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Abstract

Let G be a simple graph of order n with m edges. The Laplacian Estrada index of G is

defined as LEE = LEE(G) =
n∑

i=1
e(μi−2m/n), where μ1, μ2, . . . , μn are the Laplacian eigenvalues

of G. In this note, we present two sharp lower bounds for LEE and characterize the graphs for

which the bounds are attained.

1 Introduction

Let G = (V,E) be a simple graph. Let n and m be the number of vertices and edges of

G, respectively. Such a graph will be referred to as an (n, m)-graph.

Let A(G) be the adjacency matrix of G and D(G) be the diagonal matrix with degrees

of the corresponding vertices of G on the main diagonal and zero elsewhere. The matrix

L(G) = D(G) − A(G) is called the Laplacian matrix of G. Since A(G) and L(G) are

real symmetric matrices, their eigenvalues are real numbers. So, we can assume that

λ1 ≥ λ2 ≥ · · · ≥ λn, and μ1 ≥ μ2 ≥ · · · ≥ μn = 0 are the adjacency eigenvalues and the

Laplacian eigenvalues of G, respectively. The multiset of eigenvalues of A(G) (L(G)) is

called the adjacency (Laplacian) spectrum of G.
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The Estrada index of the graph G was defined in [3] as:

EE(G) =
n∑

i=1

eλi . (1.1)

Motivated by its chemical applications proposed by Ernesto Estrada [7], the mathe-

matical properties of the Estrada index have been studied in a number of recent works

[1, 3–5,13, 15–18], for details see the review [11].

In analogy with Eq. (1.1), the Laplacian Estrada index of a graph G was defined

in [14] as:

LEE(G) =
n∑

i=1

eμi−2m/n . (1.2)

Independently of [14], another variant of the Laplacian Estrada index was put forward

in [8], defined as

LEE[8](G) =
n∑

i=1

eμi . (1.3)

Evidently, LEE[8](G) = e2m/n LEE(G), and therefore results obtained for LEE can be

immediately re-stated for LEE[8] and vice versa.

Some basic properties of the Laplacian Estrada index were determined in the papers

[6,8,12,14,19,20]. In particular, the appropriate relations between the Laplacian Estrada

index and the Laplacian energy, the first Zagreb index, the Estrada index of the graph

and the Estrada index of its line graph were established in [8, 14, 20]. So, it is significant

and necessary to further investigate the relation between the Laplacian Estrada index of

a graph and its graph-theoretic properties.

In this note, we present two lower bounds for the Laplacian Estrada index of a graph

in terms of its maximum degree and characterize the graphs for which the bounds are

attained.

2 Preliminaries

For any e ∈ E(G), we use G− e to denote the graph obtained by deleting e from G. Let

G be the complement of the graph G. The vertex-disjoint union of the graphs G1 and G2

is denoted by G1 ∪G2. Let G1 ∨G2, the join graph of G1 and G2, be the graph obtained

from G1 ∪ G2 by adding all possible edges from vertices of G1 to vertices of G2, i. e.,

G1 ∨ G2 = G1 ∪G2. The following result describes the relation between the Laplacian

spectrum of G and the Laplacian spectrum of its complement G.
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Proposition 2.1. ( [9, p.280]) Let G be a graph of order n. Then μi(G) = n−μn−i(G)

for 1 ≤ i ≤ n− 1.

Let Kn, Sn and Ka, b (a + b = n) be the complete graph, the star, and the complete

bipartite graph, of order n, respectively. The maximum degree of G is denoted by Δ. The

lower bound on the Laplacian spectral radius of G in terms of its maximum degree was

described as follows.

Lemma 2.2 ( [10]). Let G be a graph containing at least one edge. Then μ1(G) ≥ Δ+1.

Moreover, if G is connected of order n > 1, then the equality holds if and only if Δ = n−1.

Lemma 2.3 ( [2]). Let G be a simple connected graph of order n. Then μ2 = μ3 = · · · =
μn−1 if and only if G ∼= Sn, G ∼= Kn or G ∼= Kn/2, n/2 (n is even).

Lemma 2.4 ( [2]). Let G be a simple connected graph of order n. Then μ1 = μ2 = · · · =
μn−2 if and only if G ∼= Kn or G ∼= Kn − e, where e is any edge of Kn.

Note that for each graph G of order n, μ1 ≤ n, and the equality holds if and only

if G is disconnected. Therefore, it is easy to check that μ1(Sn) = μ1(Kn) = μ1(Ka, b) =

μ1(Kn − e) = n, where a + b = n and e is any edge of Kn. Lemmas 2.3 and 2.4 give a

characterization for the special case that the graphs with at most three distinct Laplacian

eigenvalues. In what follows, we will extend the results just mentioned.

