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Abstract

Where the characteristic polynomial of a graph G is a product or quotient of char-

acteristic polynomials of graphs {Hi}, the Estrada Index (sum of exponentials of

eigenvalues), EE(G), is evidently a linear combination of the EE(Hi). In particu-

lar, this leads to connections between Estrada Indices for σ- and π-bonded Möbius-

twisted molecular frameworks, and implies that non-bipartite Möbius graphs have a

bipartivity index that exceeds the value of unity for bipartite graphs. As examples

of Möbius cycles, ladders and polyacenes all illustrate, the effect of the half twist

washes out rapidly, and the linear asymptotic limit of EE(G) is reached for small

numbers of vertices.

1 Introduction

The Estrada Index has been proposed as a measure of branching, centrality and related

properties of large graphs1–3 and has attracted attention in chemical and mathematical

graph theory.4,5 It is calculated for a graph G of order n by taking the sum of exponentials

of eigenvalues of the adjacency matrix A(G):

EE(G) =
n∑

i=1

eλi =
n∑

i=1

Tr{eA}, (1)

with convergent expansion

EE(G) =

∞∑
i=1

μ(k)

k!
, (2)
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where μ(k) is the k-th spectral moment: μ(k) =
n∑

i=1

λk
i . Evidently, as the eigenvalues

{λi} ≡ Sp(G) are the roots of the characteristic polynomial

ϕ(G, x) = det(λ1−AG), (3)

any factorisations of ϕ imply additivity relations for EE(G). A related invariant is the

bipartivity index6

β(G) =
1

2

n∑
i=1

(eλi + e−λi)/
n∑

i=1

eλi . (4)

For making links between EE(G) and β(G), it is also useful to define

FF (G) =
n∑

i=1

e−λi , (5)

with EE(G) = FF (G), β(G) = 1 for bipartite graphs, and EE(G) > FF (G), β(G) < 1

for (unweighted) non-bipartite graphs. By definition, for all graphs:

2β(G)EE(G) = EE(G) + FF (G) (6)

A number of bounds and approximations for EE(G) are known,5 and in particular

relations have been derived for EE(G), in the case that G is one of various product

graphs.7 Empirical evidence suggests that EE(G) is essentially linear for classes of graphs

with a fixed relation between order n and size m. For example, cycles and paths have

asymptotic approximations4

EE(Cn) ≈ nI0, EE(Pn) ≈ (n+ 1)I0 − cosh(2), (7)

with8

I0 =
∞∑
k=1

1

(k!)2
= 2.279585302336067 . . . (8)
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(a) (b) (c)

Figure 1: Phase relations for σ- and π-bonded systems embedded on the Möbius strip: (a)

σ-bonded array of s orbitals; π-bonded array of overlapping p orbitals (b) lying parallel in and

(c) locally perpendicular to the Möbius strip surface. In (b) and (c), there is an unavoidable

phase interruption at the seam of the Möbius strip (shown dotted).

Both approximations are already accurate at small n. Fullerene graphs provide another

example of excellent linearity,9 with a slope within a few percent of the value of 1
3
sinh(3) ≈

3.33929 . . . predicted for cubic graphs by a general approximation in terms of n and m.10

The present note points out some simple consequences of combination relations for

EE(G) in the case where G is the skeleton of a molecular system with Möbius topology.

For several interesting classes of molecular graph, it turns out that EE(G) is sensitive to

the presence of the half-twist for small values of n only, and otherwise converges rapidly

to a linear asymptotic expression.

2 Möbius graphs

One connection of graph theory with molecular electronic structure is through the Hückel

model, where diagonalisation of the adjacency matrixA(G) gives a qualitative description

of energy levels and distribution of valence electrons in the molecular framework with

skeleton G.11 The model is usually applied to π systems, where bonding arises from

sideways overlap of p orbitals, but can also be applied to σ systems, where overlap is end-

on. For π systems with Möbius topology, an edge in each non-contractible cycle of the

embedded graph G is given weight −1, to account for the phase interruption of overlap

across the ‘seam’ of the underlying the Möbius strip.12–15 This is true, whether the locally

parallel p orbitals are lying in or perpendicular to the surface. No re-weighting of edges

is needed for σ systems (Figure 1). The two weighting schemes for an underlying graph

G are denoted by πG and σG, respectively.

