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Abstract

The notions of a forcing edge and the forcing number of a perfect matching first

appeared in a 1991 paper [15] by Harary, Klein and Živković. The root of these

concepts can be traced to the works ([24] and [36]) by Randić and Klein in 1985-

1987, where the forcing number was introduced under the name of “innate degree

of freedom” of a Kekulé structure, which plays an important role in the resonance

theory in chemistry. Over the past two decades, more and more mathematicians

were attracted to the study on forcing sets (including forcing edges and forcing faces,

etc.) and the forcing numbers of perfect matchings of a graph. The scope of graphs

in consideration has been extended from polyhexes to various bipartite graphs and

non-bipartite graphs. Some varied topics such as global forcing matchings and anti-

forcing matchings also emerged recently. Here we will present a brief survey on the

known results, as well as some open problems and conjectures in this growing field.

1 Introduction

1.1 Origin and Importance

The idea of “forcing” has long been used in many research fields, such as colorings, ori-

entations, geodetics and dominating sets in graph theory, as well as Latin squares, block

designs and Steiner systems in combinatorics (see [14] and the references therein). Re-

cently, the “forcing” on perfect matchings has been attracting more researchers’ attention.

In this survey we focus on the study of forcing sets (including forcing edges and forcing

faces) and forcing numbers of perfect matchings of a graph.
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The notions of a forcing edge and the forcing number of a perfect matching first

appeared in a 1991 paper [15] by Harary, Klein and Z̆ivković. The root of these concepts

can be traced to the works ([24] and [36]) by Klein and Randić in 1985–1987, where

they introduced the innate degree of freedom (the forcing number) of a Kekulé structure

(perfect matching) which plays an important role in the resonance theory in chemistry.

For a Kekulé structure M of a benzenoid hydrocarbon, the edges in M are called double

bonds; single bonds otherwise. An edge is called a forcing bond (or, forcing edge) if it is

contained in exactly one Kekulé structure. A forcing bond between two carbon atoms

r and s in a given benzenoid hydrocarbon has the smallest positive Pauling bond order

Prs = Krs

K
, where Krs is the number of Kekulé structures such that there is a double

bond between r and s, and K is the total number of Kekulé structures of the benzenoid

hydrocarbon. The Pauling bond order was successfully correlated with experimentally

determined bond lengths of various benzenoid hydrocarbons. Kekulé structures with a

larger innate degree of freedom play more important role in resonance theory. For details

of the related study in chemistry, the reader is referred to the recent paper [34] by Randić

(2003). For various mathematical concepts in chemistry we refer to the book [19] by

Gutman and Polansky (1986).

Over the past two decades, more and more mathematicians were attracted to the study

on forcing sets (including forcing edges and forcing faces, etc.) and forcing numbers of

perfect matchings of a graph. The scope of graphs in consideration has been extended

from hexagonal systems (also called polyhexes, or benzenoid systems) to plane bipartite

graphs, bipartite graphs, as well as non-bipartite graphs. Some varied topics such as

global forcing matchings and anti-forcing matchings also emerged in the past few years.

Here we will present a brief survey on the known results, as well as some open problems

and conjectures in this growing field.

1.2 Preliminaries

All graphs considered in this survey are connected simple graphs with at least one perfect

matching.

Definition 1.1 A perfect matching (or 1-factor) M of a graph G is a set of disjoint edges

that covers all vertices of G.
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Perfect matchings of a molecule graph G are also called Kekulé structures of G in

chemistry, which play a key role in the molecule resonance energy and aromaticity of

organic molecules.

Definition 1.2 A forcing set S of a perfect matching M of a graph G is a subset of M

contained in no other perfect matchings of G.

Note that the empty set is a forcing set of a perfect matching M of G if and only if

M is the unique perfect matching of G.

A set S of independent edges of a graph G is a forcing set if and only if G − V (S)

has a unique perfect matching or is empty, where V (S) denotes the set of end vertices of

edges in S.

Definition 1.3 The forcing number (or, innate degree of freedom) of a perfect matching

M of a graph G is defined as

f(G,M) = min {|S|: S is a forcing set of M}.

Definition 1.4 The forcing number (or, minimum forcing number) of a graph G is de-

fined as

f(G) = min{f(G,M): M is a perfect matching of G}.

Definition 1.5 The maximum forcing number of a graph G is defined as

F (G) = max{f(G,M): M is a perfect matching of G}.

Note that f(G) and F (G) are defined only for graphs with at least one perfect match-

ing. Clearly, 0 ≤ f(G) ≤ F (G) ≤ |V (G)|
2

− 1, f(G) = 0 if and only if F (G) = 0 if and

only if G has a unique perfect matching.

Definition 1.6 The spectrum of forcing numbers of a graph G is defined as

Spec(G) = {f(G,M) : M is a perfect matching of G}

Afshani et al (2004) [1] showed that any finite set of positive integers can be realized

by the spectrum of a plane bipartite graph.

Theorem 1.7 [1] For any finite set A of positive integers, there is a plane bipartite graph

G such that Spec(G) = A.
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Definition 1.8 A forcing edge of a graph G is an edge contained in exactly one perfect

matching of G. (It constitutes a forcing set with cardinality 1.)

