
Remarks on the Relations Between the Permanental

and Characteristic Polynomials of Fullerenes∗

Qiang Chou Heng Liang † Fengshan Bai

Department of Mathematical Sciences,
Tsinghua University,

Beijing, 100084, P.R.CHINA.

(Received January 10, 2011)

Abstract

Several relations between the coefficients of the permanental and characteristic
polynomials were given by Gutman and Cash [ MATCH Commun. Math. Comput.
Chem. 45 (2002) 55-70]. In this paper, some more and general connections between
those coefficients are presented.

1 Introduction

Graph polynomials were among the most popular objects of research in chemical

graph theory (see, for example, refs [1–4]). The most extensively examined one is the

characteristic polynomial.

Let G be a graph with n vertices and A be its (0-1) adjacency matrix. Thus A is a

square matrix with order n. The characteristic polynomial of the graph G is defined as

φ(G, λ) = det(λI − A) =
n∑

k=0

akλ
n−k, (1)

where det denotes the determinant of a matrix.

Replacing the determinant in (1) with another matrix operator permanent [5–7],

the permanental polynomial of a graph G, which is also of interest in chemical graph

theory [8–14], is given as

π(G, x) = per(xI − A) =
n∑

k=0

bkx
n−k, (2)
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where per denotes the permanent of a matrix. Some efficient methods were developed

for the computation of the coefficients ak of the characteristic polynomial [15, 16]. The

computation of permanental polynomial is much harder than that of characteristic poly-

nomial [9, 11].

The formulas for the first several coefficients of characteristic polynomial of fullerene

graph are proposed by Balasubramanian [17]. Then some relations between the coefficients

of characteristic polynomial and permanental polynomial are presented by Gutman and

Cash [11]. In this paper, some more formulas on ak and bk and the relations between

them are given for fullerene graph.

2 The Relations Between the Permanental and Char-

acteristic Polynomials of Fullerenes

A fullerene Cn is a convex polyhedral carbon cage with n atoms arranged in 12

pentagonal and n
2
−10 hexagonal faces. The coefficients ak of the characteristic polynomial

and bk of the permanental polynomial can be represented through the structure of the

graph G by Sachs Theorem [18].

A Sachs graph S is a graph whose components are cycles and/or the complete graphs

with two vertices [1]. Let p(S) and c(S) denote the number of components and cycles in

a Sachs graph S. Then the Sachs theorem reads

ak =
∑
S

(−1)p(S)2c(S), (3)

where the summation goes over all k-vertex Sachs graphs of G.

For the coefficients of the permanental polynomial, the result is given by [8],

bk = (−1)k
∑
S

(+1)p(S)2c(S) = (−1)k
∑
S

2c(S). (4)

Equations (3) and (4) provide a general connection between the structure of a graph and

the coefficients of its characteristic and permanental polynomials respectively.

By Sachs theorem, Gutman, Cash and Balasubramanian give the following results

on the coefficients of characteristic and permanental polynomials for fullerene graph.

Theorem 2.1 ( [11]). Let G be a molecular graph of a fullerene in which p > 0. Then

for k = 0, 1, · · · , 7, |ak| = |bk| and |a8| = b8 − 4p, where p is the number of edges common

to two pentagons.
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Theorem 2.2 ( [11]). Let G be a molecular graph of an IPR fullerene, Then for k =

0, 1, · · · , 9, |ak| = |bk| and |a10| = b10 − 528.1

Theorem 2.3 ( [17]). For all the fullerenes, the values of ak and bk(k = 0, 1, · · · , 7) are
depend on the number of the vertices n of the graph only.

a0 = b0 = 1;

a1 = b1 = 0;

−a2 = b2 =
3
2
n;

a3 = b3 = 0;

a4 = b4 =
9
8
n2 − 15

4
n;

a5 = b5 = −24;

−a6 = b6 =
9
16
n3 − 45

8
n2 + 31

2
n− 20;

a7 = −b7 = 36n− 240.

In this paper, we give more discussions on ak and bk with some structural parameters

of fullerene graph by using equations (3) and (4) extensively. Besides the parameter p,

which is appeared in Theorem 2.1, two more parameters q and r will be also used, where q

enumerates the number of vertices common to three pentagons respectively, r counts the

number of pairs of nonadjacent pentagon edges shared with two other pentagons. These

parameters are discussed in many references [19–22]. Figure 1 shows the local structures

that contribute to the values p, q and r respectively.

p q r

Figure 1: Substructures that contribute to the p, q and r counts

Two new parameters are introduced here. The parameters s and t count the number

of pairs of nonadjacent hexagon edges shared with two other pentagons, whose local

structures are shown in Figure 2.

