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Abstract

Let G be a simple connected graph. The Gutman index S(G) is defined as

S(G) =
∑

u,v∈V (G)

dG(u)dG(v)d(u v)

where dG(u) is the degree of u, d(u v) is the distance between u and v and the
summation goes over all pairs of vertices in G. In this paper, we determine that
among all bicyclic graphs of order n, the graph formed from two triangles linked by
a path has maximal Gutman index.

1 Introduction

Topological indices and graph invariants based on the distances between the vertices of a

graph are widely used in theoretical chemistry to establish relations between the structure

and the properties of molecules. They provide correlations with physical, chemical and

thermodynamic parameters of chemical compounds [9].
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We follow standard notations in graph theory in [1]. Let G = (V (G), E(G)) be a

simple undirected graph with n = |V (G)| vertices and m = |E(G)| edges. For u ∈ V (G),

we use dG(u) (or just d(u) for short) to denote the degree of u. The distance d(v, u)

between vertices v and u is defined as the length of a shortest path between them. The

diameter of G, denoted by diam(G), is the maximum distance over all pairs of vertices in

G. A connected graph G is called unicyclic if n = m. Similarly, a connected graph G is

called bicyclic if n = m− 1.

The Wiener index is defined as the sum of all distances between unordered pairs of

vertices

W (G) =
∑

u,v∈V (G)

d(u, v).

The Wiener index is considered as one of the most used topological index with high

correlation with many physical and chemical indices of molecular compounds (for the

recent survey on Wiener index see [10] and [11]).

The parameter D′(G) is called the degree distance of G and it was introduced by

Dobrynin and Kochetova [12] and Gutman [14] as a graph-theoretical descriptor for char-

acterizing alkanes by an integer, it can be considered as a weighted version of the Wiener

index

D′(G) =
∑

u,v∈V (G)

(dG(u) + dG(v))d(u, v) =
∑

v∈V (G)

dG(v) ·DG(v),

where the summation goes over all pairs of vertices in G and D(v) =
∑

u∈V (G) d(u, v). In

fact, when G is a tree on n vertices, it has been demonstrated that Wiener index and

degree distance are closely related by (see [14, 16]) D′(G) = 4W (G)− n(n− 1).

The Gutman index is put forward in [14] and called there the Schultz index of the

second kind, but for which the name Gutman index has also sometimes been used [18]. It

is defined as

S(G) =
∑

u,v∈V (G)

dG(u)dG(v)d(u, v),

where the summation goes over all pairs of vertices in G. When G is a tree on n vertices,

Wiener index and Gutman index are closely related by (see [14]) S(G) = 4W (G)− (2n−
1)(n− 1).

The Gutman index of Cn and Pn can be calculated as

S(Cn) = 4W (Cn) =

{
1
2
n3, if n is even

1
2
(n3 − n), if n is odd .
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S(Pn) =
1

3
(n− 1)(2n2 − 4n+ 3).

The degree distance of graphs is well studied in the literature. Dankelmann et al.

[7] presented an asymptotically sharp upper bounds of degree distance of graphs with

given order and diameter. In [8], the degree distance of polyhex nanotubes was obtained.

Tomescu [20] got the degree distance of graphs with small cyclomatic number. Tomescu

[19] presented the graph with minimum degree distance among all connected graphs and

disproved a conjecture posed in [12]. Zhou [24] reported some bounds for the degree

distance. In [21], Tomescu obtained the minimum degree distance of unicyclic and bicyclic

graphs. In [17], Ilić, Stevanović and Klavžar characterized the degree distance of partial

Hamming graphs.

The Gutman index of graphs as well as its application in chemistry attracts attention

just recently. In [6], the authors presented an asymptotic upper bound for the Gutman

index and also established the relation between the edge–Wiener index and Gutman index.

Chen and Liu studied the maximal and minimal Gutman index of unicyclic graphs [2],

and they also determined the minimal Gutman index of bicyclic graphs [3]. In [13], the

authors derived relations betweenW (G) and D′(G), S(G) for the (unbranched) hexagonal

chain composed of n fused hexagons. In [4, 5, 22, 23], the authors derived the formulas for

calculating the modified Schultz index of nanotubes covered by C4 and polyhex nanotubes,

C4C8 nanotubes.

