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Abstract

We use a result from the theory of geometric representation of graphs to

show that the separator of a fullerene graph on n vertices cannot exceed 24/n,

thus improving the best currently known upper bound of 1− 3/n. The result

is then combined with a recently established upper bound on the smallest

eigenvalue of fullerene graphs to show that there are only finitely many Ra-

manujan fullerenes. That settles down a conjecture on fullerenes made by the

Graffiti software.

1 Introduction

Fullerene graphs are mathematical models of fullerenes, polyhedral molecules made

of carbon atoms with only pentagonal and hexagonal faces. The study of fullerene

graphs goes back all the way to the very beginnings of the fullerene chemistry. It has

been mainly driven by a need to find structural invariant(s) that could explain why

only a tiny fraction of possible fullerene structures have been actually observed. A

number of spectral invariants such as, e.g., the separator [16], the smallest eigenvalue

[9], and the bipartivity [5] have been examined as possible stability predictors. In
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the course of that research it was discovered that fullerene graphs also posses some

properties that make them interesting outside of the context of fullerene chemistry.

As a result, a number of conjectures were proposed about their various properties.

Some of those conjectures were made by Graffiti, an automated conjecture generat-

ing software developed by S. Fajtlowicz since 1986 [7]. Several of those conjectures

turned out to be correct, among them two concerned with the separator of fullerenes

that were proved in a paper by Stevanović and Caporossi [16]. Some of the con-

jectures were disproved by various authors, and several of them are still open. The

aim of this paper is to further integrate the above lines of research. We first use a

result from the theory of geometric representation of graphs to prove a better upper

bound on the fullerene separator, and then combine it with a recently improved up-

per bound on the smallest eigenvalue of fullerenes in order to answer in affirmative a

question about the number of Ramanujan fullerenes implicit in Graffiti conjectures.

2 Definitions, conjectures, and preliminary re-

sults

We start by defining the basic terms. For the general graph-theoretic terminology

we refer the reader to any of standard monographs, such as, e. g., [4] or [14]. For

fullerene graphs the reader might wish to consult the standard reference by Fowler

and Manolopoulos [10]

A fullerene graph is a planar, 3-regular and 3-connected graph that has only

pentagonal and hexagonal faces. Such graphs on p vertices exist for all even p ≥ 24

and for p = 20 [13].

An eigenvalue of a graph G is an eigenvalue of its adjacency matrix A(G). The

set of all eigenvalues of a graph is called its spectrum. We denote the eigenvalues

of G by λ1 ≥ λ2 ≥ . . . ≥ λn. The largest eigenvalue of a fullerene graph is not
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really interesting, since it is always equal to 3. However, the other two extremal

eigenvalues, the second largest λ2 and the smallest one λn are both of significant

interest. Instead of λ2 one usually considers the quantity called the separator of G

and defined as s(G) = 3 − λ2. The separator of G is also called the spectral gap

of G. Both the separator [5] and the smallest eigenvalue [9] were found to correlate

to some extent with fullerene stability.

The Graffiti software stated several conjectures about fullerene graphs. Two of them

were concerned with the separator.

Conjecture 895 The separator of a fullerene is at most 1.

Conjecture 896 The separator of a fullerene with n vertices is at most 1− 3
n
.

Both conjectures were proved in a paper by Stevanović and Caporossi [16] using the

interlacing theorem. They were also able to prove that the dodecahedron has the

largest separator among all fullerenes. In the next section we will prove a stronger

upper bound without resorting to the interlacing theorem.

The separator and other spectral invariants figure in several other Graffiti conjec-

tures about fullerenes. Some of them are concerned with the so called Ramanujan

fullerenes or ramafullerenes.

A Ramanujan graph is a finite regular graph of degree k whose all eigenvalues

(except k and possibly −k) have modulus at most 2
√
k − 1. Ramanujan fullerenes

or ramafullerenes are then those with λ1 = 3 and |λi| ≤ 2
√
2 for all other values of

i. The fullerenes that fail to satisfy the Ramanujan criterion only at the lower end of

the spectrum are called positive ramafullerenes; those that violate the criterion only

at the upper end are analogously called negative ramafullerenes. Several Graffiti

conjectures about fullerenes were considered in a paper by Fowler et al. [12], where

the authors conjectured that the number of ramafullerenes is finite and that none
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of them has more than 84 vertices.