Note that a graph G has a forcing edge if and only if f(G) = 0 or 1. If G has at least

two perfect matchings, then G has a forcing edge if and only if f(G) = 1.

By definitions, we immediately have the following proposition.

Proposition 1.9 Let G be a graph with a perfect matching. Then

(i) Spec(G) = {0} if and only if G has a unique perfect matching if and only if

0 ∈ Spec(G) if and only if f(G) = 0.

(ii) Spec(G) = {1} if and only if G has more than one perfect matching and every

perfect matching M contains a forcing edge of G.

Proposition 1.10 Let G be a graph with a perfect matching. Then Spec(G) = {0} or

{1} if and only if after deleting all forcing edges of G the resultant graph has no perfect

matchings.

Proof. The necessity can be proved by contradiction. Assume that the resultant graph

after the deletion of forcing edges has a perfect matching M . It is clear that M is also a

perfect matching of G which contains no forcing edges. So f(G,M) > 1. This contradicts

the condition that Spec(G) = {0} or {1}.
The sufficiency can also be shown by contradiction. Assume that Spec(G) �= {0}

or {1}. Then G must have a perfect matching M such that f(G,M) > 1, that is, M

does not contain any forcing edge of G, and so M is a perfect matching of the resultant

graph after the deletion of forcing edges of G. This contradicts the assumption that the

resultant graph has no perfect matchings. So the sufficiency is proved. This completes

the proof. �

The largest possible forcing number f(G) for a graph G is f(G) = 1

2
|V (G)| − 1.

Assume that |V (G)| = 2n. It is clear that f(G) = n−1 if and only if Spec(G) = {n−1}.
For example, f(K2n) = f(Kn,n) = n− 1.

Proposition 1.11 For any integer n > 1,

(i) there exists a (bipartite) graph G that has n perfect matchings and f(G) = 1.

(ii) there exists a (bipartite) graph G with f(G) = 1 such that f(G,M) = n for some

perfect matching M of G.
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Proof. (i) A linear hexagonal chain H with n−1 hexagons has n perfect matchings and

forcing number f(H) = 1. See the graph at the top of Fig. 1 (i) for an example with

n = 6.

(ii) An example for n = 4 is depicted in Fig. 1 (ii). The desired graph is the Gn

constructed in [1] by replacing alternate edges in C2n by a cycle of size 4 whose one edge

is identical to the replaced edge in C2n. �

(ii)

f(G,M )=42
f(G,M )=11

f(H,M)=1 for any pm M of H.(i)

Figure 1. Examples of forcing numbers of graphs.

The problems of finding the smallest forcing number and finding a smallest forcing set

of graphs are both NP-complete by the following two theorems by Afshani et al (2004)

[1] and Adams et al (2004) [2].

Theorem 1.12 [1] Finding the smallest forcing number is NP-complete for bipartite

graphs with maximum degree 4.

Theorem 1.13 [2] Finding the smallest forcing set of a perfect matching is NP-complete

for bipartite graphs with maximum degree 3.

Remark. For plane bipartite graphs G, however, Pachter and Kim (1998) [29] made the

remark that forcing sets of perfect matchings of G can be found in polynomial time using

the O(n3) algorithm by Gabow [16] for finding feedback sets of a plane digraph.
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2 Important Tools and General Results

2.1 Three Classical Results

In this section, we state three classical results which are fundamental in the study of

forcing on perfect matchings of a graph: Kotzig’s theorem (1959) on the unique perfect

matching of a general graph, Lovász and Plummer’s theorem (1986) on the unique perfect

matching of a bipartite graph, and the minimax theorem on the disjoint directed cycles

in a planar directed graph by Lucchesi and Younger (1978), an extended version of which

was given by Barahona et al. in 1994.

Theorem 2.1 [23] (Kotzig) If a connected graph G has a unique perfect matching M ,

then G has a bridge in M .

Kotzig’s theorem immediately implies that any 2-connected graph G with a perfect

matching has at least two perfect matchings. If G is a connected graph with a perfect

matching M and S ⊂ M (S �= M) is a forcing set of M , then G − V (S) must have a

bridge which belongs to M . Hence, any k-connected graph G with a perfect matching

has the forcing number f(G) ≥ ⌊
k
2

⌋
.

Let G = (B,W ) be a bipartite graph with two partite sets B and W . If G has a

unique perfect matching, then vertices of G can be labeled B = {b1, b2, · · · , bm} and

W = {w1, w2, · · · , wm} such that for every edge biwj, i ≥ j (see page 139 in [26] by

Lovász and Plummer). It follows immediately that b1 and wm must be degree-1 vertices

(or, pendent vertices) in G. Therefore, the following theorem comes immediately.

Theorem 2.2 [26] (Lovász and Plummer) A bipartite graph with a unique perfect

matching must contain at least one pendent vertex in each partite set.

By Theorem 2.2, for any bipartite graph G with a perfect matching, if G does not

have a pendent vertex in each partite set, then G has at least two perfect matchings. It

is well known that any regular bipartite graph has a perfect matching. So any connected

regular bipartite graph with more than two vertices has at least two perfect matchings.