In this paper, motivated by the work in [3], we continue to study the Gutman index of

bicyclic graphs. We derive sharp upper bounds for the Gutman index of bicyclic graphs

and characterize the corresponding extremal graphs.

2 Lemmas and Results

Let us define D∗
G(v) =

∑
x∈V (G) dG(x)d(v, x).

Lemma 2.1 Let G be a bicyclic graph on n ≥ 4 vertices and v ∈ V (G). Then D∗
G(v) ≤

n2 + 2n− 14.

Proof: The proof is by induction on n. If n = 4, then G ∼= K4−e and it is easy to check

that statement holds. Similarly, we directly verify the induction hypothesis for n = 5 and

G is obtained from K4 − e by attaching one pendant edge or G ∼= C5 + e. Let n ≥ 6.

Case 1: v is a pendant vertex.
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Let w be its neighbor. Clearly G− v satisfies the inductive hypothesis, and so

D∗
G(v) =

∑
x∈V (G)\{v}

dG(x)(d(x, w) + 1) = D∗
G−v(w) +

∑
x∈V (G)\{v}

dG(x)

≤ (n− 1)2 + 2(n− 1)− 14 + 2(n+ 1)− 1
)

= n2 + 2n− 14 .

Case 2: v is not a pendant vertex.

Since dG(v) ≥ 2, there are at least two vertices at distance 1 from v, and the remaining

vertices have distance at most 2, 3, . . . , n− 2 from v. Let us define fi to be the sum of the

degrees of the vertices at distance i from v in G, where i ∈ {0, 1, 2, . . .}. Clearly,

D∗
G(v) =

∑
i≥1

ifi.

Now
∑

i≥1 fi = 2n+2−dG(v) ≤ 2n. Moreover we have f1 ≥ 3 since dG(v) ≥ 2 and n ≥ 6,

and fi ≥ 2 if fi+1 > 0. Since diam(G) ≤ n− 2 we have fi = 0 for i ≥ n− 1. It is easy to

see that, subject to these conditions, the sum
∑

i≥1 ifi is maximized if f1 = 3, fi = 2 for

i = 2, 3, . . . , n− 3, and fn−2 = 5. Hence

D∗
G(v) ≤ 3 · 1 + 2(2 + 3 + . . .+ (n− 3)) + 5(n− 2) = n2 − 3.

Now the result follows since n2 − 3 < n2 + 2n− 14 for n ≥ 6. �

Lemma 2.2 Let G be a connected graph with m edges, v a pendant vertex of G and w

its neighbor. Then

S(G) = S(G− v) + 2D∗
G−v(w) + 2m− 1.

Proof: From the definition, we have

S(G) =
∑

x,y∈V (G)\{v,w}
dG(x)dG(y)d(x, y) +

∑
x∈V (G)\{v,w}

dG(x)dG(w)d(x, w)

+
∑

x∈V (G)\{v,w}
dG(x)dG(v)d(x, v) + dG(w)dG(v)d(w, v)

=
∑

x,y∈V (G)\{v,w}
dG−v(x)dG−v(y)dG−v(x, y)
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+
∑

x∈V (G)\{v,w}
dG−v(x)(dG−v(w) + 1)dG−v(x, w)

+
∑

x∈V (G)\{v,w}
dG−v(x)(dG−v(x, w) + 1) + dG−v(w) + 1

=
∑

x,y∈V (G)\{v,w}
dG−v(x)dG−v(y)dG−v(x, y)

+
∑

x∈V (G)\{v,w}
dG−v(x)dG−v(w)dG−v(x, w) +

∑
x∈V (G)\{v,w}

dG−v(x)dG−v(x, w)

+
∑

x∈V (G)\{v,w}
dG−v(x)dG−v(x, w) +

∑
x∈V (G)\{v,w}

dG−v(x) + dG−v(w) + 1

= S(G− v) + 2D∗
G−v(w) + 2m− 1 .

So the result follows. �

Lemma 2.3 Let G be a connected graph with a cut-vertex v such that G1 and G2 are

two connected subgraphs of G having v as the only common vertex and G1 ∪G2 = G. Let

mi = |E(Gi)| for i = 1, 2. Then

S(G) = S(G1) + S(G2) + 2m1D
∗
G2
(v) + 2m2D

∗
G1
(v).

