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Abstract

Assume that μ1, μ2, . . . , μn are the eigenvalues of the Laplacian matrix of a graph G .

The Laplacian Estrada index of G , is defined as LEE(G) =
∑n

i=1 e
μi . In this note, we give

upper bounds for LEE(G) in terms of connectivity or matching number and characterize

the corresponding extremal graphs.

1 Introduction

In this paper all graphs are finite and simple. The join, G1

∨
G2 , of the graphs G1

and G2 is the graph obtained from the disjoint union G1

⋃
G2 by adding new edges

from each vertex in G1 to every vertex in G2 . Let G = (V (G), E(G)) be a graph

with n vertices. By G− U we mean the induced subgraph G[V − U ] , if U ⊂ V (G) .

The adjacency matrix of G is A(G) = ||aij||n×n , where aij = 1 if two vertices ui and

uj are adjacent in G and aij = 0 otherwise. Since A(G) is a real symmetric, it has

only real eigenvalues, which can be ordered as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) .
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Let D(G) = diag(d1, d2, . . . , dn) be the the diagonal matrix of vertex degrees of

G . We call the matrix L(G) = D(G) − A(G) Laplacian matrix of G . It is well

known that L(G) is a real positive semidefinite matrix and its eigenvalues can be

ordered as μ1(G) ≥ μ2(G) ≥ · · · ≥ μn(G) = 0 . Denote the spectrum of L(G) by

S(G) = (μ1, μ2, . . . , μn) . It is well known that μi(G) = n−μn−i(G) for 1 ≤ i ≤ n−1 .

We refer the reader to [13,18] for further information on the Laplacian matrix.

Recall that the Estrada index of a simple connected graph G , recently put forward

by Estrada [6], is defined by

EE(G) =
n∑

i=1

eλi .

The Estrada index has already found extensive applications, e. g., in chemistry [6,7],

in complex networks [8], in statistical thermodynamics [9,10]. For recent research on

EE see [3, 4, 15,19,20].

Quite recently, in full analogy with the Estrada index, the Laplacian Estrada index

of the graph G , LEE for short, was introduced in [11] as

LEE(G) =
n∑

i=1

eμi . (1)

Given a graph G of order n withm edges, independently, in [16] the Laplacian Estrada

index was defined as

LEELSC(G) =
n∑

i=1

eμi−2m/n .

It is easy to see that two “Laplacian Estrada indices” are essentially equivalent in

view of LEE(G) = LEELSC(G) × e2m/n . In the following we use the definition (1).

Some properties of LEE have been reported in [1, 5, 11, 14,16,21, 22].

Let k ≥ 1 . We say that a graph G is k-connected if either G is the complete graph

Kk+1 , or G has at least k + 2 vertices and contains no (k − 1)-vertex cut. Similarly,

G is k-edge-connected if it has at least two vertices and does not contain (k− 1)-edge

cut. The maximum value of k for which a connected graph G is k-connected is the

connectivity of G , denoted by κ(G) . If G is disconnected, we define κ(G) = 0 . The

edge-connectivity κ′(G) is defined analogously. If G is a graph of order n , then (1)

κ(G) ≤ κ′(G) ≤ n − 1 , and (2) the three statements κ(G) = n − 1 , κ′(G) = n − 1

and G ∼= Kn are equivalent.
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Two distinct edges in a graph G are independent if they are not incident with a

common vertex in G . A set of pairwise independent edges in G is called a matching in

G . A matching of maximum cardinality is a maximum matching in G . The matching

number β(G) of G is the cardinality of a maximum matching of G . It is well known

that β(G) ≤ n/2 with equality if and only if G has a perfect matching. For the other

graph theoretical terms used but not defined, we follow the book [2].

In this note, we determine the extremal graphs with given connectivity k max-

imizing the Laplacian Estrada index. Moreover, we also characterize the n-vertex

graphs with given matching number having the maximal Laplacian Estrada index.

2 The Laplacian Estrada index and connectivity

Lemma 1. [12, p. 291] Let G be a simple non-complete graph with n vertices. If

G + e is obtained from G by adding an edge e to G , then 0 = μn(G) ≤ μn(G + e) ≤
· · · ≤ μ2(G) ≤ μ2(G+ e) ≤ μ1(G) ≤ μ1(G+ e) .

Noting that
∑n

i=1 μi(G+e)−∑n
i=1 μi(G) = 2 , we immediately obtain the following

result by Lemma 1.

Lemma 2. Let G be a simple non-complete graph with n vertices. Then LEE(G) <

LEE(G+ e) .

In the following, we will present one main result of this paper.

Theorem 1. Let G be a graph of order n with vertex connectivity k . Then LEE(G) ≤
k en + (n− k− 2) en−1 + ek + 1 with equality if and only if G ∼= Kk

∨
(K1

⋃
Kn−k−1) .

