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Abstract

Let G be a simple graph possessing n vertices and m edges. Let di be the degree of the

i-th vertex of G , i = 1, . . . , n . The first Zagreb index M1 is the sum of d 2
i over all vertices of

G . The second Zagreb index M2 is the sum di dj over pairs of adjacent vertices of G . In this

paper we search for graph for which M1/n = M2/m , and show how numerous such graphs can

be constructed. In addition, we find examples of graphs for which M1/n > M2/m , which are

counterexamples for the earlier conjectured inequality M1/n ≤ M2/m .
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1. Introduction

Of the countless graph–based molecular structure descriptors, currently used in math-

ematical chemistry [1–3], quite a few are defined by means of vertex degrees. Of these,

the Randić connectivity index [4]

R(G) =
∑

(vi,vj)∈E(G)

1√
di dj

and the two Zagreb indices [5, 6]

M1(G) =
∑

vi∈V (G)

d 2
i and M2(G) =

∑
(vi,vj)∈E(G)

di dj

are the oldest and most thoroughly studied.

In the above formulas, as well as throughout the entire text, G denotes a graph whose

vertex and edge sets are V (G) and E(G) , respectively. An edge of G , connecting the

vertices vi nd vj is denoted by (vi, vj) . The number of vertices and edges of G is denoted

by n and m , respectively, i. e., |V (G)| = n and |E(G)| = m . The degree (= number of

first neighbors) of the vertex vi is denoted by di .

In 1972 the quantities M1 = M1(G) and M2 = M2(G) were found to occur within

certain approximate expressions for the total π-electron energy [5]. In 1975 these graph

invariants were proposed to be measures of branching of the carbon–atom skeleton [6].

The name “Zagreb index” (or, more precisely, “Zagreb group index”) seems to be first used

in the review article [7]. For details of the mathematical theory and chemical applications

of the Zagreb indices see the surveys [8–11], the papers [12–16], and the references cited

therein.

In spite of the fact that the two Zagreb indices were introduced simultaneously and ex-

amined almost always together, relations between them were not considered until quite re-

cently. Based on his AutoGraphiX conjecture–generating computer system, Pierre Hansen

arrived at the inequality
M1

n
≤ M2

m
(1)

which he conjectured to hold for all connected graphs. Soon after the announcement of

this conjecture it could be shown [17] that there exist graphs for which (1) does not hold,

but that it holds for all molecular graphs, i. e., connected graphs in which no vertex has

degree greater than 4.

-628-



Although the work [17] appeared to completely settle Hansen’s conjecture, it was just

the beginning of a long series of studies [18–35] in which the validity or non-validity of

either (1) or some generalized version of (1) was considered for various classes of graphs.

These studies are summarized in two recent surveys [36,37].

Curiously, however, in spite of such an extensive research on inequality (1), little

attention was paid on the equality case, i. e., on the characterization of graphs for which

M1

n
=

M2

m
(2)

holds. The aim of the present work is to shed some light on this latter problem.

In the current mathematico–chemical literature, the relation (1) is usually referred to

as the Zagreb indices inequality . If the equality case is excluded, then we speak of the

strict Zagreb indices inequality . In view of this, in what follows we call (2) the Zagreb

indices equality .

2. Elementary results

The original formulation of Hansen’s conjecture was the following [17].

Conjecture 1. For all simple connected graphs G , inequality (1) holds, and the bound

is tight for complete graphs.

It is elementary to see that the bound is tight (i. e., that equality (2) holds) if G is

a regular graph of any degree r > 0 . In order to see this, recall that for regular graphs

M1(G) = n r2 and M2(G) = mr2 . Recall also that the complete graph Kn is the regular

graph of degree n − 1 .