Proof: From the definition of S(G), we have

S(G) =
∑

x,y∈V (G1)\{v}
dG(x)dG(y)d(x, y) +

∑
x,y∈V (G2)\{v}

dG(x)dG(y)d(x, y)

+
∑

x∈V (G1)\{v}
dG(x)dG(v)d(x, v) +

∑
x∈V (G2)\{v}

dG(x)dG(v)d(x, v)

+
∑

x∈V (G1)\{v},y∈V (G2)\{v}
dG(x)dG(y)d(x, y)

=
∑

x,y∈V (G1)\{v}
dG(x)dG(y)d(x, y) +

∑
x,y∈V (G2)\{v}

dG(x)dG(y)d(x, y)

+
∑

x∈V (G1)\{v}
dG(x)(dG1(v) + dG2(v))d(x, v)

+
∑

x∈V (G2)\{v}
dG(x)(dG1(v) + dG2(v))d(x, v)
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+
∑

x∈V (G1)\{v},y∈V (G2)\{v}
dG(x)dG(y)(d(x, v) + d(v, y))

=
∑

x,y∈V (G1)\{v}
dG(x)dG(y)d(x, y) +

∑
x,y∈V (G2)\{v}

dG(x)dG(y)d(x, y)

+
∑

x∈V (G1)\{v}
dG(x)dG1(v)d(x, v) +

∑
x∈V (G1)\{v}

dG(x)dG2(v)d(x, v)

+
∑

x∈V (G2)\{v}
dG(x)dG2(v)d(x, v) +

∑
x∈V (G2)\{v}

dG(x)dG1(v)d(x, v)

+
∑

x∈V (G1)\{v},y∈V (G2)\{v}
(dG(x)dG(y)d(x, v) + dG(x)dG(y)d(y, v))

= S(G1) + S(G2) + dG2(v)D
∗
G1
(v) + dG1(v)D

∗
G2
(v)

+(2m1 − dG1(v))D
∗
G2
(v) + (2m2 − dG2(v))D

∗
G1
(v)

= S(G1) + S(G2) + 2m1D
∗
G2
(v) + 2m2D

∗
G1
(v) .

which implies the result. �

Lemma 2.4 [2] Let G be a unicyclic graph of order n ≥ 5. Then

S(G) ≤ 2

3
n3 − 29

3
n+ 23.

The equality holds if and only if G is the graph obtained from C3 by attaching one pendant

path of order n− 3 to one vertex of C3.

Lemma 2.5 Let H be a connected graph with h ≥ 2 vertices and m edges and Ck be a

cycle of order k ≥ 4. Let F be the graph of order k obtained from C3 by attaching one

pendant path of order k− 3 to one vertex of C3. Further suppose G1 is the graph obtained

from H and Ck by identifying one vertex in H and one vertex in Ck; G2 is the graph

obtained from H and F by identifying one vertex in H and the pendant vertex in F . Then

we have S(G1) < S(G2).

Proof: Suppose H ∩ Ck = H ∩ F = {v}. From Lemma 2.3, we have

S(G1) = S(H) + S(Ck) + 2mD∗
Ck
(v) + 2kD∗

H(v) ,

S(G2) = S(H) + S(F ) + 2mD∗
F (v) + 2kD∗

H(v) .
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Hence

S(G1)− S(G2) = S(Ck)− S(F ) + 2m(D∗
Ck
(v)−D∗

F (v)).

From Lemma 2.4, we have S(Ck)− S(F ) < 0. And

D∗
F (v) = 2DF (v) + (k − 3) = k2 − 5 > 2

⌊k2
4

⌋
= D∗

Ck
(v).

This completes the proof. �

Let G be a bicyclic graph. The base of G, denoted by Ĝ, is the (unique) minimal

bicyclic subgraph of G. It is easy to see that Ĝ is the unique bicyclic subgraph of G

containing no pendant vertices, while G can be obtained from Ĝ by attaching trees to

some vertices of Ĝ.

It is well known that there are the following three types of bicyclic graphs containing

no pendant vertices:

Let B(p, q) be the bicyclic graph obtained from two vertex-disjoint cycles Cp and Cq

by identifying vertices u of Cp and v of Cq.

Let B(p, l, q) be the bicyclic graph obtained from two vertex-disjoint cycles Cp and Cq

by joining vertices u of Cp and v of Cq by a new path uu1u2 . . . ul−1v with length l (l ≥ 1).

