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Abstract

Let G be a simple graph of order n, and let μ1 ≥ μ2 ≥ · · · ≥ μn = 0 be the
Laplacian spectrum of G. The Laplacian-energy-like invariant of G, LEL for short,
is defined as LEL(G) =

∑n−1
i=1

√
μi. In this paper, we survey results on LEL, with

emphasis on the bounds and extremal graphs of LEL.

1 Introduction

Let G = (V, E) be a simple graph with n = |V | vertices and m = |E| edges. Let

A be the adjacency matrix of G with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and let D =

diag(d1, d2, ... , dn) be the diagonal matrix of vertex degrees. The Laplacian matrix of

G is L = D−A, with eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μn = 0 (the Laplacian spectrum of G).

The Laplacian-energy-like invariant of G, LEL for short, is defined as follows:

LEL(G) =
n−1∑
i=1

√
μi .

The concept of LEL was first introduced by J. Liu and B. Liu ([20], 2008), where it was

shown that it has similar features as graph energy [6]:

E(G) =
n∑

i=1

|λi|
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defined by I. Gutman in 1978 (for recent survey on graph energy, see e.g. [8, 10]). In

[28], it was shown that LEL describes well the properties which are accounted by the

majority of molecular descriptors: motor octane number, entropy, molar volume, molar

refraction, particularly the acentric factor AF parameter, but also more difficult properties

like boiling point, melting point and partition coefficient Log P . In a set of polycyclic

aromatic hydrocarbons, LEL was proved [28] to be as good as the Randić χ index (a

connectivity index) and better than the Wiener index (a distance based index). Moreover,

it is well defined mathematically and shows interesting relations in particular classes of

graphs, these recommending LEL as a new and powerful topological index.

This survey is organized as follows. In Section 2, we present some properties and

bounds of LEL. In Section 3, by introducing a connection between LEL and the Laplacian

coefficients, and using some operations of graphs such that all Laplacian coefficients are

monotone, the extremal graphs minimizing (resp. maximizing) LEL among some classes

of graphs are discussed. In Section 4, (almost) LEL–equienergetic graphs are investigated.

2 Properties and bounds of LEL

2.1 Fundamental properties of LEL

In [24], the concept of graph energy was extended to any matrix as follows. The singular

values of a real (not necessarily square) matrix M are the square roots of the eigenvalues

of the (square) matrix MMT , where MT denotes the transpose of M . The energy E(M)

of the matrix M [24] is defined as the sum of its singular values. Clearly, E(G) = E(A).

For more applications in the theory of graph energy, see [32]. Let edges of G be given

an arbitrary orientation producing an oriented graph
−→
G , and let

−→
B be the (vertex-edge)

incidence matrix of
−→
G . Then

−→
B

−→
B T = L = D − A. It follows that

LEL(G) = E
(−→
B

)
.

This provides a new interpretation of LEL: oriented incidence energy ([31], 2009), and

offers a new insight into its possible physical or chemical meaning.

Let B be the (vertex-edge) incidence matrix of G. Motivated by Nikiforov’s idea and

LEL, Jooyandeh et al. ([18], 2009) introduced the concept of incidence energy of a graph

G: if the singular values of B are σ1, σ2, ... , σn, then the incidence energy of G
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IE(G) :=
n∑

i=1

σi = E(B) .

Notice that BBT = A + D := Q is the signless Laplacian matrix [2], with eigenvalues

q1 ≥ q2 ≥ · · · ≥ qn ≥ 0 (the signless Laplacian spectrum of G). Then we have

IE(G) =
n∑

i=1

σi =
n∑

i=1

√
qi [4]

and

LEL(G) = IE
(−→
G

)
=

n−1∑
i=1

√
μi [5] .

Note that the spectra of L and Q coincide if and only if the graph G is bipartite [2].

Then for a bipartite graph G, we have

LEL(G) = IE(G) .

The energy E(G), Laplacian–energy–like invariant LEL(G), incidence energy IE(G)

of a graph G all have the following basic properties.

Proposition 2.1 ([8, 20, 18]) Let G be a simple graph with n vertices and m edges.

(i) E(G) ≥ 0, LEL(G) ≥ 0, IE(G) ≥ 0, and equalities hold if and only if m = 0 .