We say that a graph G is biregular if its vertex degrees assume exactly two distinct

values, say da and db , (da �= db). Let the number of vertices of degree da and db be a and

b , respectively. By definition, a > 0 , b > 0 , and we may assume that a ≤ b . Clearly,

a + b = n and a da + b db = 2m . We distinguish between two types of biregular graphs:

Biregular graphs of class 1 have the property that no two vertices of the same degree

are adjacent. In biregular graphs of class 2 at least one edge connects vertices of equal

degree.

Biregular graphs of class 1 are necessarily bipartite. The complete bipartite graphs

Ka,b belong to class 1.
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Theorem 2. The Zagreb indices equality holds for biregular graphs of class 1, whereas

for biregular graphs of class 2 the strict Zagreb indices inequality applies.

Proof. In the notation specified above, M1(G) = a d2
a + b d2

b . A biregular graph of class

1 has a da edges incident to a vertex of degree da , and b db edges incident to a vertex of

degree db . Therefore, a da = b db . Then,

M1(G) = (a da) da + (b db) db = (b db) da + (a da) db = (a + b) da db

i. e.,

M1(G) = n da db . (3)

In biregular graphs of class 1, all edges connect a vertex of degree da with a vertex of

degree db . Consequently,

M2(G) = mda db . (4)

Equality (2) immediately follows from (3) and (4). This proves the first part of Theorem

2.

Consider now a biregular graph in which x edges connect two vertices of degree da , y

edges connect two vertices of degree db , and z edges connect a vertex of degree da with a

vertex of degree db . Then

x + y + z = m

2x + z = a da (5)

2y + z = b db (6)

M2 = x d2
a + y d2

b + z da db .

Bearing these relations in mind, we have

mM1 − nM2 = (x + y + z)(a d2
a + b d2

b) − (a + b)(x d2
a + y d2

b + z da db)

which, by using Eqs. (5) and (6), can be transformed into

m M1 − nM2 = −(da − db)
2 (x b + y a) . (7)

Since, da �= db and a > 0 , b > 0 , the right–hand side of Eq. (7) will be zero if and only

if x = y = 0 , i. e., if and only if the considered biregular graph is of class 1. Otherwise,

the right–hand side of (7) is negative.
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This completes the proof of Theorem 2. �

Corollary 3. There is no benzenoid graph G for which the Zagreb indices equality holds.

Proof. Just note that benzenoid graphs are biregular, with da = 2 , db = 3 . Each

benzenoid graph possesses an edge that connects vertices of degree 2. In fact, it possesses

at least six such edges. �

Let a , b , and c be three positive integers, 1 ≤ a < b < c ≤ n − 1 . The graph G is

said to be triregular if for 1, 2, . . . , n , either di = a or di = b or di = c , and there exists

at least one vertex of degree a , at least one vertex of degree b , and at least one vertex

of degree c . If so, then G is a triregular graph of degrees a , b , and c , or for brevity, an

(a, b, c)-triregular graph. Similarly, as in the case of biregular graphs, we distinguish two

types of triregular graphs: Triregular graphs of class 1 have the property that no two

vertices of the same degree are adjacent. In triregular graphs of class 2 at least one edge

connects vertices of equal degree.

Theorem 4. There is no connected (a, b, c)-triregular graph G of class 1 that satisfies the

Zagreb indices equality. Moreover, every connected (a, b, c)-triregular graph G of class 1

satisfies the strict Zagreb indices inequality.

Proof. Let G be a triregular graph of class 1. Let u , v , and w denote, respectively, the

number of edges connecting vertices of degree a and b , of degree a and c , and of degree

b and c . Then,

M1(G) =
u + v

a
a2 +

u + w

b
b2 +

v + w

c
c2

M2(G) = u a b + v a c + w b c

n =
u + v

a
+

u + w

b
+

v + w

c

m = u + v + w .

From this follows

M1(G)

n
− M2(G)

m
= − a2 (b − c)2 u v + [b2 (a − c)2 u + (a − b)2 c2 v]w

(u + v + w)[b c(u + v) + a c (u + w) + a b (v + w)]
.

