we consider the case when M is of type (2). Suppose that M ∼= Cp,l,q . Based

on Lemma 3.2 and Remark 2.2, we claim that

G∗
1 = Cp,l,qv

[k](kl1
1 , k

l2
2 )

∼= Cp,l,qv((k + k1)
1)w1T0

as shown in Fig. 5. Now we choose a graph

G
(2)
2

∼= Cp+k+k1,l,qw1T0 ∈ B2(n,Δ)
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that is obtained from G∗
1 by deleting the edge uv and adding an edge uv0 . Let

G0 = Cp+k+k1,l,q − w1 − uv0 ∼= Cp,l,qv((k + k1)
1)− w1 − uv .

Set

A2 = Z(Cp+k+k1,l,q − w1)− Z(Cp,l,qv((k + k1)
1)− w1) .

We then have

Z(Cp+k+k1,l,q) > Z(Cp,l,qv((k + k1)
1))

Z(Cp+k+k1,l,q − w1) = Z(G0) + Z(Cq(k − 1)1)Fp+k−1Fk1

Z(Cp,l,qv((k + k1)
1)− w1) = Z(G0) + Z(Cq(k − 1)1)Fp−1FkFk1+1

A2 = Z(Cq(k − 1)1)(FpFkFk1 + Fp−1Fk−1Fk1 − Fp−1FkFk1 − Fp−1FkFk1−1)

> Fp−2FkFk1 + Fp−1Fk−1Fk1 − Fp−1FkFk1−1

=
1

2
(2Fp−2FkFk1 − Fp−1FkFk1−1 + Fp−12Fk−1Fk1 − Fp−1FkFk1−1) ≥ 0

Thanks to Lemma 2.7, we have Z(G
(2)
2 ) > Z(G∗

1) , as desired.

Finally we turn to the case when M is of type (3). Suppose that M ∼= θr,s,t . In

view of Lemma 3.2 and Remark 2.2, we claim that

G∗
1 = θr,s,tv

[k](kl1
1 , k

l2
2 )

∼= θr,s,tv((k + k1)
1)w1T0

as shown in Fig. 6. By symmetry, we only need to consider the case when v is on the

path Pr+1 in θr,s,t and is adjacent to u . Choose the graph G
(3)
2

∼= θr+k+k1,s,tw1T0 ∈
B2(n,Δ) , obtained from θr,s,tv((k+ k1)

1)w1T0 by deleting the edge uv and adding an

edge uv0 . Let

G0 = θr+k+k1,s,t − w1 − uv0 ∼= θr,s,tv((k + k1)
1)− w1 − uv .

First we consider the case when r > 2 . Set

A3 = Z(θr+k+k1,s,t − w1)− Z(θr,s,tv((k + k1)
1)− w1) .

Then,

Z(θr+k+k1,s,t) > Z(θr,s,tv((k + k1)
1))

Z(θr+k+k1,s,t − w1) = Z(G0) + Fk1Z(T (r + k − 2, s− 1, t− 1))

Z(θr,s,tv((k + k1)
1)− w1) = Z(G0) + Fk1+1FkZ(T (r − 2, s− 1, t− 1))
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A3 = Fk1(Fs+tFr+k−1 + FsFtFr+k−2)− Fk1+1Fk(Fs+tFr−1 + FsFtFr−2)

= Fs+t(Fk1Fr+k−1 − Fk1+1FkFr−1) + FsFt(Fk1Fr+k−2 − Fk1+1FkFr−2)

= Fs+t[Fk1(FrFk + Fr−1Fk−1)− Fk1FkFr−1 − Fk1−1FkFr−1]

+ FsFt[Fk1(Fr−1Fk + Fr−2Fk−1)− Fk1FkFr−2 − Fk1−1FkFr−2]

= Fs+t[Fk1Fr−2Fk + Fk1Fr−1Fk−1 − Fk1−1FkFr−1]

+ FsFt[(Fr−1 − Fr−2)Fk1Fk + Fk1Fr−2Fk−1 − Fk1−1Fr−2Fk] .

Therefore, we have

A3 =
1

2
Fs+t(Fk12Fr−2Fk − Fk1−1Fr−1Fk + 2Fk1Fr−1Fk−1 − Fk1−1FkFr−1)

+
1

2
FsFt(2Fr−3Fk1Fk − Fk1−1Fr−2Fk + 2Fk1Fr−2Fk−1

− Fk1−1Fr−2Fk) ≥ 0 if r ≥ 4

A3 = Fs+t(Fk1Fk + Fk1Fk−1 − Fk1−1Fk) + FsFt(Fk1Fk−1 − Fk1−1Fk)

> FsFt(Fk1Fk+1 − Fk1−1Fk + Fk1Fk−1 − Fk1−1Fk)

= FsFt(Fk1Fk − Fk1−1Fk + Fk12Fk−1 − Fk1−1Fk) ≥ 0 if r = 3 .

Moreover it is easily checked that A3 > 0 when r = 2 and k1 = 1 . Therefore, by

Lemma 2.7, Lemma 3.3 holds immediately for the cases r > 2 as well as r = 2 and

k1 = 1 .

Fig. 6. Graphs used for proving Lemma 3.3.