(ii) If G consists of components G1, G2, ... , Gp, then E(G) =
∑p

i=1 E(Gi), LEL(G) =∑p
i=1 LEL(Gi), and IE(G) =

∑p
i=1 IE(Gi) .

2.2 Bounds for LEL

Let G be the complement of a graph G . Let Kn denote the complete graph of order n ,

and let Kn1, n2, ... , nt denote the complete multipartite graph with n1, n2, ... , nt vertices

in its t partite sets, respectively. Denote by Sn the star of order n, and Pn the path of

order n .

Theorem 2.2 ([20]) Let G be a simple graph with n vertices and m edges. Then

LEL(G) ≤
√

2m(n− 1)

with equality if and only if G ∼= Kn or G ∼= Kn .

Corollary 2.3 ([20]) Let G be a simple graph of order n . Then

LEL(G) ≤ (n− 1)
√
n

with equality if and only if G ∼= Kn .
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Remark 1 From Proposition 2.1 (i) and Corollary 2.3, the graph of order n with minimal

LEL is the null graph Kn, and the graph of order n with maximal LEL is the complete

graph Kn .

Remark 2 Note that the Laplacian eigenvalues of an edge-deleted graph G− e are inter-

laced to those of G ([12]), and
∑n−1

i=1 μi(G)−∑n−1
i=1 μi(G− e) = 2 , so that we immediately

get

LEL(G− e) < LEL(G) [36] .

This also implies that for a graph G � Kn and Kn with n vertices,

LEL
(
Kn

)
< LEL(G) < LEL(Kn) .

Corollary 2.4 (i) Let G be a bipartite graph with r and s vertices in its two partite sets.

Then LEL(G) ≤ (s − 1)
√
r + (r − 1)

√
s +

√
r + s , and the equality holds if and only if

G ∼= Kr, s .

(ii) Let G be a bipartite graph with n (≥ 2) vertices. Then LEL(G) ≤ (�n
2
	−1)

√

n
2
�+

(
n
2
� − 1)

√
�n
2
	+√

n , and the equality holds if and only if G ∼= K�n
2
�, �n

2
� .

Proof. (i) For a bipartite graph G � Kr, s with r and s vertices in its two partite sets,

since LEL(G− e) < LEL(G) , and it leads to

LEL(G) < LEL(Kr, s) = (s− 1)
√
r + (r − 1)

√
s+

√
r + s .

(ii) As a function of r with 1 ≤ r ≤ �n
2
	 , (n − r − 1)

√
r + (r − 1)

√
n− r +

√
n is

increasing for r . So

LEL(G) ≤
(⌈n

2

⌉
− 1

)√⌊n
2

⌋
+

(⌊n
2

⌋
− 1

)√⌈n
2

⌉
+
√
n ,

with equality if and only if G ∼= K�n
2 	, 
n

2 � . �

Theorem 2.5 ([20]) Let G be a graph with n vertices, m (≥ 1) edges and maximum

degree Δ . Then

LEL(G) ≤
√
Δ+ 1 +

√
(n− 2)(2m−Δ− 1) ,

with equality if and only if G ∼= Kn or G ∼= Sn .
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Theorem 2.6 ([20]) Let G be a simple graph with n vertices and m edges. Then

√
2m ≤ LEL(G) ≤

√
2m .

The first equality is attained if and only if G ∼= Kn or K2 ∪ (n− 2)K1 , and the second

equality is attained if and only if G ∼= rK2 ∪ (n− 2r)K1 , where 0 ≤ r ≤
⌊
n
2

⌋
.

Let (d1, d2, ... , dn) be the non-increasing degree sequence of a graph G of order n .

Now the upper and lower bounds for LEL of connected graphs are given, respectively.

Theorem 2.7 ([20]) Let G be a connected simple graph of order n . Then

LEL(G) ≥
√
n+ (n− 2) ,

with equality if and only if G ∼= Sn .

Remark 3 From Corollary 2.3 and Theorem 2.7, the connected graph of order n with

minimal LEL is Sn , and the connected graph of order n with maximal LEL is Kn .