A general relation between EE(σG) and EE(πG) comes from the fact that the Möbius
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strip is doubly covered by the cylinder.16 If a cylindrical surface is built from two copies of

the Möbius strip using the gluing rules illustrated in Figure 2, each point i of the starting

strip generates a pair of images i� and i��, related by inversion on the cylinder.

i
i**

i*

Figure 2: Double-cover relation for Möbius strip and cylinder surfaces. The arrows indi-
cate the gluing rules at the seams for the two copies of the Möbius strip making up the
cylinder surface populated with antipodal image points.

Likewise, a graph G1/2 embedded on the Möbius strip is doubly covered by a cen-

trosymmetric graph G1 embedded on the cylinder. It is easy to show15 that each eigen-

vector of the weighted adjacency matrix A(πG1/2) corresponds to an ungerade eigenvector

of A(G1), and each of A(σG1/2) to a gerade eigenvector, where labels denote vectors that

are odd oreven under inversion, respectively. Hence, the double-cover relationship be-

tween cylinder and Möbius strip implies a particular factorisation of the characteristic

polynomial,

ϕ(G1, x) = ϕ(σG1/2, x)× ϕ(πG1/2, x), (9)

and therefore partition of the spectrum into σ- and π-bonding halves,

Sp(G1) = Sp(σG1/2) ∪ Sp(πG1/2), (10)

which leads to some easy mini-theorems.

Theorem 1 The π and σ versions of a graph G1/2 have addition relations for the Estrada

and bipartivity indices:

EE(G1) = EE(σG1/2) + E(πG1/2), (11)

β(G1)EE(G1) = β(σG1/2)EE(σG1/2) + β(πG1/2)E(πG1/2). (12)

Proof. Directly from definitions (1) and (4).

A straightforward deduction is
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Theorem 2 The π and σ versions of a graph G1/2 have

EE(σG1/2) ≥ EE(πG1/2). (13)

Proof. The spectral moment μ(k) of a graph is equal to the number of self-returning

walks of length k, each weighted by the product of their edge weights. Moments at each k

are pairwise equal for σG1/2 and πG1/2, except where some self-returning walk of length

k in πG1/2 includes an odd number of negatively weighted edges. Each such walk adds

2k to the k-th moment for the σ graph and subtracts 2k for the π graph. Such walks are

present unless G1/2 is bipartite. Hence, by (2), the result follows. �
The first divergence of EE(σG1/2) and EE(πG1/2) occurs at μ

(k′), where k′ is the size of

the smallest noncontractible cycle, and, with nw such cycles, gives leading term

EE(σG1/2)− EE(πG1/2) =
4nw

(k′ − 1)!
+ . . . (14)

consistent with rapid convergence to equality as the order of the graph and length of the

relevant cycle(s) increase.

Another observation arises from the fact that the spectra of weighted graphs σG1/2

and πG1/2 are often connected by a symmetry relation over and above the double-cover

relation (10):

Theorem 3 If G1 is bipartite and G1/2 non-bipartite, the two spectra are mirror-paired,

in the sense that for every eigenvalue λ in Sp(σG1/2) there is an eigenvalue −λ with the

same multiplicity in Sp(πG1/2).

Proof. For the mirror property to hold, it is necessary that G1 be bipartite, since its

eigenvalues must be paired, and it is also necessary that G1/2 be non-bipartite, from the

non-degeneracy of the Perron eigenvalue of G1. Sufficiency follows by supposing G1 to be

bipartite and G(1/2) non-bipartite, and considering their subgraphs Hi and H1/2 obtained

by deleting all seam-crossing edges. Hi is bipartite and consists of two disconnected

copies of H1/2, which is therefore also bipartite. Make a bipartite colouring of the vertices

H1/2 and transfer it to G1/2. The edges of G(1/2) that were deleted to make H1/2 now

connect vertices of like colour. If vertices of G1/2 are now labelled with the entries in

the eigenvector of A(σG1/2) that corresponds to eigenvalue λ, an eigenvector of A(πG1/2)

corresponding to eigenvalue −λ can be constructed: change edge-weights to −1 for all
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like-like pairs and flip the signs of the entries on all vertices in one colour class. �

