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Abstract:
The 2-body interaction energy according to the Biswas-Hamann potential has a longer
history than that of the Kaxiras-Pandey potential. Accordingly, covalent bond
stretching energy for the former has been parameterized more than that of the latter.
This paper enables a cost-effective and time-saving approach for extracting
parameters of the newer potential from those of the older potential. This paper adopts
a simultaneous imposition of equal force constant and equal energy integral for
relating parameters from both potentials. Plotted results reveal very good agreement.
Due to the high cost involved in spectroscopic experimentation and ab initio
supercomputing, the availability of parameter conversion would be a good alternative

for computational chemistry modeling.
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1. Introduction
With increasing investigation into various silicon nanodevices (e.g. [1-3]) and their
applications thereof, the importance of solid state interatomic many-body modeling
should not be overlooked. Empirical many-body potential functions would serve well
the computational requirements of these silicon nanodevices due to their ease of
computation. These empirical potential functions have been developed for silicon by
Biswas and Hamann [4], Kaxiras and Pandey [5] and many others. Reviews on the
various potential functions for solid state systems of Si, C and other systems have
been made by Stoneham et al. [6], Balamane et al. [7], Erkoc [8] and Sathyamurthy
[9]. Relationships between various potential energy functions have been established
for small deformation [10-13] and for large deformation [14-17]. The former was
attained by imposing equal force constant while the latter by means of equating equal
energy integral from equilibrium bond length to bond dissociation. These parameter
relationships are useful whenever a computational application’s user prefers a set of
parameters in a particular potential function over the incorporated potential function in
the software. The two methods of potential function conversions, however, encounter
limitations. The method by force constant equates equal potential energy curvature at
the well-depth’s minimum, thereby enabling impeccable agreement for small
deformation but significant discrepancies are normally observed for » >1.2R .The
method by energy integral ensures equal area of energy versus bond length within
R < r < oo such that the relaxation of equal curvature at the well-depth minimum leads
to significant discrepancies in large bond compression. This paper combines both
methods to develop parameter conversion that is accurate for (i) large bond

compression (0 <r < R), (ii) small bond deformation (» = R), and (iii) large bond

stretching (r > R).
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2. Analysis

The 2-body energy portion of the Biswas-Hamann [4] and Kaxiras-Pandey [5]
potentials are given as

Uy = Apin exp(— llr)+ Ay exp(— /12”) ey
and

Uyp = Agpy exp(— alrz)— Aips exp(— azrz) 2)
respectively, with 4, being negative [4]. To pave a way for both functions to be
related, these 4-parameter potentials are expressed in a more common form that
consists of dissociation energy, D, and the equilibrium bond length, R. In this way
both functions can be reduced into 2-parameter potentials only when expressed in

non-dimensionalized forms, i.e.

U r
%:fBH(lI’EZ’Ej 3)
and
U r
DKP :fKP(al’QZ’Ej' 4)
Specifically, imposing
(6UBH] :(aUK,,] _o )
or r=R or r=R
and
(UBH )r:R = (UKP )r:R =-D (6)
on Egs.(1) and (2) leads to
Ys _ Lexp /IIR(I - Lj __A exp /12R(1 —lj (7)
D A -4 R A=A, R
and
2 2
thexp o, R? l—r—2 -4 _exp a,R? 1—% (8)
D o-a, R a —-a, R

respectively, whereby the equilibrium bond length is
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j— ln(— Al ] ©)
/11 _ﬂz /12‘431{2

in terms of Biswas-Hamann parameters, and

R:\/ ! 1n[a1AKPlJ (10)
a, —a, a, Agpy

in terms of Kaxiras-Pandey parameters by means of Eq.(5). The bond dissociation

energy can be expressed as

D =—Ay,, exp{— 4 ln(— A A H—ABHZ exp{— z! ln[— A A ﬂ
/11 - /7'2 /7'2 Apys ﬂ’l - ﬂ'z 22 Apyys

)

in terms of Biswas-Hamann parameters, and

D =—Ay, eXp|:_ % ln[— % A, j:| + Agpy eXp|:— % ln(— @Ay, J:|
o —a, Ay a, —a, ) Agpy
(12)

in terms of Kaxiras-Pandey parameters, both of which by virtue of Egs.(5) and (6).