Theorem 2.8 ([20]) Let G be a connected simple graph on n (> 2) vertices. Then

√
d1 + 1 +

√
d2 ≤ LEL(G) ≤

√
d1 + 1 +

√
d2 + · · ·+

√
dn−1 +

√
dn − 1 .

The first equality holds if and only if G ∼= P3 , and the second one holds if and only if

G ∼= Sn .

Let G1 ∪ G2 denote the graph consisting of two components G1 and G2 , and let kG

denote the graph consisting of k copies of G . The join G1 ∨ G2 of graphs G1 and G2

is the graph with vertex set V (G1 ∨ G2) = V (G1 ∪ G2) and edge set E(G1 ∨ G2) =

E(G1) ∪ E(G2) ∪ {(u, v) | u ∈ V (G1), v ∈ V (G2)} .
Let k ≥ 1 . We say that a graph G is k-connected if either G is Kk+1, or G has at

least k + 2 vertices and contains no (k − 1)-vertex cut. Similarly, G is k-edge-connected

if it has at least two vertices and does not contain (k− 1)-edge cut. The maximum value

of k for which a connected graph G being k-connected is the connectivity of G, denoted

by κ(G), and the edge-connectivity κ′(G) is defined analogously. We denote by Vk
n the

set of graphs of order n with κ(G) ≤ k ≤ n − 1 , and by Ek
n the set of graphs of order n

with κ′(G) ≤ k ≤ n− 1 . In [34], B. Zhu obtained that
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Theorem 2.9 ([34]) Let G ∈ Vk
n (or G ∈ Ek

n) . Then

LEL(G) ≤ k
√
n+

√
k + (n− k − 2)

√
n− 1 ,

where equality holds if and only if G ∼= Kk ∨ (K1 ∪Kn−k−1) .

A coloring of a graph is an assignment of colors to its vertices such that any two

adjacent vertices have different colors. The chromatic number χ(G) of the graph G is the

minimum number of colors in any coloring of G .

Theorem 2.10 ([34]) Let G be a connected graph with n ≥ 3 vertices and chromatic

number χ . Then

LEL(G) ≤ (χ− 1)
√
n+ (χ− s)(r − 1)

√
n− r + sr

√
n− r − 1

with equality if and only if G ∼= Kr, ... , r︸ ︷︷ ︸
χ−s

, r + 1, ... , r + 1︸ ︷︷ ︸
s

, where n = rχ + s and

0 ≤ s < χ.

Let G be a simple graph with n vertices and m (≥ 1) edges. The first Zagreb index of

G is defined as Zg(G) =
∑n

i=1 d
2
i . Note that

∑n−1
i=1 μi = 2m and

∑n−1
i=1 μ2

i = Zg(G)+2m .

Then

LEL(G) ≥
√

(2m)3

Zg(G) + 2m
,

with equality if and only if all nonzero Laplacian eigenvalues are equal ([7]). A Kr+1-free

graph is a graph with no Kr+1 as its subgraph. From the above inequality, we have

Theorem 2.11 [7]) Let G be a simple graph with n vertices and m edges. Then

LEL(G) ≥ 2m√
n

with equality if and only if G ∼= Kn or G ∼= Kn .

Theorem 2.12 ([7]) Let G be a Kr+1-free (2 ≤ r ≤ n) graph with n vertices and m edges.

Then

LEL(G) ≥ 2m√
n(r−1)

r
+ 1

with equality if and only if G ∼= Kn, or r = n and G ∼= Kn .
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Nordhaus-Gaddum-type [25] results for many graph invariants are known. By Theo-

rems 2.6 and 2.9, we have the following Nordhaus-Gaddum-type result for LEL.

Theorem 2.13 Let G be a simple graph with n (≥ 2) vertices. Then

√
n (n− 1) ≤ LEL(G) + LEL

(
G
)
≤

√
2

(
n

2

)
.

The first equality holds if and only if G ∼= Kn or G ∼= Kn, and the second one holds if

and only if n = 2 .

The line graph of G is denoted by L(G) = L1(G) . The iterated line graphs of G

are then defined recursively as L2(G) = L(L(G)), L3(G) = L(L2(G)), . . . , Lk(G) =

L(Lk−1(G)) for k = 2, 3, ... , and it is both consistent and convenient to set G = L0(G) .