Since 1 ≤ a < b < c , the expression a2 (b − c)2 u v + [b2 (a − c)2 u + (a − b)2 c2 v]w equals

zero if at least two out of the three parameters u , v , and w equal zero, i. e., G satisfies

-631-



the equality only if G is disconnected. Otherwise, the above expression is negative, which

implies that any connected triregular graph of class 1 satisfies the strict Zagreb indices

inequality. �

In Theorem 4, the requirement for connectedness is essential. As shown in the subse-

quent section, several graphs of the type Kp∪Ka,b , which are disconnected and triregular

of class 2, satisfy the Zagreb indices equality. Finding a connected example (if such does

exist) remains a task for the future.

The subdivision graph S(G) of a graph G is obtained by inserting a new vertex (of

degree 2) on every edge of G .

Theorem 5. The Zagreb indices inequality is obeyed by the subdivision graph S(G) of

any graph G . The Zagreb indices equality holds if and only if the parent graph G is

regular of degree r > 0 .

Proof. If G is a regular graph of non-zero degree r , then S(G) is biregular of class 1,

and then by Theorem 2 the equality (2) holds for S(G) .

It remains to demonstrate that if G is not regular, then the strict Zagreb indices

inequality holds.

If G has n vertices and m edges, then S(G) has n + m vertices and 2m edges. In

addition, if the vertex degrees of G are d1, d2, . . . , dn , then the vertex degrees of S(G) are

d1, d2, . . . , dn and 2 (m times). Therefore,

M1(S(G)) = M1(G) + 4m

M2(S(G)) =
n∑

i=1

di (2 · di) = 2 M1(G) .

In the case of S(G) , inequality (1) will hold if

M1(G) + 4m

n + m
≤ 2 M1(G)

2m

which is directly transformed into

M1(G) ≥ 4m2

n
. (8)

The variance of the vertex degrees of the graph G is

V ar(d) =
1

n

n∑
i=1

d 2
i −

(
1

n

n∑
i=1

di

)2
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i. e.,

V ar(d) =
M1(G)

n
−
(

2m

n

)2

which, in view of the fact that the variance cannot be negative–valued, leads to inequality

(8). Consequently, inequality (1) holds for S(G) . If not all vertex degrees of G are equal,

then their variance is greater than zero, implying that inequality (8), and therefore also

inequality (1), are strict. �

3. Simple examples for the validity of Zagreb indices equality

We start with a few “unsuccessful” examples, all pertaining to disconnected graphs.

Let, as usual, Kn , Cn , and Pn denote, respectively, the n-vertex complete graph, cycle,

and path. Let further Ka,b be the complete bipartite graph on a + b vertices.

Elementary calculation shows that

M1(Kn) = n(n − 1)2 ; M2(Kn) =
1

2
n(n − 1)3

M1(Cn) = 4n ; M2(Cn) = 4n

M1(Pn) = 4(n − 2) + 2 ; M2(Pn) = 4(n − 3) + 4 provided n ≥ 3

M1(Ka,b) = ab(a + b) ; M2(Ka,b) = a2 b2 .

For n = 1 and n = 2 the Zagreb indices of the path are computed by using the fact

that then Pn
∼= Kn .

Example 6. Let G ∼= Kp ∪ Kq . Then the Zagreb indices inequality (1) holds for all

p, q ≥ 1 , whereas the Zagreb indices equality (2) holds if and only if p = q . This latter

case is trivial, because for p = q the graph G is regular.