Conjecture 3 [12] All ramafullerenes have 84 or fewer vertices.

The finiteness of the numbers of ramafullerenes follows from a result by Alon and

Milman [1]; we will prove later that indeed all of them have at most 84 vertices. For

some additional results on Ramanujan graphs we refer the reader to [2].

3 Main results

Crucial for our goal will be an observation on the eigenvalue gap of the Laplacian

of planar graphs.

For a given graph G its Laplacian matrix L(G) is defined as L(G) = D(G)−A(G),

where D(G) = diag[δ1, . . . , δn]. (Here δi denotes the degree of vertex i.) A real

number μ is a Laplacian eigenvalue of G if μ is an eigenvalue of L(G). The

set of all Laplacian eigenvalues of G is the Laplacian spectrum of G; we denote its

elements by μ1 ≤ μ2 ≤ . . . ≤ μn. We refer the reader to Chapter 13 of [11] for more

on Laplacian eigenvalues; it suffices for our purposes to note that for 3-regular graphs

μi(G) = 3−λi(G). Again, the smallest Laplacian eigenvalue is not interesting since

it is always equal to zero, but the second smallest is exactly equal to the separator

of G.

Fullerene graphs are planar and 3-connected. It is well known that each such graph

can be represented by touching circles. The result is known as Koebe’s theorem or

a coin representation:

Koebe’s theorem: Let G be a 3-connected planar graph. Then one can assign

to each vertex i a circle Ci in the plane so that their interiors are disjoint and two

vertices are adjacent if and only if the corresponding circles are tangent.
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The above result is taken from a recent monograph on the geometric representations

of graphs [15]; we refer the reader to Chapter 6 of that book for a proof. Among

several applications and consequences of Koebe’s theorem there is one concerned

with the spectral gap of Laplacians of planar graphs.

Theorem ([15], p. 88)

Let G be a connected planar graph on n vertices with maximum degree Δ. Then

the second smallest Laplacian eigenvalue of G is at most 8Δ
n
.

The proof is simple and follows directly from Koebe representation of G on the unit

sphere. By reformulating the above theorem in terms of fullerene graphs we obtain

one of our main results.

Corollary 1

Let G be a fullerene graph on n vertices. Then the separator of G is at most 24
n
.

Hence the second largest eigenvalue of a fullerene graph is greater than 3 − 24
n
. It

is clear that it will exceed 2
√
2 for n large enough, and a simple calculation yields

that no ramafullerene can exist on 140 or more vertices. The maximum separators

of fullerene graphs on at most 100 vertices were computed and reported in [12];

a decreasing trend reported there is also followed by the maximum separators of

fullerenes on 102 ≤ n ≤ 138 vertices, as can be seen from Fig. 1. The fullerene

graphs were generated by using the fullgen program of the CaGe package [3] and their

spectra were computed by using standard EISPACK routines in double precision.

Hence we have confirmed the claim of Conjecture 3.

Corollary 2

All ramafullerenes have 84 or fewer vertices.

The same argument gives us also the finiteness of the set of positive ramafullerenes.

Our calculations confirm that there are altogether 161 positive ramafullerenes and
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Figure 1: Maximum separators of fullerene graphs on 102 ≤ n ≤ 138 vertices.

that none of them has isolated pentagons. Hence all of them were reported in [12].

Figure 1 also gives us some idea on the quality of our upper bound on the separator.

One can see from it that all computed values of maximum separators remain between

two curves; one of them represents the function 14/n, the other one is 15/n. It seems

that the upper bound s(G) ≤ 24
n
correctly estimates the asymptotic behavior of the

largest separator.

The case of negative ramafullerenes is a bit more complicated. It was shown re-

cently [6] that the smallest eigenvalue of a fullerene graph on n vertices satisfies

the inequality λn ≤ −3 + C√
n
. Hence for large enough values of n it will fall below

−2
√
2. However, the exact value of C is still unknown; it is conjectured to be equal

to 8
√

3/5 [6]. The upper bound on λn is poorer than the lower bound for λ2; this

fact is reflected in much larger number of negative ramafullerenes reported in [12].