Now we consider the case when r = 2 and k1 = 2 . In this case we find that

G∗
1 = θ2,s,tv

[k](2Δ−2, k1
2)

∼= θ2,s,tv((k+2)1)w1T
′
0 where T

′
0
∼= R(2Δ−3, k1

2) . We construct

a graph Cs+t,k+4v0T
′
0 ∈ B2(n,Δ) which is obtained from G∗

1
∼= θ2,s,tv((k + 2)1)w1T

′
0
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by deleting the edge uv and adding an edge u′v0 and moving the tree T ′
0 from w1 to

vertex v0 as shown in Fig. 6. Let

G0 = θ2,s,tv((k + 2)1)− uv ∼= Cs+t,k+4 − u′v0

and

A4 = Z(Cs+t,k+4)− v0)− Z(θ2,s,tw1((k + 2)1)− w1) .

Then in a similar manner as before we have

Z(Cs+t,k+4) = Z(G0) + Fk+3Fs+t = Z(θ2,s,tv((k + 2)1))

Z(Cs+t,k+4)− v0) = Z(Cs+t(k + 2)1) = Fs+t+k+3 + Fs+t−1Fk+3

Z(θ2,s,tw1((k + 2)1)− w1) = 2Z(θ2,s,tw1(k − 1)1) = 2(Z(Cs+t(k
1)) + Fs+tFk)

= 2(Fs+t+k+1 + Fs+t−1Fk+1 + Fs+tFk)

A4 = Fs+t+k + Fs+t−1Fk − 2Fs+tFk

= Fs+tFk+1 − Fs+tFk + 2Fs+t−1Fk − Fs+tFk ≥ 0 .

Moreover, A4 = 0 holds if and only if s+ t = 3 and k = 1 . Thus by Lemma 2.7,

Z(Cs+t,k+4v0T
′
0) > Z(θ2,s,tv((k + 2)1)w1T

′
0)

except when s+ t = 3 and k = 1 .

As in the case when s + t = 3 and k = 1 , note that G∗
1 = θ2,1,2v(3

1)v1T
′
0 where

v1 is a vertex in a pendent path P4 of θ2,1,2v(3
1) which is adjacent to v . We consider

a graph C4,4u1T
′
0 ∈ B2(n,Δ) where u1 is a vertex in C4,4 adjacent to the 4-vertex u

of C4,4 . With a same method as above, we have Z(C4,4v2T
′
0) > Z(θ2,s,tv(3

1)v1T
′
0) ,

which completes the proof of the lemma. �

From Lemmas 3.1 and 3.3, the following result is obvious.

Lemma 3.4. Suppose that G has maximal Hosoya index in B(n,Δ) . Then G ∈
B2(n,Δ) .

Let B(i)
2 (n,Δ) = {G : G ∈ B2(n,Δ), the main subgraph of G is of type (i)} for

i = 1, 2, 3 . Now we state a lemma in which the possible forms of the graphs from

B2(n,Δ) with greatest Hosoya index are specified.
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Lemma 3.5. For any graph G ∈ B2(n,Δ) , Z(G) reaches its maximum when G is of

the form C
(0)
p,q (k

l′1
1 , k

l′2
2 ) with l′1+ l′2 = Δ−4 , or of the form θ

(1)
r,s,t(2

Δ−3, k1
2) with k2 ≥ 2 .

Proof. From the definition of B(i)
2 (n,Δ) for i = 1, 2, 3 , we have B2(n,Δ) =

3⋃
i=1

B(i)
2 (n,Δ) .

Assume that T ∼= R(kl1
1 , k

l2
2 ) with l1 + l2 = Δ − 2 . In order to obtain our result, we

first need to prove the following three claims.

Claim 1. For any graph G ∈ B(2)
2 (n,Δ) there exists a graph G1 ∈ B(1)

2 (n,Δ) ,

such that Z(G1) > Z(G) .

Proof of Claim 1. By Lemma 3.2 and Remark 2.2, we find that ifG ∈ B(2)
2 (n,Δ) ,

then the maximum of Z(G) is attained when G is of the form Cp,l,qvT where v is a

vertex on one cycle, say Cp , of Cp,l,q adjacent to one of 3-vertices in Cp,l,q . Thus

it suffices to show that there exists a graph G1 ∈ B(2)
1 (n,Δ) , such that Z(G1) >

Z(Cp,l,qvT ) .

Choose G1
∼= Cp+l,qv1T where v1 is a vertex of Cp+l in Cp+l,q adjacent to the

unique 4-vertex of Cp+l,q . By Lemma 2.10 and Lemma 2.1 (2),

Z(Cp+l,q) > Z(Cp,l,q)

Z(Cp+l,q − v1) = Z(Cq((p+ l − 2)1)) = Fp+q+l−1 + Fq−1Fp+l−1 = Z(Cp,l,q − v) .

By Lemma 2.7 we have Z(G1) = Z(Cp+l,qv1T ) > Z(Cp,l,qvT ) = Z(G) , which com-

pletes the proof of this claim.

Claim 2. For any graph G ∈ B(1)
2 (n,Δ) , Z(G) reaches its maximum value when

G is of the form C
(0)
p,q (k

l′1
1 , k

l′2
2 ) with l′1 + l′2 = Δ− 4 .