Proof. In this case n = p + q and m = 1
2
p(p − 1) + 1

2
q(q − 1) , and then (1) becomes

p(p − 1)2 + q(q − 1)2

p + q
≤

1
2
p(p − 1)3 + 1

2
q(q − 1)3

1
2
p(p − 1) + 1

2
q(q − 1)

which can be transformed into

(p − q)2 (p + q − 2) ≥ 0

from which the claim of Example 6 immediately follows. �

Example 7. Let G ∼= Kp ∪Cq . Then inequality (1) holds for all p ≥ 1 , q ≥ 3 , whereas

Eq. (2) holds if and only if p = 3 , q ≥ 3 . This latter case is trivial, because for p = 3

and q ≥ 3 the graph G is regular (of degree 2).
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Proof. This time inequality (1) reads:

p(p − 1)2 + 4q

p + q
≤

1
2
p(p − 1)3 + 4q
1
2
p(p − 1) + q

which for any positive value of q can be simplified as

(p − 3)2 (p + 1) ≤ 0 .

The claim of Example 7 follows. �

Example 8. Let G ∼= Kp ∪ Pq , q ≥ 3 . Then the strict Zagreb indices inequality holds

for all p, q .

Proof. This time inequality (1) reads:

p(p − 1)2 + 4q − 6

p + q
≤

1
2
p(p − 1)3 + 4q − 8
1
2
p(p − 1) + q − 1

which after a lengthy calculation is reduced to

pq

2

(
p3 − 5 p2 + 3p + 9

)
+ (p3 + p2 − 10 p − 6) + 2q ≥ 0 .

Now, the polynomials p3 − 5 p2 + 3p + 9 and p3 + p2 − 10 p− 6 are equal to zero for p = 3

and are greater than zero for p > 3 . This implies the claim of Example 7. �

It can be easily checked that the strict Zagreb indices inequality holds also for p ≥
1 , q = 2 and p ≥ 2 , q = 1 , except for p = q = 2 , in which case Kp ∪ Pq is regular (and

thus the Zagreb indices equality applies).

In a similar manner one can verify the following two examples:

Example 9. Let G ∼= Cp ∪Pq . Then the strict Zagreb indices inequality (1) holds for all

p, q .

Example 10. Let G ∼= Pp ∪Pq . Then the Zagreb indices inequality (1) holds for all p, q ,

whereas the Zagreb indices equality (2) holds if and only if p = q = 2 and p = q = 3 .

These two cases are trivial, because for p = q = 2 , G is regular and for q = p = 3 , G is

biregular of class 1.

Example 11. Let G ∼= Cp ∪ Ka,b , a ≤ b . Then inequality (1) holds for all p, a, b ,

except for p ≥ 3 , a = 1 , b ≥ 5 . Equality (2) is satisfied only in the following two cases:
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p ≥ 3 , a = b = 2 and p ≥ 3 , a = 1 , b = 4 . The first of these cases is trivial, because

the G is regular (of degree 2).

Proof. This time inequality (1) reads:

4p + ab(a + b)

p + (a + b)
≤ 4p + a2 b2

p + ab

which for any positive value of p is reduced to

(a + b − ab)(ab − 4) ≤ 0 .

The claim of Example 11 is now obtained after an easy analysis. �

We note here that the K3 ∪ K1,5 is the simplest graph for which the Zagreb indices

inequality is violated. Also, K3 ∪K1,4 is the simplest non-trivial example for the validity

of the Zagreb indices equality. These observations were made already in the paper [17].

We conclude this section by two examples which provide a multitude of graphs satis-

fying the Zagreb indices equality.

Example 12. Let G ∼= Kp ∪ Ka,b , a ≤ b . Then the Zagreb indices equality holds for a

large number of below specified cases.

Proof. This time inequality (1) reads:

p(p − 1)2 + ab(a + b)

p + (a + b)
≤

1
2
p(p − 1)3 + a2 b2

1
2
p(p − 1) + ab

which after a lengthy calculation is transformed into

[
(p − 1)2 − ab

]
[(p − 1)(a + b) − 2ab] ≥ 0 .