If a bipartite graph G is k-extendable (i.e., any k-matching is contained in a perfect

matching of G) and for any k-matching S, G− V (S) does not have a pendent vertex in

each partite set, then f(G) > k.
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Finally, we introduce Lucchesi and Younger’s minimax theorem (1978) on the disjoint

directed cycles in a planar directed graph. A feedback arc set (or briefly, feedback set) in

a directed graph D is a set of arcs of D that contains at least one arc of each directed

cycle in D.

Theorem 2.3 [28] (Lucchesi and Younger) For a finite planar directed graph, a minimum

feedback set has the cardinality equal to that of a maximum disjoint collection of directed

cycles.

An extension of this theorem was given by Barahona et al. in 1994.

Theorem 2.4 [3] (Barahona et al.) For any directed graph without K3,3 minor, the

cardinality of a minimum feedback set is equal to the maximum number of arc disjoint

cycles.

A directed graph is said to have the cycle-packing property if the minimum cardinality

of a feedback set equals the maximum number of arc disjoint directed cycles. A graph G

is said to have the cycle-packing property if every orientation of G results in a directed

graph that has the cycle-packing property. So Theorems 2.3 and 2.4 can be restated as

the following.

Theorem∗ Any graph without K3,3 minor (for example, any planar graph) has the cycle-

packing property.

2.2 Three Key Concepts

In this section, we will introduce three key concepts which are useful in the study on forc-

ing perfect matchings of a graph: alternating cycles (or, conjugated circuits in chemistry),

trailing vertices, and Z-transformation graphs (or, resonance graphs in chemistry). We

will also state main results on forcing perfect matchings related to these three concepts.

Definition 2.5 [26] Let M be a perfect matching of a graph G. An M-alternating cycle

of G is a cycle of G whose edges are alternately in M and E(G) \M .

An M -alternating cycle is simply called an alternating cycle if there is no need to

specify the perfect matching M .
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Close relationship between a forcing set and alternating cycles of a perfect matching

in a graph has been realized and studied by many researchers. By definition, we can see

that M is the unique perfect matching of G if and only if G has no M -alternating cycles.

Patcher and Kim (1998) presented the following equivalent form employing the forcing

number.

Lemma 2.6 [29] Let G be a graph with a perfect matching M . Then f(G,M) > 0 if

and only if G has an M -alternating cycle.

A necessary and sufficient condition for a forcing set S of a perfect matching M comes

immediately.

Proposition 2.7 Let G be a graph with a perfect matching M . Then a subset S ⊂ M

is a forcing set of M if and only if G− V (S) contains no M -alternating cycles.

The special case of this result for hexagonal systems was given by F. Zhang and H.

Zhang [52] in 1995. Necessity of Proposition 2.7 was observed by Riddle [32] in 2002,

and a special case of Proposition 2.7 on bipartite graphs was given by Kleinerman [22]

in 2006.

For any graph G with a perfect matching M , it is easy to see that the forcing number

f(G,M) is bounded below by the maximum number of disjointM -alternating cycles. The

minimax theorem of Lucchesi and Younger (1978) motivated Pachter and Kim (1998) to

consider a class of bipartite graphs G with the cycle-packing property. They showed that

for any perfect matching in such a graph G, the forcing number f(G,M) can be obtained

by counting the maximum number of disjoint M -alternating cycles in G.

Theorem 2.8 [29] Let G be a bipartite graph with the cycle-packing property. Then for

any perfect matching M of G,

(i) f(G,M) = C(G,M), the maximum number of disjoint M -alternating cycles in G.

(ii) f(G,M) ≤
⌊
p
q

⌋
, where p = |V (G)| and q = the girth of G.

Due to the minimax Theorem 2.3 by Lucchesi and Younger (1978) and its extended

version Theorem 2.4 by Barahona et al. (1994), Theorem 2.8 can be applied to all

bipartite graphs without K3,3 minor (for example, all plane bipartite graphs).
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Theorem 2.9 [29] [32] Let G be a bipartite graph without K3,3 minor. Then for any

perfect matching M of G,

(i) f(G,M) = C(G,M), the maximum number of disjoint M -alternating cycles in G,

(ii) f(G,M) ≤
⌊
p
q

⌋
, where p = |V (G)| and q = the girth of G.

Remark 2.10 (i) Riddle (2002) stated Theorem 2.9 in [32]; but it was not explicitly

stated by Pachter and Kim (1998) in [29]. That may be the main reason why this

important result has not been widely known. (For example, on page 510 in [33] byRandić

(2002) or on page 3472 in [34] byRandić (2003), where the special case of this result for

G being a hexagonal system was listed as a conjecture.)

(ii) Theorem 2.9 (i) generalizes a result by Hansen and Zheng (1994) that the innate

degree of freedom of a Kekulé structure in a cata-condensed benzenoid hydrocarbon is

equal to the maximum number of disjoint hexagons containing three double bonds [21].

Theorem 2.8 shows that the forcing number of a bipartite graph with cycle-packing

property (for example, a plane bipartite graph) can be obtained by counting the maximum

number of disjoint alternating cycles. But it does not hold for many nonplanar bipartite

graphs. To find a lower bound for the forcing numbers of bipartite graphs without cycle-

packing property such as torus and hypercubes, Riddle (2002) introduced the trailing

vertex method for a bipartite graph G = (B,W ) in [32], which gives a lower bound on

the forcing number of a bipartite graph by the minimum number of trailing vertices in

one partite set B over all possible ordering of B. It reduces a problem on all perfect

matchings of a bipartite graph G to a single problem on the vertices in one partite set of

G.