1The equation given by Gutman and Cash [11] was |a10| = b10 − 264.
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Figure 2: Substructures that contribute to the s and t counts

There are three possible 8-vertex Sachs graphs of fullerene graph, which are shown

in Figure 3. Similarly Figure 4 shows all 9-vertex Sachs graphs of fullerene graph. These

lead to the Proposition 2.1 and 2.2.

Proposition 2.1. Let G be a molecular graph of a fullerene with n atoms. Then

a8 =
27

128
n4 − 135

32
n3 +

969

32
n2 − 879

8
n+ 240− 2p ;

b8 =
27

128
n4 − 135

32
n3 +

969

32
n2 − 879

8
n+ 240 + 2p .

Hence b8 − a8 = 4p and b8 = a8 in IPR case.

Proposition 2.2. Let G be a molecular graph of a fullerene with n atoms. Then

−a9 = −b9 = 27n2 − 450n+ 2040 + 2(q − 2p) .

For IPR fullerenes, b9 and a9 are only dependent on n.

Figure 3: 8-vertex Sachs graphs of fullerene graph

Proposition 2.3. Let G be a molecular graph of a fullerene with n atoms. Then

|b10| − |a10| = 528 + 2p(3n− 34).

For IPR fullerene, |b10| − |a10| = 528.
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Figure 4: 9-vertex Sachs graphs of fullerene graph

According to equations (3) and (4), the difference between b10 and a10 comes from

10-vertex Sachs graphs with even components. All possible structures are shown in Figure

5.

Figure 5: 10-vertex Sachs graphs with even components of fullerene graph

For the cases of k = 11 and k = 12, only IPR fullerenes are considered here. All

11-vertex Sachs graphs of IPR fullerene graph are shown in Figure 6. Hence we have the

following results.

Proposition 2.4. Let G be a molecular graph of a IPR fullerene with n atoms. Then

a11 =
27

2
n3 − 405n2 + 4332n− 17280 ,

and |b11| − a11 = 240.

Figure 6: 11-vertex Sachs graphs of IPR fullerene graph

The difference between b12 and a12 comes from 12-vertex Sachs graphs with odd

components, which are shown in Figure 7.
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Figure 7: 12-vertex Sachs graphs with odd components of IPR fullerene graph

Proposition 2.5. Let G be a molecular graph of a IPR fullerene with n atoms. Then

|b12| − |a12| = 796n− 10800 + 8p− 4q + 10s+ 4t.

3 Conclusions

Gutman and Cash asked the following question in [11]. For the system studied here, can

profitable comparison be made for ak vs bk for larger k? In this paper, the fullerene graph

is considered. For fullerenes with (5,5)-edges (p > 0), we give a general formulas of ak

and bk for k = 8 and k = 9 and a formula of |bk| − |ak| for k = 10. For IPR fullerenes

(p = 0), we give a general formula of ak and bk for k = 11 and a formula of |bk| − |ak| for
k = 12.

For larger k’s, numerical results show that |ak| and |bk| are very close before they

reach their maximums and the differences between them are more and more distinct

thereafter. The maximums appear at about k ≈ 2n/3 [12]. Hence it might be possible to

investigate the relations between ak and bk for little larger k’s that are not very far from

12.
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[14] F. Belardo, V. Filippis, S. K. Simić, Computing the permanental polynomial of a

matrix from a combinatorial viewpoint, MATCH Commun. Math. Comput. Chem.

66 (2011) 381–396.

[15] G. G. Cash, A simple program for computing characteristic polynomials with Math-

ematica, J. Chem. Inf. Comput. Sci. 39 (1999) 833–834.

[16] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology , Nova, Huntington, 2001.

[17] K. Balasubramanian, Graph–theoretical characterization of fullerene cages, Polyc.

Arom. Comp. 3 (1993) 247–259.

[18] H. Sachs, Beziehungen zwischen den in einem Graphen entaltenen Kreisen und seinem

charakteristischen Polynom, Publ. Math. (Debrecen) 11 (1964) 119–134.

[19] G. G. Cash, Permanents of adjacency matrices of fullerenes, Polyc. Arom. Comp. 12

(1997) 61–69.

[20] A. T. Balaban, X. Liu, D. J. Klein, D. Babić, T. G. Schmalz, W. A. Seitz, M. Randić,
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