Equality is attained if either

(p − 1)2 − ab = 0 (9)

or

(p − 1)(a + b) − 2ab = 0 . (10)

The solutions of of Eq. (9) are easy and they come from the factorization of the

type a × b of (p − 1)2 . In particular, for any value of p , the graphs Kp ∪ K1,(p−1)2 and

Kp ∪ Kp−1,p−1 satisfy Eq. (2). There, however, are other solutions, some of which are
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listed here:

p = 5 , a = 2 , b = 8

p = 7 , a = 2 , b = 18

p = 7 , a = 3 , b = 12

p = 7 , a = 4 , b = 9

p = 9 , a = 2 , b = 32

p = 9 , a = 4 , b = 16

p = 10 , a = 3 , b = 27 etc.

Among the solutions of Eq. (10) we first find those for which a = b . These read:

Kp ∪ Kp−1,p−1 . However, there exist other solutions. Namely, Eq. (10) is equivalent to

(p − 1)2 = (2a − p + 1)(2b − p + 1)

or

(p − 1)2 = p1 × p2

where p1 = 2a − p + 1 and p2 = 2b − p + 1 .

Exactly, all integer solutions of (10) come from the factorization of the type p1 × p2 of

(p− 1)2 when p1 + p− 1 and p2 + p− 1 are even. Then, the integer solutions of Eq. (10)

are the triples of integers [(p1 + p− 1)/2 , (p2 + p− 1)/2 , p] . Some of these solutions (for

a �= b) are listed here:

p = 4 , a = 2 , b = 6

p = 6 , a = 3 , b = 15

p = 7 , a = 4 , b = 12

p = 8 , a = 4 , b = 28

p = 9 , a = 5 , b = 20

p = 9 , a = 6 , b = 12

p = 10 , a = 5 , b = 45

p = 10 , a = 6 , b = 18 etc.

Example 13. Let G ∼= Ka,b ∪ Kc,d , a ≤ b , c ≤ d . Then the Zagreb indices equality

holds for a large number of below specified cases.
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Proof. This time inequality (1) reads:

ab(a + b) + cd(c + d)

(a + b) + (c + d)
≤ a2 b2 + c2 d2

ab + cd

which can be reduced to

(ab − cd) [ab(c + d) − cd(a + b)] ≥ 0 .

Equality is attained if either

ab = cd (11)

or

ab(c + d) = cd(a + b) . (12)

Eq. (11) has infinitely many solutions, whose characterization is easy. Some of these are:

a = 6 , b = 12 , c = 5 , d = 20

a = 9 , b = 18 , c = 8 , d = 24

a = 16 , b = 48 , c = 15 , d = 60 etc.

The solutions of (12) are less easy to characterize, and this remains a task for the

future. We found infinite quadruplets of integers a, b, c, d for which Ka,b ∪ Kc,d satisfies

Eq. (2). One of these is:

a = y(xz + 1) , b = xyz(xz + 1) , c = x(yz + 1) , d = xyz(yz + 1)

where x, y, z are arbitrary positive integers.

Remark 14. In the case of graphs considered in Example 13, the Zagreb indices inequality

is violated for infinitely many quartets of numbers (a, b, c, d) . For instance, if a = 3 , then

(1) is violated by Ka,b ∪ Kc,d for:

a = 3 , b = 7 , c = 4 , d = 5

a = 3 , b = 8 , c = 4 , d = 5

a = 3 , b = 9 , c = 4 , d = 6

a = 3 , b = 9 , c = 5 , d = 5

a = 3 , b = 10 , c = 4 , d = 6

a = 3 , b = 10 , c = 4 , d = 7

a = 3 , b = 10 , c = 5 , d = 5 .
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4. A connected example

Theorem 15. Let G be a simple connected graph with maximal degree at most 4. Then

the Zagreb indices equality (2) holds if and only if G is regular or G is biregular of class

1. On the other hand, there exist connected graphs of maximal degree 5 that are neither

regular, nor bipartite, which satisfy Eq. (2).