Lemma 2.5. Let G be a simple graph of order n. Then μ1 = n and μ2 = · · · = μn−2 if

and only if G ∼= Kn, G ∼= Kn − e, G ∼= Sn, G ∼= K1 ∨ (K1 ∪Kn−2), G ∼= Kn/2, n/2 (n is

even), G ∼= K1 ∨ (K(n−1)/2 ∪ K(n−1)/2) (n is odd) or G ∼= Kn/3 ∨ (Kn/3 ∪ Kn/3) (n ≡ 0

mod 3).

Proof. G is connected since μ1 = n. Let μ2 = · · · = μn−2 = a.

If a = μ1 = n, then Lemma 2.4 implies that G ∼= Kn or G ∼= Kn − e.

If a = μn−1, then Lemma 2.3 implies that G ∼= Sn, G ∼= Kn or G ∼= Kn/2, n/2 (n is

even).

If μn−1 < a < μ1 = n, then G is disconnected with two components since n is a

Laplacian eigenvalue of G with multiplicity 1. We may write G as G1 ∪ G2, where G1

and G2 are two components of G, and assume that |Gi| = ni for i = 1, 2 (n1 ≤ n2). By

Proposition 2.1, the Laplacian eigenvalues of G are: n−μn−1, n− a, . . . , n− a︸ ︷︷ ︸
n−3

, 0, 0. We

consider the following two cases.

Case 1. n1 = 1. The Laplacian eigenvalues of G2 are n − μn−1, n− a, . . . , n− a︸ ︷︷ ︸
n−3

, 0.

Since n − a < n − μn−1, by Lemma 2.3, we have G2
∼= Sn−1 or G2

∼= K(n−1)/2, (n−1)/2
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(n is odd). Hence G ∼= K1 ∨ Sn−1 = K1 ∨ (K1 ∪ Kn−2) or G ∼= K1 ∨ K(n−1)/2, (n−1)/2 =

K1 ∨ (K(n−1)/2 ∪K(n−1)/2) (n is odd).

Case 2. n1 > 1. Since G has only two distinct nonzero Laplacian eigenvalues and one

of them is of multiplicity 1; thus at least one of G1 or G2 is complete. Following, we will

show that only G1 is complete. It is easy to see that the case that both G1 and G2 are

complete is impossible (otherwise, it contradicts the fact that only one nonzero Laplacian

eigenvalue is of multiplicity 1 in G). So, it suffices to show that G2 is not complete.

Suppose that G2 is complete. Then n− a = n2 and n− μn−1 ≤ n1 ≤ n2, i. e., μn−1 ≥ a,

which is a contradiction. Hence G2 has only two distinct nonzero Laplacian eigenvalues

and one of them is of multiplicity 1. By Lemma 2.3, we have G2
∼= Sn2 or G2

∼= Kn2/2, n2/2

(n2 is even). Recall that G1 is complete, i. e., n−a = n1. If G2
∼= Sn2 , then n1 = 1. It is a

contradiction. ThusG2
∼= Kn2/2, n2/2 (n2 is even). Hence n−a = n1 = n2/2, i. e., n2 = 2n1.

Therefore n1 = n/3 and n2 = 2n/3. Hence G ∼= Kn/3 ∨Kn/3, n/3 = Kn/3 ∨ (Kn/3 ∪Kn/3)

(n ≡ 0 mod 3).

It is easy to check that the converse holds. Hence the proof is completed. �

3 Main results

In this section, we present two lower bounds for the Laplacian Estrada index of G in terms

of its maximum degree Δ, and characterize the graphs for which equalities are attained.

Theorem 3.1. Let G be a connected (n, m)-graph with maximum degree Δ. Then

LEE(G) ≥ eΔ+1−2m/n + (n− 2)(e4m/n−Δ−1)1/(n−2) + e−2m/n. (3.4)

Moreover, the equality holds if and only if G ∼= Kn or G ∼= Sn.

Proof. Since μn = 0, we have

LEE(G) = eμ1−2m/n + eμ2−2m/n + · · ·+ eμn−1−2m/n + e−2m/n

≥ eμ1−2m/n + (n− 2)(
n−1∏
i=2

eμi−2m/n)1/(n−2) + e−2m/n

by the arithmetic–geometric mean inequality, and thus

LEE(G) = eμ1−2m/n + (n− 2)(e4m/n−μ1)1/(n−2) + e−2m/n

as
n∑

i=1

(μi − 2m/n) = 0.
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Now we consider the function

f(x) = ex + (n− 2)(e2m/n−x)1/(n−2) + e−2m/n, for x ≥ 1 .