For some results on the energy of line graphs, please refer to [11]. The line graph L(G) of

a regular graph G is a regular graph. Let nt and rt denote the order and degree of Lt(G)

respectively, where t = 0, 1, ... , k . Then we have the following recurrence:

Theorem 2.14 ([20])

LEL(Lk(G)) = LEL(Lk−1(G)) +
√
2rk−1(nk − nk−1) .

For a complex m× n matrix C , we recall that its nonzero singular values correspond

to the nonzero eigenvalues of the positive semidefinite matrix |C| = (CTC)
1
2 . Suppose

L E L (C) =
∑
j

√
sj(C) ([27]) ,

where sj(C) are the singular values of C. Then LEL(G) = L E L (L) . For k, d ≥ 1 ,

a Bethe tree of k levels, Bk(d), is a rooted tree such that the root vertex has degree d,

the vertices from level 2 to k − 1 have degree d+ 1 and the vertices at level k are leaves.

A recurrence relation for LEL of Bethe trees is given as follows. Let Tk be the k × k

tri-diagonal matrix, where the (i, j) entry of Tk :

Tk(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, i = j = 1,

d+ 1, 2 ≤ i = j ≤ k,√
d, |i− j| = 1,

0, elsewhere .
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Theorem 2.15 [27] Let k > 2, and vk =
∑k−1

j=1

√
d+ 1 + 2

√
dcosπj

k
. Then

LEL(Bk(d)) = dLEL(Bk−1(d)) + vk − dvk−1 + (d− 1)L E L (Tk−1)

and

(k − 2)
√
d ≤ L E L (Tk−1) ≤ 1 + vk−2 .

Denote by Gn(p) the Erdős-Rényi model of random graphs, which consists of all simple

graphs with vertex set [n] in which the edges are chosen independently with probability

p , where p is a constant with 0 < p < 1 for the convenience of description.

Theorem 2.16 ([3]) Almost every graph Gn(p) in Gn(p) enjoys the following

LEL(Gn(p)) = (
√
p+ o(1))n

3
2 .

Let α be a non-zero real number. As a natural extension of LEL, the sum of the αth

power of the non-zero Laplacian eigenvalues of graph G is introduced in [36], i.e.,

sα(G) =
h∑

i=1

μα
i ,

where h is the number of non-zero Laplacian eigenvalues of G . Obviously, the case α = 1

is trivial as s1(G) = 2m (where m is the number of edges), and LEL(G) = s 1
2
(G) .

Theorem 2.17 ([36]) Let α be a real number with α �= 0, 1 , and let G be a connected

graph with n ≥ 3 vertices, t spanning trees and maximum degree Δ . Then

sα(G) ≥ (1 + Δ)α + (n− 2)

(
tn

1 + Δ

) α
n−2

,

with equality if and only if G ∼= Kn or G ∼= Sn .

Let V (G) = {v1, v2, ... , vn} . For vi ∈ V (G) , the degree of vi and the sum of the

degrees of the vertices adjacent to vi are denoted by di and ti , respectively. Denote by

i ∼ j if the vertices vi and vj are adjacent. Let wi := di(d
2
i + ti) +

∑
j∼i(d

2
j + tj) for all

i ∈ {1, 2, ... , n} .

Theorem 2.18 ([33]) Let α be a real number with α �= 0, 1 , and let G be a connected

bipartite graph with n ≥ 3 vertices, and t spanning trees. Then

sα(G) ≥
(√ ∑n

i=1w
2
i∑n

i=1(d
2
i + ti)2

)α

+ (n− 2)(tn)
α

n−2

(√∑n
i=1(d

2
i + ti)2∑n

i=1 w
2
i

) α
n−2

,

with equality if and only if G ∼= Kn
2
, n

2
or G ∼= Sn , where n is even.
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Theorem 2.19 ([33]) Let α be a real number with 0 < α < 1, and let G be a connected

bipartite graph with n ≥ 3 vertices, and m edges. Then

sα(G) ≤
(√ ∑n

i=1 w
2
i∑n

i=1(d
2
i + ti)2

)α

+ (n− 2)1−α

(
2m−

√ ∑n
i=1 w

2
i∑n

i=1(d
2
i + ti)2

)α

,

with equality if and only if G ∼= Kn
2
, n

2
or G ∼= Sn , where n is even.