Proof of Claim 2. By Lemma 3.2 and Remark 2.2, we find that ifG ∈ B(1)
1 (n,Δ) ,

then the maximum value of Z(G) is attained when G is of the form Cp,qvT , or of the

form Cp′,q′uT
′ where T ′ ∼= R(k

l′1
1 , k

l′2
2 ) with l′1 + l′2 = Δ − 4 . Therefore, it suffices to

show that for any graph G of the form Cp,qvT , there exists a graph G1 of the form

Cp′,q′uT
′ , such that Z(G1) > Z(G) .

Let G = C
(1)
p,q (k

l1
1 , k

l2
2 )

∼= Cp,qvT and G1 = C
(0)
p+k1+k2,q

(kl1−1
1 , kl2−1

2 ) ∼= Cp+k1+k2,quT0

where T0
∼= R(kl1−1

1 , kl2−1
2 ) . Note that G ∼= Cp,qv(k

1
1, k

1
2)vT0 . From Lemma 2.4,

Z(Cp+k1+k2,q) > Z(Cp,qv(k
1
1, k

1
2)) .
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Set A1 = Z(Cp+k1+k2,q − u)− Z(Cp,qv(k
1
1, k

1
2)− v) . Then we have

Z(Cp+k1+k2,q − u) = Fp+k1+k2Fq

Z(Cp,qv(k
1
1, k

1
2)− v) = Fk1+1Fk2+1Z(Cq((p− 2)1))

= Fk1+1Fk2+1(Fp+q−1 + Fp−1Fq−1)

A1 = Fp+k1+k2Fq − Fp+q−1 − Fk1+1Fk2+1(Fp+q−1 + Fp−1Fq−1)

= (FpF1+k1+k2 + Fp−1Fk1+k2)Fq − Fk1+1Fk2+1(FpFq + 2Fp−1Fq−1)

= FpFqFk1Fk2 + Fp−1FqFk1+k2 − 2Fk1+1Fk2+1Fp−1Fq−1 .

Direct calculation shows that A1 > 0 if k1 = k2 = 1 , or k1 = 1 and k2 = 2 .

Therefore, by Lemma 2.7, we have Z(G1) > Z(G) as desired, except when k1 = 2 .

If k1 = 2 , then

G = C(1)
p,q (2

Δ−3, (k + 2)1) ∼= Cp,qv(2
2, (k + 2)1)vT1

where T1
∼= R(2Δ−5) . We choose the graph

G1 = C
(0)
3,3(2

Δ−5, (p+ q + k)1) ∼= C3,3u((p+ q + k)1)uT1

and set

A2 = Z(C3,3u((p+ q + k)1)− u)− Z(Cp,qv(2
2, (k + 2)1)− v)

and

B2 = Z(C3,3u((p+ q + k)1))− Z(Cp,qv(2
2, (k + 2)1)) .

Similarly as before, we have

Z(C3,3u((p+ q + k)1)− u) = 4Fp+q+k+1

Z(Cp,qv(2
2, (k + 2)1)− v) = 4Fk+3(Fp+q−1 + Fp−1Fq−1)

Z(C3,3u((p+ q + k)1)) = 4Fp+q+k+1 + 8Fp+q+k+1 + 4Fp+q+k

= 4(Fp+q+k+3 + Fp+q+k+1)

Z(Cp,qv(2
2, (k + 2)1)) = 4Fk+3Z(Cq((p− 2)1)) + 4Fk+2Z(Cq((p− 2)1))

+ 4Fk+3Fp−1Fq + 2F3Fk+3Z(Cq((p− 2)1)) + 4Fk+3Z(Cq((p− 3)1))

= 4Fk+5(Fp+q−1 + Fp−1Fq−1) + 4Fk+3(Fp+q−2 + Fp−2Fq−1 + Fp−1Fq)

= 4Fk+5(Fp+q−1 + Fp−1Fq−1) + 8Fk+3Fp+q−2

-811-



A2 = 4(Fk+3Fp+q−1 − Fk+3Fp+q−1 − Fk+3Fp−1Fq−1 + Fk+2Fp+q−2)

= 4(Fk+2Fp−1Fq + Fk+2Fp−2Fq−1 − Fk+2Fp−1Fq−1 − Fk+1Fp−1Fq−1)

= 4(Fk+2Fp−1Fq−2 + Fk+2Fp−2Fq−1 − Fk+1Fp−1Fq−1)

= 2(Fk+2Fp−12Fq−2 − Fk+1Fp−1Fq−1 + Fk+22Fp−2Fq−1 − Fk+1Fp−1Fq−1) ≥ 0

B2 = 4[Fp+q+k+3 − Fk+5(Fp+q−1 + Fp−1Fq−1)]

+ 4(Fk+3Fp+q−1 + Fk+2Fp+q−2 − 2Fk+3Fp+q−2)

= 4(Fk+4Fp+q−2 − Fk+4Fp−1Fq−1 − Fk+3Fp−1Fq−1)

+ 4(Fk+2Fp+q−2 − Fk+3Fp+q−4)

= 4(Fk+4Fp−1Fq + Fk+4Fp−2Fq−1 − Fk+4Fp−1Fq−1 − Fk+3Fp−1Fq−1)

+ 4(Fk+2Fp+q−2 − Fk+3Fp+q−4)

= 4(Fk+4Fp−1Fq−2 + Fk+4Fp−2Fq−1 − Fk+3Fp−1Fq−1)

+ 4(Fk+2Fp+q−2 − Fk+3Fp+q−4)

= 2(Fk+4Fp−12Fq−2 − Fk+3Fp−1Fq−1 + Fk+42Fp−2Fq−1 − Fk+3Fp−1Fq−1)

+ 4(Fk+2Fp+q−3 − Fk+1Fp+q−4)

≥ 4Fk+1Fp+q−5 > 0 .