We have

f ′(x) = ex − (e2m/n−x)1/(n−2) .

It is easy to see that, for any (n, m)-graph, 2m ≤ n(n − 1). Thus f ′(x) ≥ 0 and

f(x) is an increasing function for x ≥ 1 ≥ 2m/[n(n − 1)]. By Lemma 2.2, we have

μ1 − 2m/n ≥ Δ+ 1− 2m/n ≥ 1. Hence we have

LEE(G) = f(μ1 − 2m/n) ≥ f(Δ + 1− 2m/n)

= eΔ+1−2m/n + (n− 2)(e4m/n−Δ−1)1/(n−2) + e−2m/n .

This completes the proof of (3.4).

Suppose that the equality in (3.4) holds. Then all inequalities in the above argument

must be equalities, i. e., μ1 = Δ + 1 and μ2 = · · · = μn−1. Hence by Lemmas 2.2 and

2.3, we have G ∼= Kn or G ∼= Sn.

Conversely, it is easy to check that the equality in (3.4) holds for Kn and Sn, and so

the proof is completed. �

Theorem 3.2. Let G be a connected (n,m)-graph with maximum degree Δ. Then

LEE(G) ≥ e−2m/n
(
eΔ+1 + e4m/(n−1)−Δ−1 + (n− 3) e2m/(n−1) + 1

)
. (3.5)

Moreover, the equality holds if and only if G ∼= Kn or G ∼= K1 ∨ (K(n−1)/2 ∪K(n−1)/2) (n

is odd).

Proof. Since μn = 0, we have

LEE(G) = eμ1−2m/n + eμ2−2m/n + · · ·+ eμn−1−2m/n + e−2m/n

≥ eμ1−2m/n + eμn−1−2m/n + (n− 3)

(
n−2∏
i=2

eμi−2m/n

)1/(n−3)

+ e−2m/n

= eμ1−2m/n + eμn−1−2m/n + (n− 3)
(
e6m/n−(μ1+μn−1)

)1/(n−3)
+ e−2m/n

as
n∑

i=1

(μi − 2m/n) = 0.

Consider the function

f(x, y) = ex + ey + e−2m/n + (n− 3)(e2m/n−(x+y))1/(n−3), for x ≥ 1, y ≤ 0 .
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We have
fx = ex − (e2m/n−(x+y))1/(n−3)

fy = ey − (e2m/n−(x+y))1/(n−3)

fxx = ex + 1/(n− 3)(e2m/n−(x+y))1/(n−3)

fxy = 1/(n− 3)(e2m/n−(x+y))1/(n−3) and

fyy = ey + 1/(n− 3)(e2m/n−(x+y))1/(n−3) .

Now suppose that fx = fy = 0. We have x+ y = 4m/[n(n− 1)]. For this case, we have

fxx > 0 , fyy > 0 and fxxfyy − f 2
xy > 0 .

Hence we see that f(x, y) has a minimum value at x + y = 4m/[n(n − 1)] and the

minimum value is ex+e4m/[n(n−1)]−x+(n−3)(e2m/[n(n−1)])+e−2m/n. Since 4m/[n(n−1)] ≤ 2,

it is easy to show that

g(x) = ex + e4m/[n(n−1)]−x + (n− 3) e2m/[n(n−1)] + e−2m/n

is an increasing function for x ≥ 1. By Lemma 2.2, we have μ1−2m/n ≥ Δ+1−2m/n ≥ 1.

Hence we have

LEE(G) = f

(
μ1 − 2m

n
, μn−1 − 2m

n

)

≥ f

(
Δ+ 1− 2m

n
,

4m

n(n− 1)
−Δ− 1 +

2m

n

)

= e−2m/n
(
eΔ+1 + e4m/(n−1)−Δ−1 + (n− 3) e2m/(n−1) + 1

)
.

This completes the proof of (3.5).

Now, suppose that the equality in (3.5) holds. Then all inequalities in the above

argument must be equalities, i. e.,

μ1 = Δ+ 1, μ1 + μn−1 =
4m

n(n− 1)
+

4m

n
and μ2 = · · · = μn−2 .

Lemma 2.2 implies that Δ = n−1 and μ1 = n. Hence by Lemma 2.5, we can check easily

that only G ∼= Kn and G ∼= K1 ∨ (K(n−1)/2 ∪ K(n−1)/2) (n is odd) satisfy the condition

that

μ1 + μn−1 =
4m

n(n− 1)
+

4m

n
=

4m

n− 1
.

Conversely, it is easy to check that the equality in (3.5) holds for the graphs in Theo-

rem 3.2. Hence the proof is completed. �
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