Let B(Pk, Pl, Pm), 1 ≤ m ≤ min{k, l} be the bicyclic graph obtained from three

pairwise internal disjoint paths from a vertex x to a vertex y. These three paths are

xv1v2 . . . vk−1y with length k, xu1u2 . . . ul−1y with length l, and xw1w2 . . . wm−1y with

length m.

From the above, one can get that

Lemma 2.6 Let G be a bicyclic graph of order n. Then at least one of the following

holds: (i) G has two vertex disjoint cycles and the minimum degree is 2; (ii) G has a

pendant vertex; (iii) G is 2-connected; (iv) G is obtained from two vertex disjoint cycles

by identifying two vertices, one from each cycle.

Let Bn be the graph of order n ≥ 6 obtained from two triangles linked by a path. It

can be checked that

S(Bn) =
2

3
n3 + 2n2 − 53

3
n+ 27.

Theorem 2.7 Let G be a bicyclic graph of order n ≥ 6. Then

S(G) ≤ 2

3
n3 + 2n2 − 53

3
n+ 27.

The equality holds if and only if G ∼= Bn.
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Proof: The proof is based on induction on n. If n = 6, then it is easy to verify that the

theorem holds, so let n ≥ 7. We distinguish into the following four cases by Lemma 2.6.

Case 1: G has two vertex disjoint cycles and the minimum degree is 2. By applying

Lemma 2.5, we easily get that S(G) ≤ S(Bn).

Case 2: G has a pendant vertex. Let v be a pendant vertex of G and let w be its

neighbor. Clearly G− v satisfies the inductive hypothesis, and so we have

S(G− v) ≤ 2

3
(n− 1)3 + 2(n− 1)2 − 53

3
(n− 1) + 27.

By Lemma 2.1, Lemma 2.2 and the induction hypothesis, we obtain

S(G) = S(G− v) + 2D∗
G−v(w) + 2m− 1 .

≤
(
2

3
(n− 1)3 + 2(n− 1)2 − 53

3
(n− 1) + 27

)

+2 (n− 1)2 + 2(n− 1)− 14
)
+ 2n+ 1

=
2

3
n3 + 2n2 − 53

3
n+ 17 <

2

3
n3 + 2n2 − 53

3
n+ 27 ,

as desired.

Case 3: G is 2-connected. From Lemma 2.6, G must be of the form B(Pk, Pl, Pm),

1 ≤ m ≤ min{k, l}. Similar as Case 2 in Lemma 2.1, we need the expression D∗
G(v) =∑

i≥1 ifi.

Now
∑

i≥1 fi = 2n + 2 − dG(v) ≤ 2n. Moreover we have f1 ≥ 4 since dG(v) ≥ 2 and

n ≥ 6, and fi ≥ 2 if fi+1 > 0. Since diam(G) ≤ �n
2
� we have fi = 0 for i > �n

2
�. It is

easy to see that, subject to these conditions, the sum
∑

i≥1 ifi is maximized if fi = 4 for

i = 1, 2, 3, . . . , �n
2
� − 1, and f	n

2

 = 2n− 4�n

2
�+ 4. Hence

D∗
G(v) ≤ 4

(
1 + 2 + 3 + . . .+

(
�n
2
� − 1

))
+ �n

2
�
(
2n− 4�n

2
�+ 4

)

≤ 4
(
1 + 2 + 3 + . . .+

(n
2
− 2
))

+ 6 · n
2
=

1

2
(n2 + 8) .

Therefore,

S(G) =
1

2

∑
u∈V (G)

dG(u)
∑

v∈V (G)

dG(v)d(u, v)

=
1

2

∑
u∈V (G)

dG(u)D
∗
G(u)

≤ 1

2

1

2
(n2 + 8)(2n+ 2) =

1

2
n3 +

1

2
n2 + 4n+ 4 ,
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and since 1
2
n3 + 1

2
n2 + 4n+ 4 < 2

3
n3 + 2n2 − 53

3
n+ 27 for n ≥ 7, the statement follows.

Case 4: G is the union of two cycles that have exactly one vertex in common. Similar

as in Case 1, by applying Lemma 2.5, we easily get that S(G) ≤ S(Bn). �
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