Proof. Let G be a graph of order n with given vertex connectivity k . It is clear for

k = n − 1 . Thus, we can suppose that 1 ≤ k ≤ n − 2 in the following. Assume

that G has the maximal Laplacian Estrada index among all all connected graphs

with n vertices and vertex connectivity k . By hypothesis there exists a vertex cut

set U of order k such that G − U is disconnected. Let G1, G2, . . . , Gr be connected

components of G − U . If r > 2 , then adding an edge between G1 and G2 will

preserve the connectivity ofG but increase the Laplacian Estrada index by Lemma 2, a

contradiction. Thus, r = 2 . Similarly, we also have all of G[U ] , G1 and G2 are cliques
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and every vertex in U is adjacent to all vertices in G1 and G2 in view of Lemma 2.

Consequently, G can be written as Kk

∨
(Ki

⋃
Kn−k−i) for 1 ≤ i ≤ (n− k)/2 .

It is well known that S(Kp) = (p, p, . . . , p︸ ︷︷ ︸
p−1

, 0) . Noting that

S(G) = S(Ki,n−k−i

⋃
Kk)

=

⎛
⎝n− k, n− k − i, . . . , n− k − i︸ ︷︷ ︸

i−1

, i, . . . , i︸ ︷︷ ︸
n−k−i−1

, 0, . . . , 0︸ ︷︷ ︸
k+1

⎞
⎠

we have

S(G) = (n, . . . , n︸ ︷︷ ︸
k

, n− i, . . . , n− i︸ ︷︷ ︸
n−k−i−1

, i+ k, . . . , i+ k︸ ︷︷ ︸
i−1

, k, 0) .

Consequently, we obtain that

LEE(G) = ken + ek + (i− 1)ei+k + (n− k − i− 1)en−i + 1 .

Assume that g(x) = (x− 1) ex+k + (n− k − x− 1) en−x . It is clear that

g′(x) = x ex+k − (n− k − x) en−x ≤ 0

for 1 ≤ x ≤ (n− k)/2 with equality if and only if x = (n− k)/2 . Hence, we have

LEE(G) ≤ k en + ek + (n− k − 2) en−1 + 1

where equality holds if and only if G ∼= Kk

∨
(K1

⋃
Kn−k−1) , as required.

As well known, κ(G) ≤ κ′(G) ≤ δ(G) . Note that Kk

∨
(K1

⋃
Kn−k−1) has mini-

mum degree k and edge connectivity k and the function k en+ek+(n−k−2) en−1+1

is increasing with respect to k . Thus the following corollaries immediately follows

from Theorem 1.

Corollary 1. Let G be a graph of order n with given edge connectivity k . Then

LEE(G) ≤ k en + ek + (n − k − 2) en−1 + 1 , where equality holds if and only if

G ∼= Kk

∨
(K1

⋃
Kn−k−1) .

Corollary 2. Let G be a graph with n vertices and minimum degree k . Then

LEE(G) ≤ k en + ek + (n − k − 2) en−1 + 1 , where equality holds if and only if

G ∼= Kk

∨
(K1

⋃
Kn−k−1) .
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3 The Laplacian Estrada index and chromatic num-

ber

Obviously, β(G) = 0 if and only if G is an empty graph. A component of a graph

is said to be even (respectively odd ) if it has an even (respectively odd) number of

vertices. The following Tutte–Berge formula is very important.

Lemma 3. [17] Let G be a graph of order n with matching number β . Let o(G) be

the number of odd components of G . Then

n− 2β = max{o(G− S)− |S| : S ⊂ V (G)}.

In what follows we present a result for Laplacian Estrada index related to matching

number.

Theorem 2. Let G be a connected graph with n vertices and matching number β .

(i) If β = �n/2	 , then LEE(G) ≤ (n−1) en+1 with equality if and only if G ∼= Kn .

(ii) If 1 ≤ β < �n/2	 , then LEE(G) ≤ 1+β en+(n−β− 1) eβ with equality if and

only if G ∼= Kβ

∨
Kn−β .

Proof. Let G be a graph with the maximum LEE among all connected graphs with

n vertices and matching number β . Then by Lemma 3 there exists a subset S of

V (G) on s vertices such that G− S has n+ s− 2β odd components.

Assume that s = 0 . It follows that G − S = G and n − 2β ≤ 1 . If n − 2β = 0 ,

then β = n/2 , and if n − 2β = 1 , then β = (n − 1)/2 . In either case, by Lemma 2

we have G = Kn and LEE(G) = (n− 1) en + 1 .

In what follows, we suppose that s ≥ 1 . So n−2β+s ≥ 1 . LetG1, G2, . . . , Gn−2β+s

be the odd components of G− S . If G− S has an even component, then by adding

an edge to G joining a vertex of an even component and a vertex of an odd compo-

nent of G − S , we obtain a graph G∗ , for which n − 2β(G∗) ≥ o(G∗ − S) − s =

o(G − S) − s . This implies that β(G∗) = β . However LEE(G∗) > LEE(G)

by Lemma 2, a contradiction. Hence G − S does not have an even component.