Theorem 4 Whenever it is true that Sp(σG1/2) = Sp(πG1/2), it follows that

EE(σG1/2) = FF (πG1/2) FF (σG1/2) = EE(πG1/2) FF (πG1/2) > EE(πG1/2) (15)

with the result that

β(σG1/2)EE(σG1/2) = β(πG1/2)EE(πG1/2) (16)

and

β(πG1/2) > 1 > β(σG1/2) (17)

This last result for β has the unsettling implication that non-bipartite π-bonded

Möbius structures can be nominally ‘more bipartite’ than bipartite graphs. As with

EE(πG1/2)− EE(σG1/2), in fact the difference β(πG1/2)− β(σG1/2) typically converges

rapidly to zero as a function of graph order, and for the same reasons.

3 Examples

3.1 Möbius cycles

The Möbius cycle (Möbius annulene) was introduced as a model of twisted cyclic polyenes12

and pericyclic transition states.13 It consists of a cycle with one edge weighted by −1.

The characteristic polynomials for Cn and Mn are11,14

ϕ(Cn, x) = 2 cos(nτ)− 2 (18)

ϕ(Mn, x) = 2 cos(nτ) + 2 (19)

with τ = cos−1(x/2), and the eigenvalues are drawn from the set

λk = 2 cos(kπ/n) with k = 0, . . . 2n− 1 (20)
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where even values of k give eigenvalues of Cn and odd values give eigenvalues of Mn. The

double-cover relation (10) implies

ϕ(C2n, x) = ϕ(Cn, x)× ϕ(Mn, x) (21)

and

EE(Mn) = EE(C2n)− EE(Cn). (22)

The mirror relationship of Sp(Cn) and Sp(Mn) holds for odd n, as can be seen from (20).

As implied by the moment expansion,

EE(Cn) ≥
1

2
EE(C2n) ≥ EE(Mn) (23)

and

β(Mn) = 1 = β(Cn) for odd n, (24)

β(Mn) > 1 > β(Cn) for even n. (25)

n EE(Cn) EE(Mn) β(Cn) β(Mn)
3 8.1248149813 5.5718989402 0.8428938968 1.2290885090
4 9.5243913822 8.7127342264 1.0000000000 1.0000000000
5 11.4961863219 11.2996727354 0.9914530967 1.0086955433
6 13.6967139214 13.6583097607 1.0000000000 1.0000000000
7 15.9602420645 15.9539521685 0.9998029511 1.0001971266
8 18.2371256086 18.2362392288 1.0000000000 1.0000000000
9 20.5163225164 20.5162129257 0.9999973292 1.0000026708
10 22.7958590573 22.7958469894 1.0000000000 1.0000000000
11 25.0754389246 25.0754377268 0.9999999761 1.0000000239
12 27.3550236821 27.3550235739 1.0000000000 1.0000000000
13 29.6346089349 29.6346089259 0.9999999998 1.0000000002
14 31.9141942330 31.9141942324 1.0000000000 1.0000000000
15 34.1937795351 34.1937795350 1.0000000000 1.0000000000

Table 1: Estrada and bipartivity indices of the small cycles and Möbius cycles.
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Figure 3: Estrada index for cycles and Möbius cycles. The upper curve represents cycles
and the lower Möbius cycles.

In practice, convergence to equality between Cn and Mn for both β and EE is ex-

tremely rapid (Table 1 and Figure 3) and for all practical purposes EE(Mn) ≈ EE(Cn) ≈
nI0 from n = 3 onwards.

3.2 Ladders and Möbius Ladders

The Ladder graph, Ln, is the Cartesian product Cn/2 × K2 and is the skeleton of the

n-gonal prism. When embedded equilaterally in the cylinder, it has (n/2) square faces

forming a cylindrical strip. A canonical numbering of vertices has vertices 1 to n/2 in one

Cn/2 cycle, vertices n/2+ 1 to n in the other, and adjacencies i ∼ i+ n/2 to i = 1, n/2 to

complete the squares.

