
Signless Laplacian Estrada Index

Singaraj K. Ayyaswamya, Selvaraj Balachandrana,

Yanamandram B. Venkatakrishnana and Ivan Gutmanb

aDepartment of Mathematics, Sastra University, Tanjore, India

bFaculty of Science, University of Kragujevac,
P. O. Box. 60, 34000 Kragujevac, Serbia

(Received November 14, 2010)

Abstract

Let G be a simple (n,m)-graph. Let λ1, λ2, . . . , λn and q1, q2, . . . , qn be, respectively, the
eigenvalues of the adjacency matrix, and the signless Laplacian matrix of G . The Estrada
index of the graph G is

∑n
i=1 eλi . We define and investigate the signless Laplacian Estrada

index,
∑n

i=1 eqi and establish lower and upper bounds for it in terms of the number of
vertices and number of edges.

1 Introduction

Let G be a simple graph with n vertices and m edges. Such a graph will be referred to

as an (n, m)-graph. The eigenvalues of G are the eigenvalues of the adjacency matrix

A(G) of G , and will be denoted by λ1 ≥ λ2 ≥ · · · ≥ λn . The Laplacian matrix

of G is L(G) = D(G) − A(G) , where D(G) = diag(d1, d2, . . . , dn) is the diagonal

matrix of vertex degrees of G . Its eigenvalues are denoted by μ1, μ2, . . . , μn . The

matrix L+(G) = D(G) + A(G) is called the signless Laplacian matrix of G , and its

eigenvalues will be denoted by q1, q2, . . . , qn .
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The basic properties of the graph eigenvalues can be found in the books [5, 8],

whereas the elements of the Laplacian spectral graph theory in the reviews [19,20,32,

33]. Studies of the spectral properties of the matrix L+(G) started only a few years

ago, but already a large number of results has been obtained [1,4,6,7,9,10,27,35,37].

A graph–spectrum–based invariant, recently put forward [17], is defined as

EE = EE(G) =

n∑
i=1

eλi (1)

and was eventually named [11] the Estrada index . For details on the theory of the

Estrada index see the reviews [14, 21], the recent papers [3, 12, 13, 30, 34, 38] and the

references cited therein.

The Laplacian–spectral counterpart of the Estrada index was defined in full anal-

ogy with Eq. (1) as [18]

LEE = LEE(G) =

n∑
i=1

eμi

and independently as [31]

LEELSC(G) =
n∑

i=1

e(μi−2m/n) .

These two definitions are, of course, essentially equivalent, since LEELSC = e−2m/n×
LEE . For details on the theory of the Laplacian Estrada index see the recent papers

[3, 15,29,39,40] and the references cited therein.

We now define the signless Laplacian Estrada index as

SLEE = SLEE(G) =

n∑
i=1

eqi . (2)

Remark 1. SLEE and LEE coincide in the case of bipartite graphs. This is an

immediate consequence of the well known fact [19,20] that the Laplacian and signless

Laplacian spectra of bipartite graphs coincide. Since the vast majority of molecular

graphs are bipartite, for them SLEE gives nothing new relative to the previously

studied LEE. Chemically interesting case in which SLEE and LEE differ are the

fullerenes, fluoranthenes and other non-alternant conjugated species [2, 16,22–24].
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2 (n,m)-Type estimates of the signless Laplacian

Estrada index of general graphs

Theorem: 1. Let G be an (n, m)-graph. Then the signless Laplacian Estrada index

of G is bounded as√
n + 4m + n(n − 1) e4m/n ≤ SLEE(G) ≤ n − 1 + e

√
(n2−n+2m)m . (3)

Equality on both sides of (3) is attained if and only if G ∼= Kn .

Proof: Denoting
n∑

i=1

qk
i by Tk = Tk(G) , and bearing in mind the power–series expan-

sion of ex , we have

SLEE(G) =
∞∑

k=0

Tk

k!
. (4)

In the proof of Theorem 1 and of the subsequent estimates we shall frequently use

the following results for the first few moments of the signless Laplacian spectrum of

an (n,m)-graph [6]:

T0 = n ; T1 = 2m ; T2 = 2m +
n∑

i=1

d2
i . (5)

Lower bound.

The considerations that follow emulate the proof technique used in Ref. [11].