Proof. In a similar way as in the paper [17], it can be shown that Eq. (2) holds if and

only if:

∑[(
i2j2� + i2j2k + k2�2j + k2�2i − i2jk� − ij2k� − ijk2� − ijk�2

)
· mij · mk�

i · j · k · �

]
= 0

where the summation goes over all integers i, j, k, � , such that i ≤ j and k ≤ � , and where

mij denotes the number of edges connecting a vertex of degree i with a vertex of degree

j . Similarly, as in [17], let us denote

i2j2� + i2j2k + k2�2j + k2�2i − i2jk� − ij2k� − ijk2� − ijk�2

by g(i, j, k, �) . The values of g(i, j, k, �) where 1 ≤ i, j, k, � ≤ 4 are presented by the

following table [17]:

{i, j}
{1, 1} {1, 2} {1, 3} {1, 4} {2, 2} {2, 3} {2, 4} {3, 3} {3, 4} {4, 4}

{k, �}

{1, 1} 0 1 4 9 12 35 70 96 187 360
{1, 2} 1 0 1 4 8 32 72 105 220 448
{1, 3} 4 1 0 1 4 27 70 108 243 520
{1, 4} 9 4 1 0 0 20 64 105 256 576
{2, 2} 12 8 4 0 0 8 32 60 160 384
{2, 3} 35 32 27 20 8 0 8 27 108 320
{2, 4} 70 72 70 64 32 8 0 6 64 256
{3, 3} 96 105 108 105 60 27 6 0 27 168
{3, 4} 187 220 243 256 160 108 64 27 0 64
{4, 4} 360 448 520 576 384 320 256 168 64 0

Table 1. Values of the function g(i, j, k, �) .

From Table 1 it can be easily seen that either all edges must be of the same type (i. e.,

for some fixed values of i and j , all edges connect a vertex of degree i with a vertex of

degree j) or there are only edges of types {1,4} and {2,2}. However, the latter case is not

possible since then the graph would not be connected.

On the other hand, this does not have to hold for the graphs of maximal degree 5. Let

us consider a family of graphs Gx,y,z, x, y, z ≥ 1 , defined in the following way:
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We start with the graph Hx,y consisting of x copies of K3,3 and y copies of K2,5 .

Denote the vertices of the i-th copy of K3,3 in such way that vertices pi,1, pi,2 , and pi,3 are

in one class and qi,1, qi,2 , and qi,3 are in the other class. Similarly, denote the vertices of

the i-th copy of K2,5 in such a way that ui,1 and ui,2 belong to one class and vi,1, . . . , vi,5

to the other class. Then we define

Gx,y = Hx,y

−
{

p1,3 q1,3 , p2,1 q2,1 , p2,3 q2,3 , p3,1 q3,1 , p3,3 q3,3 , . . . , px,1 qx,1 , px,3 qx,3 ,

u1,1 v1,1 , u1,2 v1,5 , u2,1 v2,1 , u2,2 v2,5 , . . . , uy−1,1 vy−1,1 , uy−1,2 vy−1,5 , uy,1 vy,1

}

+

{
p1,3 q2,1 , q1,3 p2,1 , . . . , px−1,3 qx,1 , qx−1,3 px,1 , px,3 u1,1 , qx,3 v1,1 ,

u1,2 v2,1 , v1,5 u2,1 , . . . , uy−1,2 vy,1 , vy−1,5 uy,1

}
.

Finally, the graph Gx,y,z is obtained by replacing the edge uy,2 vy,5 by a path of length

z + 1 .

We illustrate this construction by the graph G3,2,1 depicted in Figure 1.

Figure 1. The graph G3,2,1 .

Note that:

M2(Gx,y,z) = 9 · 9 · x + 10 · 10 · y + 6 + 15 − 9 − 10 + 4z

m(Gx,y,z) = 9x + 10y + z

M1(Gx,y,z) = 6 · 9 · x + 5 · 4 · y + 2 · 25 · y + 4z

n(Gx,y,z) = 6 · x + 7 · y + z .