There is also a relation between LEL and incidence energy.

Theorem 2.20 ([1]) Let G be a graph of order n . Then

LEL(G) ≤ IE(G) .

3 The Laplacian coefficients and LEL

Denote by In the unit matrix of order n . The Laplacian characteristic polynomial P (G, μ)

of a graph G with n vertices is the characteristic polynomial of its Laplacian matrix L ,

P (G, μ) = det(μIn − L) =
n∑

k=0

(−1)kckμ
n−k .

Here ck (0 ≤ k ≤ n) are the absolute values of the coefficients of P (G, μ) . Note that

Laplacian coefficients ck can be expressed in terms of subtree structures of G . Let F be

a spanning forest of G with components Ti (i = 1, 2, ... , k) having ni vertices each, and

let γ(F ) =
∏k

i=1 ni . Then the Laplacian coefficient cn−k of graph G is given by

cn−k =
∑
F∈Fk

γ(F ) ([19]) ,

where Fk is the set of all spanning forests of G with exactly k components.

Moreover, from Viète’s formulas, ck = σk(μ1, μ2, ... , μn−1) is a symmetric polynomial

of order n−1 . In particular, c0 = 0 , c1 = 2n , cn = 0 , cn−1 = nτ(G) , where τ(G) denotes

the number of spanning trees of G . If G is a tree, then cn−2 is equal to its Wiener index,

while cn−3 is its modified hyper-Wiener index, introduced by I. Gutman [9].

Let mk(G) be the number of matchings of G containing exactly k independent edges.

The subdivision graph S(G) of G is obtained by inserting a new vertex of degree two on

each edge of G . Zhou et al. in [35] showed that for every acyclic graph T of order n ,

ck(T ) = mk(S(T )), where 0 ≤ k ≤ n
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.

In 2009, Stevanović [30] presented a connection between LEL and the Laplacian coef-

ficients, which provides a method to study the extremal graphs for LEL.

Lemma 3.1 ([30]) Let G and H be two n-vertex graphs. If ck(G) ≤ ck(H) for k =

1, 2, ... , n − 1 , then LEL(G) ≤ LEL(H) . Furthermore, if a strict inequality ck(G) <

ck(H) holds for some 1 ≤ k ≤ n− 1 , then LEL(G) < LEL(H) .

Remark 4 Recently, A. Ilić et al. in [14] corrected the original proof of Lemma 3.1.

From Lemma 3.1, it is natural to consider the extreme values of Laplacian coeffi-

cients for finding the extremal graphs of LEL among various classes of graphs. By in-

troducing some operations of trees (e.g. π-transformation [23], σ-transformation [23],

δ-transformation [17], ρ-transformation [15]) such that all Laplacian coefficients are mono-

tone under these transformations, the authors in [30, 17, 15] obtained the extremal trees

minimizing or maximizing LEL among some classes of trees as follows.

Theorem 3.2 ([30]) If T is a tree on n (n ≥ 4) vertices, then

LEL(Sn) ≤ LEL(T ) ≤ LEL(Pn) .

The first equality holds if and only if T ∼= Sn , and the second one holds if and only if

T ∼= Pn .

Theorem 3.3 ([30]) If T is a tree with n vertices and maximum degree Δ (2 ≤ Δ ≤
n− 1) , then

LEL(T ) ≤ LEL(S(n−Δ, 1, ... , 1)) ,

with equality if and only if T ∼= S(n−Δ, 1, ... , 1) , where S(p1, p2, ... , pΔ) is a starlike

tree with paths of lengths p1, p2, ... , pΔ, and p1 + p2 + · · ·+ pΔ = n− 1 .

The balanced starlike tree S(n, k) (2 ≤ k ≤ n − 1) is a tree of order n with just

one center vertex v , and each of the k branches of T at v is a path of length
⌈
n−1
k

⌉
or⌊

n−1
k

⌋
. Notice that the starlike trees are determined by their Laplacian spectrum [26].

By repetitive applying δ-transformation and π-transformation, it follows from Lemma 3.1

that
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Theorem 3.4 ([17]) Among trees on n vertices and 2 ≤ k ≤ n − 1 leaves, the balanced

starlike tree S(n, k) has minimal Laplacian coefficient ci for every i = 0, 1, ... , n , and

S(n, k) is the unique tree that has minimal LEL.