Directly from the definition of the signless Laplacian Estrada index, Eq.(2), we get

SLEE(G)2 =
n∑

i=1

e2qi + 2
∑
i<j

eqieqj . (6)

In view of the inequality between the arithmetic and geometric means,

2
∑
i<j

eqi eqj ≥ n(n − 1)

(∏
i<j

eqieqj

) 2
n(n−1)

= n(n − 1)

⎡⎣( n∏
i=1

eqi

)n−1
⎤⎦ 2

n(n−1)

= n(n − 1)
(
eT1
)2/n

= n(n − 1) e4m/n . (7)

By means of a power series expansion, and bearing in mind the properties of T0 , T1 ,

and T2 , we get

n∑
i=1

e2qi =
n∑

i=1

∑
k≥0

(2qi)
k

k!
= n + 4m +

n∑
i=1

∑
k≥2

(2qi)
k

k!
.
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We use a multiplier γ ∈ [0, 4] , so as to arrive at

n∑
i=1

e2qi ≥ n + 4m + γ

n∑
i=1

∑
k≥2

(qi)
k

k!

= n + 4m − γn − 2mγ + γ

n∑
i=1

∑
k≥0

qk
i

k!

which implies
n∑

i=1

e2qi ≥ (1 − γ)n + (4 − 2λ)m + γ SLEE . (8)

By substituting (7) and (8) back into (6), and solving for SLEE we obtain

SLEE ≥ γ

2
+

√
γ2

4
+ n(1 − γ) + (4 − 2γ)m + n(n − 1) e4m/n . (9)

It is elementary to show for n ≥ 2 , the function

f(x) ≥ x

2
+

√
x2

4
+ n(1 − x) + (4 − 2x)m + n(n − 1) e4m/n

monotonically decreases in the interval [0, 4] . Consequently, the best lower bound

for SLEE is attained for γ = 0 . Setting γ = 0 in (9), we arrive at the first half of

Theorem 1.

Upper bound.

Starting with equation (4), we get

SLEE = n +

n∑
i=1

∑
k≥1

(qi)
k

k!
= n +

∑
k≥1

1

k!

n∑
i=1

[(qi)
2]k/2

= n +
∑
k≥1

1

k!
(T

k/2
2 ) = n +

∑
k≥1

1

k!

(
2m +

n∑
i=1

d2
i

)k/2

= n +
∑
k≥1

1

k!

[
2m + m

(
2m

n − 1
+ n − 2

)]k/2

= n − 1 +
∑
k≥0

1

k!
[(n2 − n + 2m)m]k/2

= n − 1 +
∑
k≥0

e
√

(n2−n+2m)m

which leads to the right hand side inequality in (3). �
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Remark 2. The expressions for the first spectral moments of the Laplacian eigen-

values are exactly same as those stated in Eq. (5). Therefore, any result for SLEE ,

based on Eq. (5), will automatically hold also for LEE . However, in the case of

Laplacian Estrada index one may use the additional condition μn = 0 (which has

no counterpart in the case of signless Laplacian eigenvalues). With this additional

condition, bounds for LEE can be deduced that are better than those reported in

this paper.

3 Lower bound on the signless Laplacian Estrada

index of graphs

In this section we establish another lower bound on the signless Laplacian Estrada

index. A lower bound on the spectral radius in terms of chromatic number k is given

by the following:

Lemma: 1. [36] Let G be simple graph with chromatic number k . Then

λ1 ≥ k − 1 . (10)

For a connected graph G , λ1 = k − 1 if and only if G ∼= Kn or G is the cycle Cn of

odd length.

The next result gives a relationship between the largest eigenvalue of the adjacency

matrix and of the signless Laplacian matrix.

Lemma: 2. [7] Let G be graph on n vertices. Then 2λ1 ≤ q1 . Equality holds if and

only if G is regular.

Combining Lemmas 1 and 2 we arrive at:

Lemma: 3. Let G be a graph on n vertices. Then q1 ≥ 2(k − 1) . Equality holds if

and only if G ∼= Kn or G is the cycle Cn of odd length.

Theorem: 2. Let G be simple connected (n,m)-graph with chromatic number k .