Simple calculation shows that M1(Gx,y,z)/n(Gx,y,z) = M2(Gx,y,z)/m(Gx,y,z) if and only if

z =
−12x − 14y + 3xy

2 + 15x + 18y
.
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One such combination is (x, y, z) = (14, 38, 1) . Hence,

M1(G14,38,1)

n
=

M2(G14,38,1)

m
.

�
Remark 16. One can show that there are infinitely many graphs Gx,y,z satisfying the

Zagreb indices equality. Observe the family of graphs Hu = G6+12u,18+82u+90u2,2u . For it,

M2(Hu) = 2288 + 9180 u + 9000 u2

m(Hu) = 234 + 930 u + 900 u2

M1(Hu) = 1584 + 6396 u + 6300 u2

n(Hu) = 162 + 648 u + 630 u2 .

The fact that equality (2) holds for Hu can now be verified by simple calculation.

5. A general construction method

We start first with a trivial example. Suppose that there is an (n,m)-graph G satisfying

the relation
M1(G)

n
ρ

M2(G)

m
(13)

where ρ is one of the symbols < , = , or > .

Let G2 = G′ ∪ G′′ be the graph consisting of two disjoint components G′ , G′′ , each

being isomorphic to G . Then, evidently,

n(G2) = 2n ; m(G2) = 2m ; M1(G2) = 2 M1(G) ; M2(G2) = 2 M2(G)

and therefore
M1(G2)

n(G2)
ρ

M2(G2)

m(G2)

is satisfied.

Let e′rs be any edge of the graph G′ . Let this edge connect the vertices v′
r and v′

s .

Let G′′ be a graph isomorphic to G′ , and let its edge and vertices corresponding to

e′rs , v′
r , and v′

s , be denoted by e′′rs , v′′
r , and v′′

s , respectively.

Construct the graph G′
2 in the following way.

Start with G2 = G′ ∪ G′′ . Delete from it the edges e′rs and e′′rs , and insert new edges

between the vertices v′
r , and v′′

s , and between v′′
r , and v′

s .
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By the transformation G2 → G′
2 , the number of vertices and edges remains the same,

as well as the degrees of the vertices v′
r , v′

s , v′′
r , and v′′

s . It is elementary to verify that

also the two Zagreb indices remain unchanged. This immediately leads to the following:

Theorem 17. If G is a graph satisfying the relation (13), then also the above described

graph G′
2 satisfies this relation.

From Theorem 15 and the examples constructed in its proof we know that there exist

connected graphs (which are not trees), satisfying the Zagreb indices equality.

Corollary 18. If G is a connected graph satisfying the Zagreb indices equality, and if

its edge ers belongs to a cycle, then also the above described graph G′
2 is connected and

satisfies the Zagreb indices equality.

Since the graph G′
2 in Corollary 18 also contains an edge belonging to a cycle, the

construction of connected graphs satisfying the Zagreb indices equality can be continued

as libitum.

6. Union of graphs and the Zagreb indices inequality

As before, the union G1 ∪ G2 of an (n1,m1)-graph G1 and an (n2,m2)-graph G2 with

disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the (n1 + n2,m1 + m2)-graph

with vertex set V1 ∪ V2 and edge set E1 ∪ E2 .

Suppose that the graphs G1 and G2 satisfy the Zagreb indices inequalities

M1(G1)

n1

≤ M2(G1)

m1

and
M1(G2)

n2

≤ M2(G2)

m2

.

If also their union satisfies the Zagreb indices inequality, i. e.,

M1(G1 ∪ G2)

n1 + n2

≤ M2(G1 ∪ G2)

m1 + m2

then we say that G1 and G2 satisfy the Zagreb indices transitivity relation T = T (G1, G2) .

Not all graphs obey the relation T . An earlier encountered example for the violation

of T is C3 ∪ K1,5 .