Definition 2.11 [32] Let G = (B,W ) be a bipartite graph with a perfect matching.

Assign an ordering to all vertices in B. A vertex b ∈ B is called a trailing vertex if it is

not the largest one in the neighborhood N(w) for any vertex w ∈ W ; a leading vertex

otherwise.

Theorem 2.12 [32] The forcing number of a bipartite graph G = (B,W ) is bounded

below by the minimum number of trailing vertices in B over all possible orderings of B.

Riddle (2002) also gave a weaker lower bound on the forcing number of a bipartite

graph G = (B,W ) using the smallest possible maximum excess over all orderings of
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B, which is easier to compute in some cases such as when G is a torus. Assign an

ordering b1 < b2 < · · · < bn on all vertices of B and denote Bk = {bk+1, bk+2, · · · , bn} for

0 ≤ k ≤ n − 1. The excess of Bk is defined as ε(Bk) = |N(Bk)| − |Bk|. The maximum

excess for an ordering of B is defined as

max
0≤k≤n−1

ε(Bk) = max
0≤k≤n−1

{|N(Bk)| − |Bk|}.

By the definition, it is easily to see that for an ordering b1 < b2 < · · · < bn on B, a vertex

bi is a leading vertex if and only if ε(Bi−1) ≥ ε(Bi), and bi is a trailing vertex if and only

if ε(Bi−1) = ε(Bi)− 1.

Theorem 2.13 [32] The forcing number of a bipartite graph G = (B,W ) is bounded

below by the smallest possible maximum excess for all orderings of B.

Kleinerman (2006) [22] determined the conditions under which the lower bound given

in Theorem 2.12 by Riddle is sharp in terms of edge-packing; he also provided an infinite

family of graphs for which the lower bound is arbitrarily weak. An edge-packing of a

bipartite graph G = (B,W ) is a disconnected collection E of edges in G along with

an injective weight function w : E → {1, 2, ..., |E|} on these edges extended to a weight

function on their endpoints as well, by inheriting the edge-weight, and in which no vertices

in W are adjacent to vertices in B of greater weight. The set of edges constituting an

edge-packing P will be denoted E(P ). A maximal edge-packing Pmax of a graph G

is an edge-packing of G such that |E(Pmax)| ≥ |E(P )| for all edge-packings P of G.

Kleinerman (2006) [22] showed that for a bipartite graph G = (B,W ), given an ordering

on the vertices of B, there is an edge-packing P for which |E(P )| is equal to the number

of leading vertices in that ordering. Conversely, given an edge-packing P , there is an

ordering on the vertices of B for which the number of leading vertices in that ordering

equals |E(P )|.

Theorem 2.14 [22] The lower bound on the forcing number given in Theorem 2.12 is

sharp exactly when some maximal edge-packing Pmax of the graph G in question has

E(Pmax) extendable to a perfect matching M of G.

Kleinerman (2006) [22] also provided a family of graphs for which the minimum num-

ber of trailing vertices in a partite set B is 1 over all possible orderings of B, but the
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Figure 2. An example of a bipartite graph with forcing number n, where the numbered

red edges represent an edge-packing.

forcing number diverges, see Fig. 2 provided in [22]. This shows that the lower bound

given in Theorem 2.12 can be arbitrarily weak.

Wang, Ye and Zhang (2008) [47] improved the lower bound given in Theorem 2.12 by

using the minimum number of trailing vertices in B over all canonical orderings of B for

a bipartite graph G = (B,W ). An ordering b1 < b2 < · · · < bn on all vertices of B is

said to be canonical (or, standard) if its smallest leading vertex is larger than the largest

trailing vertex; non-canonical (or, non-standard) otherwise. Wang et al [47] showed that

for a canonical ordering of B, the maximum excess is equal to the number of trailing

vertices. If S is a minimum forcing set of a perfect matching of G = (B,W ), then there

exists a canonical ordering of B such that V (S) ∩ B is the set of trailing vertices and

B \ V (S) is the set of leading vertices.

Theorem 2.15 [47] The forcing number of a bipartite graph G = (B,W ) is bounded

below by the minimum number of trailing vertices in B over all canonical orderings of B.

Wang (2009) [46] improved the trailing vertex method by Riddle, and gave a necessary

condition for a given natural number k being in the spectrum of forcing numbers of a

bipartite graph. He also provided a necessary and sufficient condition for the minimum

forcing number of a bipartite graph being equal to the minimum number of trailing

vertices of all standard orderings of a color set.

Let G = (B,W ) be a bipartite graph. For an ordering b1 < b2 < · · · < bn on all

vertices of B, the excess of Bi = {bi+1, bi+2, · · · , bn} is defined as ε(Bi) = |N(Bi)| − |Bi|.
The excess of bi is defined to be ε(bi) = ε(B̄i−1) − ε(B̄i). The vertex bi is called an m-

excess vertex if ε(bi) = m. For an ordering of B, a vertex bi ∈ B is a trailing vertex if

and only if bi is a (−1)-excess vertex, and bi ∈ B is a leading vertex if and only if bi is

a nonnegative excess vertex. Wang showed that in a bipartite graph G = (B,W ) with
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a perfect matching, for any given non-standard ordering of B, there exists a standard

ordering such that the two orderings have the same number of trailing vertices.