Note that the last inequality holds because of the fact that p + q ≥ 6 . Using

Lemma 2.7, we have

Z(G1) = Z(C3,3u((p+ q + k)1)uT1) > Z(Cp,qv(2
2, (k + 2)1)vT1) = Z(G)

which completes the proof of Claim 2.

By Lemma 3.2 and Remark 2.2, we find that if G ∈ B(3)
2 (n,Δ) , then the maximum

value of Z(G) is attained when G is of the form θ
(1)
r,s,t(k

l1
1 , k

l2
2 ) with l1+ l2 = Δ−2 and

r ≥ 2 . In order to obtain this lemma, it suffices to prove:

Claim 3. For any graph G ∈ B(3)
2 (n,Δ) of the form θ

(1)
r,s,t(k

l1
1 , k

l2
2 ) with k1 = 1 ,

there exists a graph G1 ∈ B(1)
2 (n,Δ) , such that Z(G1) > Z(G) .
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Proof of Claim 3. Suppose that G = θ
(1)
r,s,t(k

l1
1 , k

l2
2 ) with k1 = 1 and r ≥ 2 . We

now construct a graph

G1 = C
(0)
r+s+t−1,k2+2(1

l1−1, kl2−1
2 ) ∼= Cr+s+t−1,k2+2uT2

where T2
∼= R(1l1−1, kl2−1

2 ) . Note that G ∼= θr,s,tv(1
1, k1

2)vT2 . Setting

A3 = Z(Cr+s+t−1,k2+2 − u)− Z(θr,s,tv(1
1, k1

2)− v)

and

B3 = Z(Cr+s+t−1,k2+2)− Z(θr,s,tv(1
1, k1

2))

we arrive at

Z(θr,s,tv(1
1, k1

2)) = (Fk2 + 2Fk2+1)Z(Cs+t((r − 2)1))

+ Fk2+1Z(T (r − 2, s− 1, t− 1)) + Fk2+1Z(Cs+t((r − 3)1))

= Fk2+2(Fr+s+t−1 + Fr−1Fs+t−1) + Fk2+1(Fr+s+t−1 + Fr−1Fs+t−1)

+ Fk2+1(Fs+tFr−1 + FsFtFr−2) + Fk2+1(Fr+s+t−2 + Fr−2Fs+t−1)

= Fk2+2(Fr+s+t−1 + Fr−1Fs+t−1)

+ Fk2+1(Fr+s+t + Fr+s+t−2 + Fr−1Fs+t−1 + FsFtFr−2)

Z(Cr+s+t−1,k2+2) = Fk2+2Fr+s+t−1 + 2Fk2+1Fr+s+t−1 + 2Fk2+2Fr+s+t−2

= Fk2+2Fr+s+t + 2Fk2+1Fr+s+t−1 + Fk2+2Fr+s+t−2

Z(θr,s,tv(1
1, k1

2)− v) = Fk2+1Z(Cs+t((r − 2)1)) = Fk2+1(Fr+s+t−1 + Fr−1Fs+t−1)

Z(Cr+s+t−1,k2+2 − u) = Fk2+2Fr+s+t−1

A3 = Fk2Fr+s+t−1 − Fk2+1Fr−1Fs+t−1

= Fk2FrFs+t + Fk2Fr−1Fs+t−1 − Fk2+1Fr−1Fs+t−1

= Fk2FrFs+t − Fk2−1Fr−1Fs+t−1 > 0
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B3 = Fk2+2Fr+s+t + 2Fk2+1Fr+s+t−1 + Fk2+2Fr+s+t−2

− Fk2+2(Fr+s+t−1 + Fr−1Fs+t−1)− Fk2+1(Fr+s+t + Fr+s+t−2

+ Fr−1Fs+t−1 + FsFtFr−2)

= Fk2(Fr+s+t + Fr+s+t−2) + Fk2+1(2Fr−1Fs+t+1

+ 2Fr−2Fs+t − Fr−1Fs+t−1 − FsFtFr−2)− Fk2+2(Fr+s+t−1 + Fr−1Fs+t−1)

= Fk2(Fr+s+t + Fr+s+t−2) + Fk2+1(FrFs+t + Fr+s+t−1 − FsFtFr−2)

− Fk2+2(Fr+s+t−1 + Fr−1Fs+t−1)

= Fk2Fr+s+t − Fk2Fr+s+t−1 + Fk2Fr+s+t−2 + Fk2+1(FrFs+t − FsFtFr−2)

− Fk2+2Fr−1Fs+t−1

= 2Fk2Fr+s+t−2 + Fk2+1(FrFs+t − FsFtFr−2)− Fk2+2Fr−1Fs+t−1

> 2Fk2Fr+s+t−2 + Fk2+1Fr−1FsFt − Fk2+2Fr−1Fs+t−1 .