Theorem 3.5 ([17]) Among trees on n vertices and 0 ≤ p ≤ n− 4 vertices of degree two,

the balanced starlike tree S(n, n − p − 1) has minimal Laplacian coefficient ci for every

i = 0, 1, ... , n , and S(n, n− p− 1) is the unique tree that has minimal LEL.

Remark 5 Note that there is no tree of order n with n−3 vertices of degree two, and the

tree with n vertices and n− 2 vertices of degree two is Pn . Hence the original restriction

0 ≤ p ≤ n− 2 in [17] is revised to 0 ≤ p ≤ n− 4 in Theorem 3.5.

Let n, m be positive integers with n ≥ 2m . Define a tree A(n, m) with n vertices as

follows: A(n, m) is obtained from Sn−m+1 by attaching a pendant edge to each of certain

m− 1 non-central vertices of Sn−m+1 . Notice that A(n, m) has an m-matching.

Theorem 3.6 ([15]) Among trees with n vertices and matching number m (1 ≤ m ≤ n
2
) ,

the tree A(n, m) has minimal Laplacian coefficient ci for every i = 0, 1, ... , n , and

A(n, m) is the unique tree that has minimal LEL.

Corollary 3.7 ([15]) Among trees with n vertices and independence number α (n
2
≤ α ≤

n− 1) , the tree A(n, n− α) is the unique tree that has minimal LEL.

Let T (p, q) be the tree of order n by joining an edge between two centers of Sp+1

and Sq+1 with p + q + 2 = n . Denote by T (n, q, k, p1, ... , pk) the tree of order n

obtained from Sq+1, Sp1+1, ... , Spk+1 by identifying the pendent vertices of Sq+1 and the

centers of Sp1+1, . . . , Spk+1 respectively, where q ≥ k ≥ 2 , 1 + q + p1 + · · · + pk = n ,

and pi ≥ 1 for i = 1, 2, ... , k . In [37], X. Zhang et al. ordered trees by Laplacian

coefficients in the class of all trees with n vertices and diameter 3 (resp. diameter 4),

and proved that for i = 0, 1, ... , n , (1) ci(T (p, q)) is an increasing function of p for

1 ≤ p ≤
⌊
n
2

⌋
−1 ; (2) if n ≥ 5, then ci(T (n, n−3, 2, 1, 1)) ≤ ci(T (n, q, k, p1, ... , pk)) ,

with equality if and only if T (n, q, k, p1, ... , pk) ∼= T (n, n− 3, 2, 1, 1) ; (3) if n ≥ 8 ,

then ci(Sn) ≤ ci(T (1, n−3)) ≤ ci(T (2, n−4)) ≤ ci(T (n, n−3, 2, 1, 1)) < ci(T ) , where

T is a tree of order n such that T � Sn, T (1, n− 3), T (2, n− 4), T (n, n− 3, 2, 1, 1) .

Furthermore, A. Ilić [16] showed that among trees on n vertices and diameter d (2 ≤
d ≤ n − 1) , Cn, d has minimal Laplacian coefficient ci for every i = 0, 1, ... , n , where
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Cn, d denotes the caterpillar obtained from a path Pd with vertices {v0, v1, ... , vd}
by attaching n − d − 1 pendent edges to vertex v� d

2	 . Note that the starlike trees are

determined by their Laplacian spectrum [26], then by Lemma 3.1, we have the following

corollaries.

Corollary 3.8 (1) Any tree of order n (n ≥ 4) with diameter 3 can be regarded as T (p, q)

with p+ q + 2 = n and 1 ≤ p ≤ q . Moreover,

LEL(T (1, n− 3)) < LEL(T (2, n− 4)) < · · · < LEL
(
T
(⌊n

2

⌋
− 1,

⌈n
2

⌉
− 1

))
.

(2) Let T � T (n, n− 3, 2, 1, 1) be a tree of order n with diameter 4, where n ≥ 5 .

Then

LEL(T (n, n− 3, 2, 1, 1)) < LEL(T ) .