For a standard ordering of B with k trailing vertices, denote the set of all positive-

excess vertices by B+, the set of 0-excess vertices by B0, and the set of trailing vertices

by B−. Then B = B+ ∪ B0 ∪ B−. Define

N∗(bi) ≡ N(bi) \N(B̄i) = N(B̄i−1) \N(B̄i),

Theorem 2.16 [46] Let G = (B,W ) be a bipartite graph with a perfect matching. If

k ∈ Spec(G), then there exists a standard ordering with k trailing vertices such that the

induced subgraph G[(B+ ∪ B− ∪ (∪bi∈B+
N∗(bi))] has a perfect matching.

Theorem 2.17 [46] Let G = (B,W ) be a bipartite graph with a perfect matching and

δG be the smallest number of tailing vertices among all standard orderings of B. Then

f(G) = δG if and only if there exists a standard ordering with the number of trailing

vertices δG such that the induced subgraph G[(B+ ∪ B− ∪ (∪bi∈B+
N∗(bi))] has a perfect

matching.

The concept of Z-transformation graph of a hexagonal system was introduced by

mathematicians Zhang, Guo and Chen [49] in 1988. The same concept was also introduced

and studied independently by the chemist Gründler [17, 18] in (1982, 1983) under the

name resonance graph. The concept Z-transformation graphs was further extended to

plane bipartite graphs by F. Zhang and H. Zhang [54] in 2000. It plays an important

role on the study of forcing edges and forcing faces in plane bipartite graphs including

hexagonal systems, see [8], [9], [50], [54].

Definition 2.18 [54] Let G be a plane bipartite graph with a perfect matching. The Z-

transformation graph of G, denoted by Z(G), is the graph whose vertices are the perfect

matchings of G where two vertices M1 and M2 are adjacent if and only if their symmetric

difference M1 ⊕M2 is the periphery of some finite face of G.

Zhang, Guo and Chen (1988) proved that if a hexagonal system H has at least one

perfect matching, then Z(H) is a connected bipartite graph. Furthermore, Z(H) is

either a path or a graph with girth 4; and Z(H)−Vm is 2-connected, where Vm is the set

of pendent vertices in Z(H), see Fig. 3. They also gave structural characterizations for

those hexagonal systems whose Z-transformation graphs have a pendent vertex.
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Figure 3. Examples of Z-transformation graphs.

Theorem 2.19 [49] Let H be a hexagonal system. Then Z(H) has a pendent vertex M

if and only if one of the following is true:

(i) H has a perfect matching M which is 3-dividable w.r.t. an O − ABC coordinate

system;

(ii) The periphery of the inner dual of H is monotone w.r.t. an O−ABC coordinate

system.

Zhang and Li (1995) showed that Z(H) has at most 2 pendent vertices and gave

structural characterizations for those hexagonal systems H whose Z(H) has exactly two

pendent vertices. They also provided a generating function for enumerating hexagonal

systems with forcing edges. H. Zhang and F. Zhang (2000) showed that Z(H) is a path

if and only if H is a linear hexagonal chain, which was proved by Che and Chen (2006)

in a different way. To study various molecule structures, H. Zhang and F. Zhang (2000)

extended the concept of Z-transformation graph for a hexagonal system to that for a

plane bipartite graph in [54]. The following lemma in [54] presents some properties of

the Z-transformation graph of a plane bipartite graph, which are especially useful in the

study of forcing edges and forcing faces (including forcing hexagons) in plane bipartite

graphs.
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Figure 4. A perfect matching M of H is 3-dividable w.r.t. O − ABC; periphery of the

inner dual of H is monotone w.r.t. O −ABC.

Lemma 2.20 [54] Let G be a plane elementary bipartite graph. Then

(i) Z(G) is a connected bipartite graph,

(ii) Z(G) has at most two vertices of degree one, and

(iii) if Z(G) has a vertex of degree ≥ 3, then the girth of Z(G) is 4; otherwise, Z(G)

is a path.

For more results on Z-transformation graphs, the reader is referred to the recent

survey [48] by H. Zhang (2006). In the rest of the paper, we will organize the known

results on perfect matching forcing in two categories: bipartite graphs (including plane

bipartite graphs and nonplanar bipartite graphs) and non-bipartite graphs. We also will

give a brief survey on some emerging varied topics such as global forcing matchings and

anti-forcing matchings. We conclude the paper with open questions and conjectures.
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3 Bipartite graphs

3.1 Hexagonal Systems

Forcing edges and forcing numbers of a hexagonal system have been investigated inten-

sively because they are closely related to the study of molecule resonance structure in

chemistry. The forcing number of a perfect matching M was also called the innate degree

of freedom of the Kekulé structure M byRandić and Klein (1985) in [36].

A hexagonal system (also called polyhex, or benzenoid system) is a 2-connected plane

bipartite graph such that each interior face is a unit hexagon. We only consider those

simple hexagonal systems which are 2-connected subgraphs of a regular hexagonal lattice.