It is not difficult to check that

2Fk2Fr+s+t−2 + Fk2+1Fr−1FsFt − Fk2+2Fr−1Fs+t−1 > 0

if k2 = 1 or k2 = 2 , that is to say, B3 > 0 when k2 = 1 or k2 = 2 .

Thanks to Lemma 2.7 again, we have Z(G1) > Z(G) , as desired. This completes

the proof of Claim 3.

Combining Claims 1, 2 and 3, Lemma 3.5 follows immediately. �

Lemma 3.6. For any graph G of the form θ
(1)
r,s,t(2

Δ−3, k1
2) with r > 2 and k2 ≥ 2 ,

there exists a graph G1 ∈ B(1)
2 (n,Δ) , such that Z(G1) > Z(G) .

Proof. In order to obtain the result in this lemma, we have to prove the following

two claims.

Claim 1. For a graph G0 = θ
(1)
r,s,t(2

Δ−3, (k+2)1) with k > 0 , there exists a graph

θ
(1)
r′,s′,t′(2

Δ−2) of the same order as G0 , such that Z(θ
(1)
r′,s′,t′(2

Δ−2)) > Z(G0) .

Proof of Claim 1. Let T1
∼= R(2Δ−3) . Note that G0

∼= θ
(1)
r,s,tv((k+2)1)vT1 . From

the fact that s + t ≥ 3 in θ
(1)
r,s,tv((k + 2)1)vT1 , we find that one of the two positive

integers s and t is greater than 1. Without loss of generality, we may assume that
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s ≥ 2 . Let r′ = r , s′ = s + k , and t′ = t . Choose the graph G = θ
(1)
r,s+k,t(2

Δ−2) .

Clearly, G ∼= θ
(1)
r,s+k,tv(2

1)vT0 . Now we only need to prove that

Z(θ
(1)
r,s+k,tv(2

1)vT0) > Z(θ
(1)
r,s,tv((k + 2)1)vT0) .

Set

A1 = Z(θ
(1)
r,s+k,tv(2

1)− v)− Z(θ
(1)
r,s,tv((k + 2)1)− v)

and

B1 = Z(θ
(1)
r,s+k,tv(2

1))− Z(θ
(1)
r,s,tv((k + 2)1)) .

Then by Lemmas 2.1, 2.5, and 2.8,

Z(θ
(1)
r,s+k,tv(2

1)− v) = F3Z(Cs+t+k((r − 2)1)) = F3(Fr+s+t+k−1 + Fs+t+k−1Fr−1)

Z(θ
(1)
r,s,tv((k + 2)1)− v) = Fk+3Z(Cs+t((r − 2)1)) = Fk+3(Fr+s+t−1 + Fs+t−1Fr−1)

Z(θ
(1)
r,s+k,tv(2

1)) = (F3 + 1)Z(Cs+t+k((r − 2)1)) + F3Z(T (r − 2, s+ k − 1, t− 1))

+ F3Z(Cs+t+k((r − 3)1))

= F4(Fr+s+t+k−1 + Fs+t+k−1Fr−1) + F3(Fr−1Fs+t+k + Fr−2Fs+kFt)

+ F3(Fr+s+t+k−2 + Fs+t+k−1Fr−2)

Z(θ
(1)
r,s,tv((k + 2)1)) = Fk+4(Fr+s+t−1 + Fs+t−1Fr−1) + Fk+3(Fr−1Fs+t + Fr−2FsFt)

+ Fk+3(Fr+s+t−2 + Fs+t−1Fr−2)

A1 = F3Fr+s+t+k−1 − Fk+3Fr+s+t−1 + Fr−1(F3Fs+t+k−1 − Fk+3Fs+t−1)

= F3Fk+1Fr+s+t−1 + F3FkFr+s+t−2 − F3Fk+1Fr+s+t−1 − F2FkFr+s+t−1

+ Fr−1(F3Fk+1Fs+t−1 + F3FkFs+t−2 − F3Fk+1Fs+t−1 − F2FkFs+t−1)

= FkFr+s+t−4 + Fr−1(2Fs+t−2 − Fs+t−1) > 0

B1 = A1 + Fr+s+t+k−1 − Fk+2Fr+s+t−1 + Fr−1(Fs+t+k−1 − Fk+2Fs+t−1)

+ Fr−2(F3Fs+t+k−1 − Fk+3Fs+t−1) + Fr−1(F3Fs+t+k − Fk+3Fs+t)

+ Fr−2Ft(F3Fs+k − Fk+3Fs) + F3Fr+s+t+k−2 − Fk+3Fr+s+t−2

= A1 + Fk(Fr+s+t−2 − Fr+s+t−1) + Fr−1Fk(Fs+t−2 − Fs+t−1)

+ Fr−2Fk(2Fs+t−2 − Fs+t−1) + Fr−1Fk(2Fs+t−1 − Fs+t)