Then

SLEE(G) ≥ e2(k−1) + (n − 1) e−[2(k−1)−2m]/(n−1) . (11)

Equality in (11) holds if and only if G ∼= Kn .
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Proof: Since G is connected, q1 ≥ 0 . Then by the arithmetic–geometric–mean

inequality,

SLEE(G) = eq1 + eq2 + · · · + eqn ≥ eq1 + (n − 1)

(
n∏

i=2

eqi

)1/(n−1)

(12)

which in view of
n∑

i=1

qi = 2m implies

SLEE(G) ≥ eq1 + (n − 1)(e2m−q1)1/(n−1) . (13)

Consider the function f(x) = ex +(n−1) e−(x−2m)/(n−1) . Since for x > 0 f
′
(x) =

ex − e(2m−x)/(n−1) > 0 , this is a monotonically increasing function for x > 0 . From

(10) and (13) we arrive at (11).

Suppose now that equality holds in (11). Then equality must hold also in (12)

and (13). From equality in (12) and by the arithmetic–geometric–mean inequality,

we get q2 = q3 = q4 = · · · = qn . From equality in (11), we get q1 = 2(k − 1) . Since

q2 = q3 = q4 = · · · = qn and q1 = 2(k − 1) , by Lemma 3, G ∼= Kn .

Conversely, one can easily see that equality in (11) holds for the complete graph

Kn . �
A lower bound on the signless Laplacian spectral radius in terms of n and m of a

connected graph G is the following:

Lemma: 4. [6] Let G be a connected (n,m)-graph. Then

q1 ≥ 4m

n
(14)

with equality if and only if G is a regular graph.

Theorem: 3. Let G be a simple connected (n,m)-graph. Then

SLEE(G) ≥ e4m/n + (n − 2) e2m/n + 1 . (15)

Equality holds in (15) if and only if G ∼= Kp,p .

Proof: Since G is connected, q1 > 0 and qn ≥ 0 . Then,

SLEE(G) = eq1 + eq2 + · · · + eqn

≥ eq1 + eqn + (n − 2)

(
n−1∏
i=2

eqi

)1/(n−2)

(16)

= eq1 + eqn + (n − 2) e(2m−q1−qn)/(n−2)
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as
n∑

i=1

qi = 2m .

Now we consider the function f(x, y) = ex + ey + (n − 2) e(2m−x−y)/(n−2) , for

x > 0 ,y ≥ 0 . In order to find its minimum we calculate

fx = ex − e(2m−x−y)/(n−2)

fy = ey − e(2m−x−y)/(n−2)

fxx = ex +
1

n − 2
e(2m−x−y)/(n−2)

fxy = fyx =
1

n − 2
e(2m−x−y)/(n−2)

fyy = ey +
1

n − 2
e(2m−x−y)/(n−2) .

We further have

fx = fy = 0 ⇒ (n − 1)x + y = 2m

and

x + (n − 1)y = 2m ⇒ x + y =
4m

n
.

For x + y = 4m/n , it is fxx > 0 and

fxx fyy − f 2
xy = e4m/n +

1

n − 2
e2m/n

[
ex + e4m/n−x

]
> 0 .

From the above, we conclude that f(x, y) has a minimum value at x + y = 4m/n

and that the minimum value is ex + e4m/n−x + (n − 2) e(2m−4m/n)/(n−2) . Therefore,

ex + e4m/n−x +(n− 2) e(2m−4m/n)/(n−2) is an increasing function for x > 0 . By Lemma

4, q1 ≥ 4m/n . Thus,

eq1 + e4m/n−q1 + (n − 2) e(2m−4m/n)/(n−2)

≥ e4m/n + e(4m/n)−(4m/n) + (n − 2) e(2m−4m/n)/(n−2) . (17)

Inequality (15) follows.

Suppose now that equality holds in (15). Then all inequalities in the above ar-

gument must be equalities. From equality in (17) and Lemma 4, we get that G is

regular.
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From equality in (16) and
n∑

i=1

qi = 2m , we get q2 = q3 = q4 = · · · = qn−1 = 2m/n

as q1 + qn = 4m/n . Thus, q1 = 4m/n , qn = 0 , q2 = q3 = q4 = · · · = qn−1 = 2m/n .

Hence G is the complete bipartite graph Kp,p , where n = 2p . Conversely, one can

easily see that equality holds in (15) for the complete bipartite graph Kp,p . This

completes the proof. �
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