The characteristic polynomial is

ϕ(Ln, x) = ϕ(Cn/2, x+ 1)× ϕ(Cn/2, x− 1) (26)

and hence the spectrum consists of two offset copies of Sp(C(n/2)), implying

EE(Ln) = (e+ e−1)EE(Cn/2) (27)
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and

β(Ln) = β(Cn/2) (28)

again with rapid convergence to the asymptotic limit

EE(Ln) ≈ (e+ e−1)I0n ≈ 3.517558 . . . n (29)

The expression (29) is a particular case of the theorem for Cartesian products that the

Estrada Index of the product G×H is the product of the indices EE(G)× EE(H).7

The Möbius Ladder, MLn, is notionally derived by cutting the cylindrical strip of the

conventional ladder graph of squares and rejoining with a half-twist. In the numbering

scheme given for Ln, this could be done by breaking edges 1 ∼ n/2 and n/2 + 1 ∼ n and

making 1 ∼ n and n/2 ∼ n/2 + 1. With all edge weights equal to +1, this is the graph

mainly considered in mathematical graph theory.7,17 With weights of −1 on the two new

edges, it is the graph appropriate to π-bonded frameworks.

Ln is bipartite iff n/2 is even, and MLn is bipartite iff n/2 is odd. The spectra

Sp(σMLn) and Sp(πMLn) have the mirror property iff n/2 is even, with the result that

β(πMLn) > 1 > β(σMLn). (30)

n EE(Ln) EE(σMLn) EE(πMLn) β(Ln) β(σMLn) β(πMLn)
6 25.0744893181 24.1353239916 18.1349440340 0.8428938968 1.0000000000 1.0000000000
8 29.3938078004 29.0952158196 27.1874949031 1.0000000000 0.9672159002 1.0350845292

10 35.4790849751 35.4067916667 34.9449056639 0.9914530967 1.0000000000 1.0000000000
12 42.2702680255 42.2561399243 42.1658746933 1.0000000000 0.9989319276 1.0010703588
14 49.2558809134 49.2535669900 49.2387832035 0.9998029511 1.0000000000 1.0000000000
16 56.2827107227 56.2823846417 56.2803012925 1.0000000000 0.9999814920 1.0000185087
18 63.3166799453 63.3166396291 63.3163820469 0.9999973292 1.0000000000 1.0000000000
20 70.3516973306 70.3516928910 70.3516645267 1.0000000000 0.9999997984 1.0000002016
22 77.3868484280 77.3868479874 77.3868451722 0.9999999761 1.0000000000 1.0000000000
24 84.4220146176 84.4220145778 84.4220143235 1.0000000000 0.9999999985 1.0000000015
26 91.4571823354 91.4571823321 91.4571823110 0.9999999998 1.0000000000 1.0000000000
28 98.4923501935 98.4923501932 98.4923501916 1.0000000000 1.0000000000 1.0000000000
30 105.5275180634 105.5275180634 105.5275180633 1.0000000000 1.0000000000 1.0000000000

Table 2: Estrada and bipartivity indices of ladders and Möbius ladders
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Figure 4: Estrada index for cylindrical and Möbius ladders. Upper, middle and lower
curves represent cylindrical, σ- and π-Möbius ladders, respectively.

The double-cover property implies

Sp(L2n) = Sp(σMLn) + Sp(πMLn) (31)

EE(L2n) = EE(σMLn) + EE(πMLn) (32)

but factorisation of the respective characteristic polynomials gives explicit forms18

ϕ(σMLn, x) = ϕ(Cn/2, x− 1)× ϕ(Mn/2, x+ 1), (33)

ϕ(πMLn, x) = ϕ(Cn/2, x+ 1)× ϕ(Mn/2, x− 1), (34)

from which the spectra are seen to be shifted versions of Sp(Cn/2) and Sp(Mn/2), and

EE(σMLn) = e−1EE(Cn) + (e− e−1)EE(Cn/2), (35)

(in agreement with the expression from a theorem for EE of graph products7), and

EE(πMLn) = eEE(Cn) + (e−1 − e)EE(Cn/2). (36)
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The indices of the various ladders are therefore ranked

EE(πMLn) <
1

2
EE(L2n) < EE(σMLn) < EE(Ln), (37)

with rapid convergence (Table 2, Figure 4) to

EE(πMLn) ≈
1

2
EE(L2n) ≈ EE(σMLn) ≈ EE(Ln) ≈ (e+ e−1)I0 n (38)

Bipartivities obey

β(πMLn) = 1 = β(σMLn) for odd n/2, (39)

β(πMLn) = 1 = β(σMLn) for even n/2, (40)

with rapid convergence to equality of β ≈ 1 for all three series (Table 2).