+ Fr−2FtFk(2Fs−1 − Fs) + Fk(2Fr+s+t−3 − Fr+s+t−2)
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= FkFr+s+t−4 + Fr−1(2Fs+t−2 − Fs+t−1)− FkFr+s+t−3 − Fr−1FkFr+s+t−3

+ Fr−2Fk(2Fs+t−2 − Fs+t−1) + Fr−1Fk(2Fs+t−1 − Fs+t)

+ Fr−2FtFk(2Fs−1 − Fs) + Fk(2Fr+s+t−3 − Fr+s+t−2)

= FkFr+s+t−4 + Fr−1(2Fs+t−2 − Fs+t−1)− FkFr+s+t−3

+ Fr−2Fk(2Fs+t−2 − Fs+t−1) + Fr−2FtFk(2Fs−1 − Fs)

+ Fk(2Fr+s+t−3 − Fr+s+t−2)

= Fr−1(2Fs+t−2 − Fs+t−1) + Fr−2Fk(2Fs+t−2 − Fs+t−1)

+ Fr−2FtFk(2Fs−1 − Fs) ≥ 0 .

From Lemma 2.7 it follows that Z(G) > Z(G0) , which completes the proof of Claim

1.

Claim 2. For a graph G = θ
(1)
r,s,t(2

Δ−2) with r > 2 , there exists a graph C
(0)
p,q (2Δ−4)

of the same order as G , such that Z(C
(0)
p,q (2Δ−4)) > Z(G) .

Proof of Claim 2. Let T2
∼= R(2Δ−4) . Note that G ∼= θ

(1)
r,s,tv(2

2)vT2 . Let

p = 3 and q = r + s + t + 1 . We choose a graph G1 = C
(0)
3,r+s+t+1(2

Δ−4) . Clearly,

G ∼= C5,r+s+t+1uT2 . Now we only need to prove that

Z(C3,r+s+t+1uT2) > Z(θ
(1)
r,s,tv(2

2)vT2) .

Set

A2 = Z(C3,r+s+t+1 − u)− Z(θ
(1)
r,s,tv(2

2)− v)

and

B2 = Z(C3,r+s+t+1)− Z(θ
(1)
r,s,tv(2

2))

and then we have

Z(C3,r+s+t+1 − u) = 2Fr+s+t+1

Z(θ
(1)
r,s,tv(2

2)− v) = 4Z(Cs+t((r − 2)1)) = 4(Fr+s+t−1 + Fr−1Fs+t−1)

Z(C3,r+s+t+1) = 2Fr+s+t+1 + 2Fr+s+t+1 + 4Fr+s+t = 4Fr+s+t+2

Z(θ
(1)
r,s,tv(2

2)) = (4 + 4)Z(Cs+t((r − 2)1)) + 4Z(Cs+t((r − 3)1))

+ 4Z(T (r − 2, s− 1, t− 1))

= 8(Fr+s+t−1 + Fr−1Fs+t−1) + 4(2Fr+s+t−2 + FsFtFr−2)
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A2 = 2(Fr+s+t−2 − 2Fs+t−1Fr−1)

= 2(FrFs+t−1 − Fr−1Fs+t−1 + Fr−1Fs+t−2 − Fr−1Fs+t−1)

= 2(Fr−2Fs+t−1 − Fr−1Fs+t−3)

= 2(Fr−2Fs+t−2 − Fr−3Fs+t−3) ≥ 0 when r ≥ 3

B2 = 4(Fr+s+t+2 − 2Fr+s+t−1 − 2Fr−1Fs+t−1 − 2Fr+s+t−2 − FsFtFr−2)

= 4(FrFs+t + Fr−1Fs+t−1 − 2Fr−1Fs+t−1 − FsFtFr−2)

= 4(FrFs+t − Fr−1Fs+t−1 − FsFtFr−2)

> 4(Fr−1Fs+t − Fr−1Fs+t−1) > 0 .

Again, by Lemma 2.7, Z(G1) > Z(G) , and the proof of Claim 2 is complete.

Combining Claims 1 and 2, Lemma 3.6 follows immediately. �

Let G0 = {θ(1)2,s,t(2
Δ−2) : s, t > 0 and s + t = n − 2Δ + 3 > 3} . From Lemmas

3.4, 3.5, 3.6, and the proof of Claim 1 in Lemma 3.6, the following lemma holds

immediately.

Lemma 3.7. Suppose that G ∈ B(n,Δ) has maximal Hosoya index. Then G must

be either of the form C
(0)
p,q (k

l1
1 , k

l2
2 ) with l1 + l2 = Δ− 4 , or must belong to the set G0 .

In the following two theorems the graphs from B(n,Δ) with maximal Hosoya

index are completely characterized.

Theorem 3.1. If Δ > (n+3)/2 , then the graph G ∈ B(n,Δ) , maximizing the Hosoya

index, is C
(0)
3,3(1

2Δ−3−n, 2n−1−Δ) with Z(C
(0)
3,3(1

2Δ−3−n, 2n−1−Δ)) = (3Δ− n− 1)2n−Δ .