(3) Let T be a tree of order n with T � Sn, T (1, n − 3), T (2, n − 4), T (n, n −
3, 2, 1, 1) , where n ≥ 8 . Then

LEL(Sn) < LEL(T (1, n− 3)) < LEL(T (2, n− 4))

< LEL(T (n, n− 3, 2, 1, 1)) < LEL(T ) .

Corollary 3.9 Among trees on n vertices and diameter d (2 ≤ d ≤ n− 1) , the tree Cn, d

is the unique tree that has minimal LEL.

Denote by An, Δ a starlike tree consisting of a central vertex v , a pendent edge, a

pendent path of length n − 2Δ + 2 and Δ − 2 pendent paths of length 2, all attached

at v . A. Ilić in [16] proved that An, Δ has minimal Laplacian coefficients among trees

with perfect matching and maximum degree Δ . By Lemma 3.1 and the results in [26],

we obtain that

Corollary 3.10 Among trees with perfect matching and maximum degree Δ (2 ≤ Δ ≤
n− 1) , the tree An, Δ is the unique tree that has minimal LEL.

Recently, D. Stevanović and A. Ilić [29] generalized π and σ transformations of trees

[23] to general graphs, and introduced γ and τ transformations of unicyclic graphs, such

that all Laplacian coefficients are monotone under these transformations. Using these

transformations, and by Lemma 3.1, the extremal unicyclic graphs of order n minimizing

(resp. maximizing) LEL are obtained as follows.
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Denote by Cn the cycle of order n, and S+
n the graph obtained from Sn by joining two

of its pendent vertices with an edge.

Theorem 3.11 ([29]) Let G be a connected unicyclic graph of order n (n ≥ 3) , and let

i be an integer with 2 ≤ i ≤ n− 2 . Then

ci(S
+
n ) < ci(G) < ci(Cn) if G � S+

n and G � Cn ,

and

n+
√
n− 3 +

√
3 ≤ LEL(G) ≤ 2 cot

π

2n
.

The first equality holds if and only if G ∼= S+
n (LEL(S+

n ) = n +
√
n − 3 +

√
3) , and

the second equality holds if and only if G ∼= Cn (LEL(Cn) = 2cot π
2n
) .

Generalizing the approach in [29] on graph transformations, C. He and H. Shan [13]

showed that among all bicyclic graphs of order n , the Laplacian coefficient ck is smallest

when the graph is Bn , where Bn is obtained from C4 by adding one edge connecting two

non-adjacent vertices and adding n− 4 pendent vertices attached to the vertex of degree

3 . It leads to

Theorem 3.12 ([13]) Let G be a connected bicyclic graph on n (n ≥ 4) vertices. Then

LEL(Bn) < LEL(G) if G � Bn .

4 LEL–equienergetic graphs

Two non-isomorphic graphs G1 and G2 of the same order are said to be LEL-equienergetic

if LEL(G1) = LEL(G2) . Two non-isomorphic graphs G1 and G2 of the same order are

said to be almost-LEL-equienergetic if the difference LEL(G1) − LEL(G2) is nonzero,

but negligibly small, i.e. |LEL(G1)−LEL(G2)| < 10−k (we take k = 8 in the following).

Certainly, cospectral graphs are LEL–equienergetic, and in what follows we concern

with pairs of non-cospectral LEL–equienergetic graphs. The minimal examples of con-

nected, non-cospectral LEL–equienergetic graphs are given in [21] (for all connected

graphs up to 7 vertices, there are no connected, non-cospectral LEL–equienergetic graphs).

Example 1 ([21]) Let G801 and G802 be the graphs shown in Fig. 1 of [21]. Their

Laplacian spectra are {6, 6, 4, 4, 4, 2, 2, 0} and {8, 6, 6, 4, 4, 1, 1, 0} , respectively.
It is easy to verify that LEL(G801) = LEL(G802) = 2

√
6 + 2

√
2 + 6 .
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Example 2 ([21]) Let G803 and G804 be the graphs shown in Fig. 2 of [21]. Their

Laplacian spectra are {6, 4, 4, 4, 2, 2, 2, 0} and {8, 6, 4, 4, 2, 1, 1, 0} , respectively.
It is straightforward to check that LEL(G803) = LEL(G804) =

√
6 + 3

√
2 + 6 .