In what follows, we investigate when the union of G = G1∪G2 also satisfies the Zagreb

indices inequality, or equivalently when

M1(G)

M2(G)
=

M1(G1 ∪ G2)

M2(G1 ∪ G2)
≤ n

m
(14)
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is true, where n = n1 + n2 and m = m1 + m2 . Obviously,

M1(G1 ∪ G2)

M2(G1 ∪ G2)
=

M1(G1) + M1(G2)

M2(G1) + M2(G2)
. (15)

Let M2(G1) = u1 m1 and M2(G2) = u2 m2 . Since for every graph H it is true that

M2(H) ≥ |E(H)| , it follows that u1 ≥ 1 and u2 ≥ 1 . Thus, from (15) we obtain

M1(G)

M2(G)
=

M1(G1) + M1(G2)

u1 m1 + u2 m2

≤ u1 n1 + u2 n2

u1 m1 + u2 m2

. (16)

Notice that if G1 and G2 satisfy the Zagreb indices equality, then in (16) the last rela-

tion is also equation. If u1 = u2, then the inequality (14) is satisfied, and we immediately

have the following result.

Theorem 19. Let G1 be an (n1,m1)-graph and let G2 be an (n2,m2)-graph, both satis-

fying the Zagreb indices inequality. If M2(G1)/m1 = M2(G2)/m2, then T (G1, G2) holds.

Trivial cases that satisfy the requirements of Theorem 19 are found in the Examples

in Section 3.

From (16) we immediately have the following result.

Theorem 20. Let G1 be an (n1,m1)-graph and let G2 be an (n2,m2)-graph, both satis-

fying the Zagreb indices inequality. Then T (G1, G2) holds if

(a) n1 = n2 and m1 = m2 , or

(b) n1 = m1 and n2 = m2 .

Under the same conditions, if the Zagreb indices equality holds for G1 and G2 , then it

also holds for G1 ∪ G2 .

Examples satisfying condition (a) are when G1 and G2 are trees on same number of

vertices, or when G1 and G2 are isomorphic. An example that satisfies (b) is when G1

and G2 are unicyclic graphs.

Now we assume that u2 > u1 . (Since the graph union is a commutative operation,

the same analysis applies for the case u2 < u1 .) Let u = u2/u1 . Then from (16),

M1(G1 ∪ G2)

M2(G1 ∪ G2)
≤ n1 + un2

m1 + um2

.

For u > 1, the inequality
n1 + un2

m1 + um2

≤ n1 + n2

m1 + m2

is satisfied when
n2

m2

≤ n1

m1

.

Theorem 21. Let G1 be an (n1,m1)-graph and let G2 be an (n2,m2)-graph, both

satisfying the strict Zagreb indices inequality (resp. the Zagreb indices equality). If
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M2(G1)/m1 < M2(G2)/m2 , then their union satisfies the strict Zagreb indices inequality

(resp. the Zagreb indices equality) if n2/m2 < n1/m1 (resp. n2/m2 = n1/m1).

We would like to stress that the condition n2/m2 < n1/m2 (resp. n2/m2 = n1/m2)

from Theorem 21 is sufficient, but not necessary. There are graphs G1 and G2 with

M2(G1)/m1 < M2(G2)/m2 and n2/n1 > m2/m1 that satisfy the Zagreb indices inequality.

For example, consider the case when G1 is Pn and G2 is Sq, for n ≥ q ≥ 3 . The

reason is that in those cases we have the strict inequality M1(G1 ∪ G2)/M2(G1 ∪ G2) <

(n1 + un2)/(m1 + um2) , and (n1 + un2)/(m1 + um2) ≥ (n1 + n2)(m1 + m2) does not

necessarily imply M1(G1 ∪ G2)/M2(G1 ∪ G2) > (n1 + n2)(m1 + m2) .
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[5] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron

energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
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[18] D. Vukičević, A. Graovac, Comparing Zagreb M1 and M2 indices for acyclic

molecules, MATCH Commun. Math. Comput. Chem. 57 (2007) 591–596.
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