Similarly, G1, G2, . . . , Gn−2β+s and G[S] are all cliques, and every vertex in S is

adjacent to all vertices in G1, G2, . . . , Gn−2β+s . Consequently, we can write G as
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Ks

∨
(Kn1

⋃
Kn2

⋃ · · ·⋃Knn−2β+s
) , where ni = |V (Gi)| for 1 ≤ i ≤ n−2β+s . With-

out loss of generality, we can suppose that n1 ≤ n2 ≤ . . . ≤ nn−2β+s . Note that

S(Kp) = (p, p, . . . , p︸ ︷︷ ︸
p−1

, 0) . It is easy to obtain that

S
(
Kn1

⋃
Kn2

⋃
· · ·

⋃
Knn−2β+s

)
= (nn−2β+s, . . . , nn−2β+s︸ ︷︷ ︸

nn−2β+s−1

, . . .

. . . , n1, . . . , n1︸ ︷︷ ︸
n1−1

, 0, . . . , 0︸ ︷︷ ︸
n−2β+s

)

S

(
Kn1

⋃
Kn2

⋃
· · ·

⋃
Knn−2β+s

)
= (n− s, . . . , n− s︸ ︷︷ ︸

n−2β+s−1

, . . .

. . . n− s− n1, . . . , n− s− n1︸ ︷︷ ︸
n1−1

, . . . , n− s− nn−2β+s, . . . , n− s− nn−2β+s︸ ︷︷ ︸
nn−2β+s−1

, 0)

S(G) = S

(
Ks

⋃
Kn1

⋃
Kn2

⋃
· · ·

⋃
Knn−2β+s

)
= (n− s, . . . , n− s︸ ︷︷ ︸

n−2β+s−1

, n− s− n1, . . . , n− s− n1︸ ︷︷ ︸
n1−1

, . . . ,

. . . n− s− nn−2β+s, . . . , n− s− nn−2β+s︸ ︷︷ ︸
nn−2β+s−1

, 0, . . . , 0︸ ︷︷ ︸
s+1

) .

Thus, we have

S(G) = (n, . . . , n︸ ︷︷ ︸
s

, s+ nn−2β+s, . . . , s+ nn−2β+s︸ ︷︷ ︸
nn−2β+s−1

, . . . ,

. . . s+ n1, . . . , s+ n1︸ ︷︷ ︸
n1−1

, s, . . . , s︸ ︷︷ ︸
n−2β+s−1

, 0) .

Therefore, we obtain that

LEE(G) = 1 + s en + (n− 2β + s− 1) es +

n−2β+s∑
i=1

(ni − 1) es+ni .

Assume that g(x) = (x− 1) es+x + (m− x− 1) es+m−x . It is easy to show that

g′(x) = xes+x − (m− x) es+m−x ≤ 0

for 1 ≤ x ≤ m/2 , where equality holds if and only if x = m/2 . This implies that

(ni − 1) en−ni + (nj − 1) en−nj < (ni − 2) en−ni+1 + nj e
n−nj−1
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for ni ≤ nj . Thus, by replacing any pair (ni, nj) with ni ≤ nj by (ni − 1, nj + 1) in

the sum
∑n−2β+s

i=1 (ni − 1) es+ni , we increase the sum. By repeating this process, we

attain the maximum of 1 + s en + (n− 2β + s− 1) es +
∑n−2β+s

i=1 (ni − 1) es+ni if and

only if n1 = n2 = . . . = nn−2β+s−1 = 1 and nn−2β+s = 2β − 2s+ 1 . It follows that G

can be written as

Ks

∨
(Kn−2β+s−1

⋃
K2β−2s+1)

and

LEE(G) = 1 + s en + (n− 2β + s− 1) es + (2β − 2s) e2β−s+1 .

Since n − s ≥ n − 2β + s , we we have s ≤ β . Suppose that h(s) = 1 + s en + (n −
2β + s− 1) es + (2β − 2s) e2β−s+1 . By taking derivatives, we have

h′′(s) = (n− 2β + s+ 1) es + 2(β − s+ 2) e2β−s+1 > 0 .

It follows that h(s) is a strictly convex function for 1 ≤ s ≤ β , and the maximum is

achieved for s = 1 or s = β . It is easy to show that

h(β)− h(1) = (β − 1) en − 2(β − 1) e2β + (n− β − 1) eβ − (n− 2β) e

≥ (β − 1) e2β+1 − 2(β − 1) e2β + (n− β − 1) eβ − (n− 2β) e

≥ 0

where equalities hold if and only if β = 1 . Thus, LEE(G) ≤ 1+β en+(n−β− 1) eβ

with equality if and only if G ∼= Kβ

∨
Kn−β . This completes the proof.
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