The authors in [21] also gave an example of connected, non-cospectral LEL–equiener-

getic graphs with 12 vertices and irrational Laplacian eigenvalues (see Example 2.3 of

[21]). Moreover, by direct computing, they found that up to 14 vertices, there are no

non-cospectral LEL–equienergetic or almost–LEL–equienergetic trees [21]. For n = 15

there exist two pairs of almost–LEL–equienergetic trees, depicted in Fig. 4 of [21].

It is also claimed that the connected, non-cospectral LEL–equienergetic graphs are rel-

atively rare ([21]). However, the number of the connected, non-cospectral LEL–equiener-

getic graphs is infinite ([22]). Liu et al. in [22] constructed some pairs of connected,

non-cospectral LEL–equienergetic graphs of order n for n ≥ 12.

Let H1 = (K3 ∪ S7 ∪ (n− 11)K1) ∨K1 and H2 = (S8 ∪ S3 ∪ (n− 12)K1) ∨K1 , where

n ≥ 12 . Let H3 = (7K3 ∪ (n − 22)K1) ∨ K1 and H4 = (K8 ∪ (n − 9)K1) ∨ K1 , where

n ≥ 22. Let H5 = (4K7∪4K3∪(n−41)K1)∨K1 and H6 = (K17∪(n−18)K1)∨K1, where

n ≥ 41 . Let H7 = (20K2 ∪ 5K3 ∪ (n− 56)K1) ∨K1 and H8 = (K11 ∪ (n− 12)K1) ∨K1 ,

where n ≥ 56 .

Theorem 4.1 ([22]) H1 and H2 (resp. H3 and H4 , H5 and H6 , H7 and H8) are a pair

of connected, non-cospectral LEL-equienergetic graphs of order n .

A graph is decomposable if it can be constructed from isolated vertices by the oper-

ations of union and complement. D. Stevanović et al. [31] provided a set of n mutually

LEL-equienergetic decomposable graphs with O(n) vertices for any given n ∈ N .

Let A = {a1, ... , ak} be a multiset of positive integers such that ai ≥ 3 for i =

1, ... , k . The graph S∗
A , formed from the union of stars Sa1−1, ... , Sak−1 by adding a

vertex adjacent to all other vertices, has n =
(∑k

i=1 ai

)
−k+1 vertices and m = 2n−k−2

edges. It is decomposable since it can be represented as

S∗
A = K1 ∪

k⋃
i=1

K1 ∪ ai−2K1 .

The Laplacian spectrum and LEL of S∗
A is given by

{
n, a1, ... , ak, 2n−2k−1, 1k−1, 0

}
, LEL(S∗

A) =
√
n+

k∑
i=1

√
ai+(n−2k−1)

√
2+k−1 .
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Let S be the set of finite multisets of positive integers each of which is at least three.

Let ρ be an equivalence relation on S defined by

A ρ B ⇐⇒ |A| = |B|,
k∑

i=1

ai =
k∑

i=1

bi and
k∑

i=1

√
ai =

k∑
i=1

√
bi .

It can be seen that if A and B are distinct equivalent multisets, then the graphs S∗
A and

S∗
B are a pair of connected, non-cospectral LEL-equienergetic graphs. Therefore, some

nontrivial equivalence classes of ρ in S were found in [31].

Proposition 4.2 ([31]) For a given k ∈ N , let ai, bi, ci, di, ei, fi be positive integers

with
∑k

i=1 aibici =
∑k

i=1 dieifi . Then the multisets

A =
{
a2i ci, b2i ci, (di + ei)

2fi
}
, B =

{
(ai + bi)

2ci, d2i fi, e2i fi
}

belong to the same equivalence class of ρ .

Let α be a positive integer and A ∈ S . The product αA is defined as αA = {αa | a ∈
A} . Denote by A � B the union of A and B , which preserves multiplicities of their

elements.

Proposition 4.3 ([31]) For any α ∈ N and A, B, C, D ∈ S ,

A ρ B =⇒ (αA) ρ (αB) and A ρ B, C ρ D =⇒ (A � C) ρ (B �D) .
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[30] D. Stevanović, Laplacian–like energy of trees, MATCH Commun. Math. Comput.

Chem. 61 (2009) 407–417.
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