3.3 Cyclic polyacenes

The cyclic polyacene graphs PAn are analogues of the ladder graphs in which the building

blocks are fused hexagons rather than squares. They are models for hypothetical cyclic

and Möbius benzenoid systems. Untwisted polyacenes can be constructed by subdividing

edges of the two Cn/2 cycles of the ladder graph, and are hence bipartite for all n, with

n/4 hexagonal faces and two faces of size n/2 when embedded on the cylinder. The

n EE(PAn) EE(σMPAn) EE(πMPAn) β(σMPAn) β(πMPAn)
12 33.2805988574 33.2568995393 33.2161774318 0.9993877645 1.0006129861
16 44.3163977555 44.3158527779 44.3149163527 0.9999894346 1.0000105656
20 55.3942444679 55.3942370659 55.3942243473 0.9999998852 1.0000001148
24 66.4730769711 66.4730769048 66.4730767910 0.9999999991 1.0000000009
28 77.5519229900 77.5519229896 77.5519229889 1.0000000000 1.0000000000
32 88.6307691306 88.6307691306 88.6307691306 1.0000000000 1.0000000000
36 99.7096152719 99.7096152719 99.7096152719 1.0000000000 1.0000000000
40 110.7884614132 110.7884614132 110.7884614132 1.0000000000 1.0000000000
44 121.8673075545 121.8673075545 121.8673075545 1.0000000000 1.0000000000
48 132.9461536958 132.9461536958 132.9461536958 1.0000000000 1.0000000000
52 144.0249998372 144.0249998372 144.0249998372 1.0000000000 1.0000000000
56 155.1038459785 155.1038459785 155.1038459785 1.0000000000 1.0000000000
60 166.1826921198 166.1826921198 166.1826921198 1.0000000000 1.0000000000

Table 3: Estrada and bipartivity indices of polyacenes and Möbius polyacenes
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Möbius polyacene MPAn is constructed by twisting and re-gluing the hexagon strip in

the obvious way, and is non-bipartite for all n odd. Characteristic polynomials of the

polyacenes are not simple products of characteristic polynomials for smaller graphs,15,19

but the double-cover and spectral mirror relationships still apply, so that

EE(πMPAn) ≈
1

2
EE(PA2n) ≈ EE(σMPAn) ≈ EE(PAn) ≈ K n (41)

with K apparently slightly smaller than the generic (n,m) estimate10 of ∼ 2.81 for m =

5n/4, and

β(πMPAn) > 1 > β(σMPAn). (42)

As the numerical values show (Table 3, Figure 5), the effect of the Möbius half-twist is

essentially negligible, even for the smallest polyacene systems.

10 20 30
30

50

70

 n

 EE 

Figure 5: Estrada index for cylindrical and Möbius polyacenes.

4 Concluding remarks

Characteristic relationships have been demonstrated for Estrada and bipartivity indices

of graphs embedded on the Möbius strip. The examples tend show that the standard

Estrada Index is insensitive to the presence of a half-twist in a graph. This can be traced

to the relatively large ring size at which the weights on the special ‘seam-crossing’ edges
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first begin to influence spectral moments. If it is required to give better discrimination for

Möbius character, then the ‘zooming’ technique described by Estrada,20 in which denom-

inator factorials in the expansion are allowed to ‘slide’ to emphasise the contributions of

longer or shorter cycles, offers a possible direction for further investigation. Analysis of

the mean and variance of the Estrada Index, as carried out for 3-regular graphs,21 may

also give some insight into differences between Möbius and non-Möbius graphs.
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[5] H. Deng, S. Radenković, I. Gutman, The Estrada index, in: D. Cvetković, I. Gutman
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index, Chem. Phys. Lett. 446 (2007) 233–236. (The general expression is n/k sinh(k)

with k =
√

6m/n; see equation (11).)

[11] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry , Springer–

Verlag, Berlin, 1986.

[12] E. Heilbronner, Hückel molecular orbitals of Möbius-type conformations of annulenes,
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