A vertex of a hexagonal system belongs to at most three hexagons. A vertex is called

an interior vertex if it is shared by three hexagons. A hexagonal system is called cata-

condensed if it has no interior vertices; peri-condensed if it has at least one interior

vertex. The inner dual H∗ of a hexagonal system H is the graph each vertex of which

corresponds to the center of a hexagon of H and two vertices are adjacent in H∗ if the

two corresponding hexagons have a common edge in H. A cata-condensed hexagonal

system is called a hexagonal chain if its inner dual is a path, and linear hexagonal chain

if its inner dual is a straight path.

Harary, Klein and Živković (1991) [15] characterized when each edge of a hexagonal

system is a forcing edge. Characterizations for a hexagonal system with forcing edges

were given by Zhang and Li (1995) [50] using the concept of Z-transformation of hexago-

nal systems. They completely determined the existence and location of the forcing edges

of a cata-condensed benzenoid system. Zhang and Li (1996) [51] gave a linear algorithm

to determine if an indicted edge of a benzenoid system is a forcing edge. Furthermore,

by Polya’s theorem, they enumerated all cata-condensed benzenoid systems with forc-

ing edges: the number of non-isomorphic cata-condensed benzenoid system with forcing

bonds and with h hexagons is the nearest integer to 1

12
(h + 2)2, which is asymptotically

equivalent to h2

12
. A new method on enumeration of Kekulé structures of hexagonal sys-

tems with forcing edges was obtained elegantly by F. Zhang and H. Zhang (1995) [52].

In 1997, Li [25] introduced the concept of a forcing single edge of a hexagonal system H,

which is an edge of H belonging to all but one perfect matching of H. He determined all

the hexagonal systems with a forcing single edge, and gave a generating function for the
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number of such systems. Pachter and Kim [29](1998) gave an upper bound for the forcing

numbers of a hexagonal system as a corollary of Theorem 2.9. Kleinerman [22] (2006)

used a constructive method to obtain the same upper bound for the forcing numbers of

a hexagonal system (as well as an upper bound for the forcing numbers of subgraphs of

a square grid).

Theorem 3.1 [15] The single-hexagon is the only polyhex in which every edge is a forcing

edge.

Theorem 3.2 [50] A hexagonal system H has a forcing edge if and only if Z(H) has a

pendent vertex M and the unique M -alternating hexagon contains at least one edge on

the periphery of H.

Theorem 3.3 [50] Let H be a hexagonal system whose Z(H) has exactly one pendent

vertex. Then H has at most 3 forcing edges. The three possible forcing edges are the

three disjoint edges of a hexagon h if they lie on the periphery ofH, where h is a periphery

hexagon such that there exists a coordinate system O−ABC w.r.t. h and H is monotone

w.r.t. O − ABC.

H has 3 forcing edges

B

A

O

C

A

B
O

C

A

B

C

O

H

H has 1 forcing edge H has 2 forcing edges

Figure 5. Forcing edges in H (marked by short bars) when Z(H) has exactly one pendent

vertex.

Theorem 3.4 [50] Let H be a hexagonal system whose Z(H) has exactly two pendent

vertices. Let H∗ be the inner dual of H. Then one of the following three cases must

occur:
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(i) The perimeter of H∗ is a big hexagon and H has no forcing edges.

(ii) The perimeter of H∗ is a parallelogram with an angle equal to 120◦ and H has

exactly 4 forcing edges, which belong to two hexagons centered at the corners of 120◦

angles of H∗.

(iii) H∗ is a straight path with n(≥ 1) vertices and H has n+ 5 forcing edges.

H has n+5 forcing edges

C

B

A

B

C

A

1

1

1

O

O’ H has no forcing edges

H has 4 forcing edges

Figure 6. Forcing edges in H (marked by short bars) when Z(H) has two pendent vertices.

Since Z(H) has at most two pendent vertices, by Theorems 3.2, 3.3 and 3.4, we can

have the following result immediately.

Corollary 3.5 The number of forcing edges in a hexagonal system is a nonnegative

integer not equal to 5.

Zhang and Li (1996) [51] gave a linear algorithm to determine whether an edge e with

one end incident to the boundary of a hexagonal system H is a forcing bond or not.
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Algorithm 3.6 [51] Let e be an edge of a hexagonal system H with one end incident to

the boundary of H.

Step 1. Delete the indicated edge e together with its two end vertices u and v to

obtain a graph H1 = H \ {u, v}.
Step 2. If Hi has a pendant edge, then delete the edge together with its end verities

to obtain a graph Hi+1. If Hi+1 has a pendant edge, then Hi := Hi+1, and go to Step 2.

Otherwise, go to Step 3.

Step 3. If Hi = ∅, then e is a forcing bond. Stop. Otherwise, Hi is a connected

subgraph of H without pendent vertices, so Hi has at least two perfect matchings by

Theorem 2.2. Hence, e is not a forcing bond. Stop.

Theorem 3.7 [51] Algorithm 3.6 correctly recognizes whether the indicated edge e in

a hexagonal system H is a forcing bond or not with complexity O(n), where n is the

number of vertices of H.

F. Zhang and H. Zhang’s enumeration method (1995) on the Kekulé Structures of

hexagonal systems with forcing edges is based on the following theorem.