However, their number must be finite.

Corollary 3

There are finitely many negative ramafullerenes.

As we have mentioned, the exact value of the constant C in λn(G) ≤ −3 + C√
n

is not known. Even if we assume the conjectured value of 8
√
3/5, it still leaves

a possibility of existence of negative ramafullerenes on n vertices for all n ≤ 1304.
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However, our computations indicate that the upper bound on λn is not very tight. In

Table 1 we present the number of negative ramafullerenes on 102 ≤ n ≤ 140 vertices.

Again, the isomers were generated by using fullgen and their spectra computed by

using double precision EISPACK routines. One can observe that the decreasing

trend present in Table 1 of reference [12] is continued in our Table 1 and that the

number of negative ramafullerenes reaches zero at n = 134 and stays there for

n = 136 and 138. However, a lonely negative ramafullerene appears again for 140.

As expected, it is the only isomer with the I symmetry group. Our computations

indicate that no other negative ramafullerenes appear among the IPR isomers of

fullerenes with 140 < n ≤ 146. Since it is evident from Table 1 that the largest

negative ramafullerenes have isolated pentagons, it is reasonable to conjecture that

there are no negative ramafullerenes on more than 140 vertices.

Conjecture

There are altogether 191480 negative ramafullerenes and none of them has more

than 140 vertices. There are exactly 6935 negative ramafullerenes with isolated

pentagons. All negative ramafullerenes with more than 120 vertices have isolated

pentagons.

We conclude with an observation on the separator of the buckminsterfullerene. It

follows readily from Corollary 1 that its value of 0.2434 [12] cannot be exceeded for

fullerenes on more than 100 vertices. By combining that observation with the values

reported in Table 1 of reference [12] we obtain the following result.

Corollary 4

The buckminsterfullerene C60 : Ih has the largest separator among all fullerenes with

isolated pentagons.
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n N− N− (IPR) (λn)max smax

102 4197 544 -2.79111 0.14023

104 2969 616 -2.79533 0.13778

106 2150 818 -2.79759 0.13473

108 1737 899 -2.80012 0.13205

110 1301 870 -2.80045 0.12965

112 960 751 -2.80471 0.12886

114 564 474 -2.80648 0.12644

116 330 304 -2.80664 0.12498

118 224 218 -2.81529 0.12110

120 141 136 -2.81372 0.11959

122 51 51 -2.81758 0.11778

124 33 33 -2.82051 0.11636

126 2 2 -2.82278 0.11341

128 5 5 -2.82466 0.11224

130 6 6 -2.82409 0.11036

132 2 2 -2.82495 0.10880

134 0 0 -2.83103 0.10727

136 0 0 -2.83586 0.10655

138 0 0 -2.83082 0.10413

140 1 1 -2.81168 0.10365

Table 1: Number of negative ramafullerenes N−, negative IPR ramafullerenes N−
(IPR), maximum smallest eigenvalue (λn)max, and maximum separator smax for

fullerenes on n vertices.

4 Conclusion

We have answered in affirmative several open questions and conjectures concerned

with spectral properties of fullerene graphs. In particular, we have proved that the

separator of a fullerene graph on n vertices is bounded from above by 24
n
. In an

earlier paper [6] we have proved that the smallest eigenvalue of a fullerene graph on

n vertices cannot exceed −3 + C√
n
for some positive constant C. The difference in

quality of those bounds is reflected in the fact that there are many more negative

than positive ramafullerenes. Further, we have confirmed that the lists of rama-
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fullerenes and positive ramafullerenes reported in [12] are indeed complete and we

have proved that there are only finitely many negative ramafullerenes.

The conjectures about ramafullerenes were made by Graffiti, an automated conjec-

ture making software. At the time of writing of this paper several other Graffiti

conjectures about fullerenes are still open. Particularly interesting are those con-

cerned with relationships between the separator and several other invariants, such

as, e.g., the diameter, the radius, and the independence number. It is quite possible

that the new and improved upper bound on the separator will open new approaches

to those conjectures. We refer the reader to [12] for a list of open conjectures.
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