The parameters 4,R and o,R” for i =1,2 are non-dimensional, and control the shape
of the 2-body portion of the Biswas-Hamann and Kaxiras-Pandey potential energy
curves respectively in the non-dimensional (U /D) versus (r/R) plane. With only
two shape factors in each of the potential functions in the non-dimensional forms,
their relationships can be obtained through the imposition of two criteria
simultaneously — (i) equal force constant, and (ii) equal mean stretching energy —

which were previously imposed in previous works.

Imposition of equal force constant
82UBH _ aZUKP
P = p (13)
r r=R ar r=R

A A, =4a,a,R? (14)

gives

while the imposition of equal mean stretching energy
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[} Usdr = [ Uypelr (15)

leads to

a, =

’1;/1’1 % expaR \F lerf (o) —erf (e, R)|

(16)
a, N | 7«
- expla, R ) |[— ) — a, R
e G o A RN
where the error function is defined as
( l)n 2n+l
17
erf ()= Z o n!(2n+1) (1n
or alternatively
2
erf(x) = \/1 - exp(— 2 W] (18)
1+ ax
with
a:—i(”_sjzo.moo. (19)
3z\7r—4

Therefore substituting Eqs.(18) and (19) into Eq.(16) gives rise to

A+, |z a;expla,RY) B , (4/7)+0.14a,R*
My _(;(a a)f[ \/1 exp[ w0 H )

3. Results and Discussion
The validity of the Biswas-Hamann and the Kaxiras-Pandey shape parameter relations
shown in Egs.(14) and (20) can be attested by plotting the Biswas-Hamann potential
function, and comparing it with the Kaxiras-Pandey potential energy curve using the

parameters of the former. Using the Biswas-Hamann’s 2-body interaction parameters
o-1
for silicon, Ay, =26829.36eV , Agy,, =42.59863¢V , A, =3.946668 A  and
o-!
A4, =1.191187 A , the corresponding Kaxiras-Pandey parameters can be numerically

o2

0
solved to give D=1.092362¢V , R=2.773872A , «, =1.06250A and
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02
a, =0.143764 A . Figure 1 shows the 2-body interaction energy according to the

Biswas-Hamann potential (denoted by circles) and the Kaxiras-Pandey potential

(smooth curve) converted from the former’s parameters.

o BH
—KP

0.2

2 3 4 5 6 7
r (Angstrom)

Fig. 1. Obtaining the 2-body energy portion of Kaxiras-Pandey potential energy curve
using the 2-body portion of Biswas-Hamann parameters [4].

Even though a close scrutiny reveal a slight discrepancy, it is clear that the use of
combined method — equal force constant and equal mean stretching energy — gives
very good agreement throughout the entire bond length considered. Although a
different technique was previously given for relating the Biswas-Hamann and the
Kaxiras-Pandey relations [10], it is felt that the present method possesses better
physical justification and hence would render such a method highly applicable for

other potential functions. Present results show that the use of this combined technique
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for relating the Biswas-Hamann and Kaxiras-Pandey parameters gives better

agreement than for relating the Morse and Linnett parameters [18].

4. Conclusions
A method of relating parameters of the Biswas-Hamann and the Kaxiras-Pandey
potential energy functions have been developed and tested for its validity. Imposition
of equal force constant, which is defined as the curvatures of the potential energy
curves at the well-depths’ minimum, gives good agreement for bond compression and
small bond stretching. Imposition of equal mean bond stretching, defined as the
energy integral from equilibrium to dissociation, leads to good agreement for large
bond stretching. By combining equal force constant and equal bond-stretching mean
energy, impeccably good relationship was observed throughout. The obtain
relationship enables parameters of the Biswas-Hamann to be converted into those of
Kaxiras-Pandey for application in computational chemistry models that adopt the

latter potential, as well as vice versa.
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