Theorem 3.8 [52] Let H be a hexagonal system with a forcing edge e. Then the number

of Kekulé structures of H is one more than the number of M -alternating cycles passing

through e, where M is the Kekulé structure containing e.

Motivated by the concepts of forcing edges and Clar structures in a hexagonal system,

Che and Chen (2006) introduced the concept of forcing hexagons in a hexagonal system.

Definition 3.9 [8] A hexagon h of a hexagonal systemH is a forcing hexagon ifH−V (h)

has a unique perfect matching.

(Note that the definition includes the case when H is a single hexagon, since the

empty graph H − V (h) is assumed to have a unique perfect matching by convention.)

We showed in [8] that any hexagonal system with a forcing hexagon is normal, that

is, each edge of the hexagonal system is contained in some perfect matching. We further

proved that a linear hexagonal chain has all its hexagons forcing, and other hexagonal

systems may have 0, 1 or 2 forcing hexagons. Structural characterizations for the hexag-

onal systems with a given number of forcing hexagons were presented. Using the tool of

-110-



Z-transformation graphs, we also proved the co-existence property of forcing hexagons

and forcing edges in a hexagonal system.

Theorem 3.10 [8] Let H be a hexagonal system with a perfect matching.

(i) If H has a forcing hexagon then H has no forbidden edges, that is, H is normal;

(ii) All hexagons of H are forcing if and only if H is a linear hexagonal chain;

(iii) If H is not a linear hexagonal chain, then a hexagon h of H is forcing if and only

if h is a periphery hexagon and there is a perfect matching M of H that corresponds to

a pendent vertex of Z(H) such that h is M -alternating.

Parallel to Theorems 3.3 and 3.4, we gave structural characterizations for a hexagonal

system H with forcing hexagons in Lemmas 3.11 and 3.12, from which the co-existence

property of forcing edges and forcing hexagons in a hexagonal system was derived in

Corollary 3.13.

Lemma 3.11 [8] Let H be a hexagonal system whose Z(H) has exactly one pendent

vertex. Then H has at most one forcing hexagon h, which is a periphery hexagon such

that there exists a coordinate system O − ABC w.r.t. h and H is monotone w.r.t.

O − ABC. Furthermore, H has at most three forcing edges, which belong to h and are

disjoint edges on the periphery of H.

Lemma 3.12 [8] Let H be a hexagonal system whose Z(H) has exactly two pendent

vertices. Let H∗ be the inner dual of H. Then one of the following three cases must

occur.

(i) The periphery of H∗ is a big hexagon and H has neither forcing hexagons nor

forcing edges.

(ii) The perimeter of H∗ is a parallelogram with an angle equal to 120◦, and H has two

forcing hexagons and four forcing edges. Furthermore, each forcing hexagon is centered

at the corner of 120◦ angel of H∗, contains exactly two forcing edges.

(iii) H∗ is a straight path and each hexagon of H is forcing. Furthermore, if H consists

of the unique hexagon h, then each edge of h is a forcing edge; otherwise, each of the

two end hexagons of H contains four forcing edges, and any other hexagon has the two

vertical edges as forcing edges.
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Corollary 3.13 [8] A hexagon h of a hexagonal system H is a forcing hexagon of a

perfect matching M if and only if it contains a forcing edge of the same perfect matching

M .

It is known that a bond between two carbon atoms in a benzenoid hydrocarbon H is

a forcing bond if and only if its Pauling bond order reaches the minimum of all positive

Pauling bond orders between carbon atoms of H. It is natural to ask the following

Question 3.1 [8] Which particular chemical (and physical) properties of benzenoid hy-

drocarbons are determined by the (number of) forcing hexagons in their molecular struc-

tures?

This question was first posted at the end of our 2006 paper [8]. It was raised again in

Chen’s talk (based on this survey) during the 2010 International Conference on Mathe-

matical Chemistry in Xiamen, China. Professor Balaban was then in the audience, and

he kindly provided a list of papers including [5, 6, 7, 30], which he thought should be

relevant. After reading these papers we think that force hexagons have significance in

the π-electron distribution of benzenoid hydrocarbons. According to Balaban and Randić

[7], the π-electrons in benzenoid hydrocarbons can be counted in two different ways: (i)

as partitions of π-electrons of the benzenoid (according to the conventions [34] that all

resonance structures contribute equally, that shared double bonds resonance structures

contribute with one π-electron to each of the condensed hexagons (the hexagons with a

common bond), and that both π-electrons of an unshared double bond belong to the cor-

responding hexagon) and (ii)as benzenoid signature, i.e., a sequence of six real numbers

counting for all resonance structures the numbers of times a hexagon is assigned accord-

ing to the above conventions si π-electrons where i takes integer values between 1 and

6. An inventory of the distribution of π-electrons in hexagons of benzenoids is computed

by summing up the number of times each hexagon achieves a count of 0,1,2,3,4,5 or 6

π-electrons according to the above conventions. The π-electron partition of a benzenoid

is obtained by taking the average of the numbers of π-electrons assigned to each hexagon

of the benzenoid.