Proof. When Δ > (n+3)/2 , we claim that the graph G from B(n,Δ) with maximal

Hosoya index must be of the form C
(0)
p,q (k

l1
1 , k

l2
2 ) with l1 + l2 = Δ− 4 . If not, then by

Lemma 3.7, G must be θ
(1)
2,s,t(2

Δ−2) with s + t ≥ 3 . But the order of θ
(1)
2,s,t(2

Δ−2) is

2+ s+ t+2(Δ− 2) ≥ 2Δ+1 > n+4 > n . This is impossible since G has n vertices.

Suppose that G ∼= C
(0)
p,q (k

l1
1 , k

l2
2 ) with l1 + l2 = Δ − 4 . We claim that k1 = 1 .

The other option would be k1 = 2 . However, then the order of G would be at least

2(Δ− 4) + 5 = 2Δ + 3 > n , which again contradicts the fact that G ∈ B(n,Δ) .
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If k2 = 2 , then we can assume that G ∼= C
(0)
p,q (1x, 2y) with x, y > 0 and x + y =

Δ− 4 . If one of p and q is greater than 4, without loss of generality, we assume that

p > 4 . Set

A = Z(C
(0)
p−1,q(1

x−1, 2y+1))− Z(C(0)
p,q (1

x, 2y)) .

By Lemmas 2.1 and 2.5, we have

Z(C(0)
p,q (1

x, 2y)) = 2yFpFq + 2Fp−1Fq2
y + 2FpFq−12

y + y2y−1FpFq + x2yFpFq

= 2y(Fp+q + Fp−1Fq + FpFq−1) + (2x+ y)2y−1FpFq

Z(C
(0)
p−1,q(1

x−1, 2y+1)) = 2y+1(Fp+q−1 + Fp−2Fq + Fp−1Fq−1)

+ (2x+ y − 1)2yFp−1Fq

A = 2y(2Fp+q−1 + 2Fp−2Fq + 2Fp−1Fq−1 − Fp+q − Fp−1Fq − FpFq−1)

+ (2x+ y)2y−1Fp−1Fq − (2x+ y)2yFpFq − 2yFp−1Fq

= 2y(Fp+q−3 + Fp−4Fq + Fp−3Fq−1) + (2x+ y)2y−1(2Fp−1Fq − FpFq)− 2yFp−1Fq

= 2y(Fp−2Fq + 2Fp−3Fq−1 + Fp−4Fq − Fp−1Fq) + (2x+ y)2y−1Fp−3Fq

> 2y(Fp−32Fq−1 − Fp−3Fq + Fp−4Fq) > 0 .

Therefore, decreasing by one the length of one cycle of length greater than 4 in

C
(0)
p,q (1x, 2y) and replacing one pendent edge attached to the 4-vertex in it by a path

P3 , the obtained graph has a greater Hosoya index than C
(0)
p,q (1x, 2y) . By repeating

this transformation, we find that G must be C
(0)
3,3(1

2Δ−3−n, 2n−1−Δ) .

For the case of k2 = 1 , we claim that p > 3 or q > 3 in G ∼= C
(0)
p,q (1Δ−4) since

Δ < n−1 . Using a similar method as above, we can construct a new graph G′ having

a greater Hosoya index than G . This is a contradiction to the choice of G .

By Lemma 2.1 and by a simple calculation, we obtain

Z(C
(0)
3,3(1

2Δ−3−n, 2n−1−Δ)) = (3Δ− n− 1)2n−Δ

which completes the proof of the theorem. �
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Theorem 3.2. Suppose that 4 ≤ Δ ≤ (n + 3)/2 and that the graph G has maximal

Hosoya index in B(n,Δ) . Then

(a) if n/2 ≤ Δ ≤ (n+ 3)/2 , or 4 ≤ Δ ≤ 10 , then G ∼= C
(0)
3,n−2Δ+6(2

Δ−4) ;

(b) if 11 ≤ Δ < n/2 , then G is any graph from {θ(1)2,s,t(2
Δ−2) : s, t > 0 and s + t =

n− 2Δ + 3} .

Proof. From Lemma 3.7 and the proof of Theorem 3.1, we find that if 4 ≤ Δ ≤
(n + 3)/2 , then the graph G is either of the form C

(0)
p,q (2Δ−5, k1

2) with k2 ≥ 2 , or

belongs to the set G0 . Now we prove:

Claim 1. For a graph G1 = C
(0)
p,q (2Δ−5, (k+2)1) with k > 0 , there exists a graph

G2 of the same order as G1 , such that Z(G2) > Z(G1) .

Proof of Claim 1. Let T ∼= R(2Δ−5) . Clearly, G1 = C
(0)
p,q ((k + 2)1)uT . Now we

consider a graph G2 = C
(0)
p+k,q(2

Δ−4) ∼= C
(0)
p+k,q(2

1)uT . Set

A1 = Z(C
(0)
p+k,q(2

1)− u)− Z(C(0)
p,q ((k + 2)1)− u)

and

B1 = Z(C
(0)
p+k,q(2

1))− Z(C(0)
p,q ((k + 2)1))

which by Lemmas 2.1, 2.5, 2.8, and Corollary 2.1, yields

Z(C
(0)
p+k,q(2

1)− u) = F3Fp+kFq

Z(C(0)
p,q ((k + 2)1)− u) = Fk+3FpFq

Z(C
(0)
p+k,q(2

1)) = (F3 + 1)Fp+kFq + 2F3Fp+k−1Fq + 2F3Fp+kFq−1

Z(C(0)
p,q ((k + 2)1)) = (Fk+3 + Fk+2)FpFq + 2Fk+3Fp−1Fq + 2Fk+3FpFq−1

A1 = Fq(F3Fp+k − Fk+3Fp) ≥ 0
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B1 = A1 + Fp+kFq − Fk+2FpFq + 2(F3Fp+k−1Fq + F3Fp+kFq−1)

− 2(Fk+3Fp−1Fq + Fk+3FpFq−1)

= A1 + 2FkFq(2Fp−2 − Fp−1) + 2Fq−1Fk(2Fp−1 − Fp) + Fp+kFq − Fk+2FpFq

= FqFkFp−3 + 2FkFq(2Fp−2 − Fp−1) + 2Fq−1FkFp−3 − FqFkFp−2

= FqFkFp−3 + 2Fq−1FkFp−3 + FkFq(3Fp−2 − 2Fp−1)

= FqFk(2Fp−2 − Fp−1) + 2Fq−1FkFp−3

> FqFk(2Fp−2 − Fp−1 + Fp−3) = FqFkFp−2 > 0 .

Therefore, by Lemma 2.7, Z(G2) > Z(G1) , and Claim 1 follows.

Considering Claim 1, G is either of the form C
(0)
p,q (2Δ−4) with p, q ≥ 3 and p+ q =

n−2Δ+9 , or belongs to G0 . From Lemmas 2.1 and 2.5 it follows that p+q = n−2Δ+9

and we have

Z(C(0)
p,q (2

Δ−4)) = 2Δ−4FpFq + 2Δ−42Fp−1Fq + 2Δ−42Fp−1Fq + (Δ− 4)2Δ−5FpFq

= 2Δ−4Fp+q + 2Δ−4(Fp−1Fq + Fp−1Fq) + (Δ− 4)2Δ−5FpFq

= 2Δ−4(Fp+q + Fp+q−2) + 2Δ−5[(Δ− 4)FpFq + 2Fp−1Fq−1]

= 2Δ−4(Fp+q + Fp+q−2 + Fp+q−1) + 2Δ−5(Δ− 6)FpFq

= 2Δ−3Fn−2Δ+9 + 2Δ−5(Δ− 6)FpFn−2Δ+9−p .

From Lemma 2.6, we find that Z(C
(0)
p,q (2Δ−4)) reaches its maximum value at p = 3 ,

and that

Z(C
(0)
3,n−2Δ+6(2

Δ−4)) = 2Δ−3Fn−2Δ+9 + 2Δ−4(Δ− 6)Fn−2Δ+6 .

For any graph G0 = θ
(1)
2,s,t(2

Δ−2) ∈ G0 , from Lemmas 2.1 and 2.2, considering s+ t =

n− 2Δ + 3 , we have

Z(G0) = 2Δ−2Z(Cs+t) + (Δ− 2)2Δ−2Z(Cs+t) + 2Δ−22Z(Ps+t−1)

= Δ2Δ−3(Fn−2Δ+4 + Fn−2Δ+2) + 2Δ−1Fn−2Δ+3 .

If n/2 < Δ ≤ (n+ 3)/2 , then we claim that G is not in G0 . Otherwise the order

of G = θ
(1)
2,s,t(2

Δ−2) would be s+ t+1+2(Δ− 2) = s+ t+2Δ− 3 ≥ 2Δ > n , which is

impossible. From the above arguments, we conclude that G ∼= C
(0)
3,n−2Δ+6(2

Δ−4) with

Z(C
(0)
3,n−2Δ+6(2

Δ−4)) = 2Δ−3Fn−2Δ+9 + 2Δ−4(Δ− 6)Fn−2Δ+6 .
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Set D = Z(C
(0)
3,n−2Δ+6(2

Δ−4)) − Z(θ
(1)
2,s,t(2

Δ−2)) . For the case when Δ ≤ n/2 , we

have

D = 2Δ−4[2Fn−2Δ+9 + (Δ− 6)Fn−2Δ+6 − 2Δ(Fn−2Δ+4 + Fn−2Δ+2)− 8Fn−2Δ+3]

= 2Δ−4[2(F4Fn−2Δ+6 + F3Fn−2Δ+5)− 6Fn−2Δ+6 − 8Fn−2Δ+3

+ Δ(Fn−2Δ+3 − 2Fn−2Δ+2)]

= 2Δ−4[4Fn−2Δ+2 −ΔFn−2Δ] .

It is easy to see that D > 0 if 4 ≤ Δ < 11 or Δ = n/2 , and D < 0 if 11 ≤ Δ < n/2 .

Therefore our result in this theorem follows immediately. �

* * * * *

As a concluding remark we note that the chemically interesting cases are Δ = 3

and Δ = 4 . This is because the usual molecular graphs to which the Hosoya index

is applied have maximum vertex degrees not greater than 4. The case Δ = 3 was

implicitly resolved long time ago [9, 10], see at the beginning of Section 3. The

bicyclic molecular graphs with maximal Hosoya index and Δ = 4 are determined

within Theorem 3.2 (a).
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