From the data listed in these references on the π-electron partitions of some benzenoid

hydrocarbons, we observed that if a benzenoid H has forcing hexagon(s) as well as non-

forcing hexagon(s) (that is, H is not a linear hexagonal chain) then its forcing hexagon has
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smaller average number of π-electrons in the π-electron partition of H. This observation

seems to be consistent with the coexistence of forcing edges and forcing hexagons. Note

that chemical reactions of organic compounds involve the making and breaking of bonds,

and a single bond between two given atoms is weaker than a double bond (that is, a double

bond has more resistance to breaking). We know that a forcing bond in a benzenoid H

is a weaker bond since it has the smallest positive pauling bond order among all bonds

in H. Then the coexistence of forcing edges and forcing hexagons may indicate that a

forcing hexagon in a benzenoid is a weaker hexagon that is easier to be broken during

chemical reactions. So, it is reasonable to state the following chemical meaning of forcing

hexagons:

In a benzenoid, a forcing hexagon has smaller average number of π-electrons than

non-forcing hexagons, and it is easier to be broken during chemical reactions.

The forcing numbers of hexagonal systems are not easy to determine in general. So,

upper bounds for forcing numbers of H are desirable. One upper bound was first given

by Pachter and Kim (1998) as a corollary of Theorem 2.9 since a hexagonal system is

a plane bipartite graph. Kleinerman (2006) used a constructive argument to obtain the

upper bound of forcing numbers of planar bipartite graphs that are subgraphs of certain

regular bipartite grids such as hexagonal grids and rectangular grids.

Corollary 3.14 [22][29] For any perfect matching M of a hexagonal system H, the

forcing number f(H,M) ≤
⌊
|V (H)|

6

⌋
, or equivalently, f(H,M) ≤ |M |

3
.

On the other hand, by Theorem 2.1 or Theorem 2.2, any hexagonal system with a

perfect matching has at least two perfect matchings since it is a 2-connected graph. So,

the forcing numbers of a hexagonal system are bounded below by 1. Therefore, for any

perfect matching M of a hexagonal system H, 1 ≤ f(H,M) ≤
⌊
|V (H)|

6

⌋
.

At the end of this section, let’s recall the following definition introduced by Randić

and Klein [36] in 1985.

Definition 3.15 The average forcing number f(G) of a graph G is defined as

f(G) =
k∑

i=1

f(G,Mi)

k
, where Mi (1 ≤ i ≤ k) are all the perfect matchings of G

The average forcing numbers for some small polyhexes were listed in [36].
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3.2 Plane Bipartite Graphs - Forcing Edges and Forcing Faces

In order to extend various studies on hexagonal systems, H. Zhang and F. Zhang (2000)

[54] conducted an extensive study on plane elementary bipartite graphs, by which many

important known results in hexagonal systems can be generalized. In particular, they

extended the concept of forcing edges from hexagonal systems to connected plane bipartite

graphs. Parallel to their work, Che and Chen (2008) [9] extended the concept of forcing

hexagons of hexagonal systems to forcing faces of connected plane bipartite graphs. The

concepts of Z-transformation graph and a reducible face decomposition (briefly, RFD)

of a plane bipartite graph played an important role on studying plane bipartite graphs

with forcing edges or forcing faces. It turned out that many nice properties on hexagonal

systems with forcing edges or forcing hexagons can be extended to plane bipartite graphs.

For example, if G is a plane bipartite graph with minimum vertex degree δ(G) > 1 and it

has a forcing edge or forcing face, then G has no forbidden edges, that is, G is elementary.

On the other hand, some properties of forcing edges or forcing faces in a hexagonal system

is no longer valid in plane bipartite graphs. For example, for any integers n and k with

n ≥ 4 and n ≥ k ≥ 0, there exists a plane elementary bipartite graph G such that exactly

k of the n finite faces of G are forcing, while any hexagonal system which is not a linear

hexagonal chain has at most two forcing hexagons. Also, the co-existence property of

forcing edges and forcing faces in hexagonal systems does not hold in plane bipartite

graphs with minimum vertex degree > 1: where the existence of forcing edges implies the

existence of forcing faces, but not vice versa.

Definition 3.16 [9] A finite face s of a plane bipartite graph G is said to be a forcing

face of G if the subgraph of G obtained by deleting all vertices of s together with their

incident edges, denoted by G− s, has exactly one perfect matching.

The following two lemmas are special cases of Proposition 2.7 when the forcing set is

a forcing edge or a forcing face in a plane bipartite graph.

Lemma 3.17 [54] Let M be a perfect matching of a plane bipartite graph G. An edge

e in M is forcing if and only if e is on every M -alternating cycle.

Lemma 3.18 [9] Let G be a plane elementary bipartite graph. Then a finite face s of

G is forcing if and only if there is a perfect matching M of G such that s is M -resonant
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and each M -alternating cycle of G has at least one edge in common with the periphery

of s.

Bau and Henning [4] showed that for any perfect matching M of a connected cubic

plane bipartite graph G, there are at least two disjoint M -resonant faces (one of which

could be the infinite face) in G. Their proof for the above result is quite long, we gave a

much short proof of the above result and provided the following corollary in [9].

Corollary 3.19 [9] Any cubic plane bipartite graph has no forcing faces.

The following two theorems tell that if a plane bipartite graph has a forcing edge or

a forcing face, then it is elementary.

Theorem 3.20 [54] Let G be a connected plane bipartite graph with δ(G) > 1. Then

G has a forcing edge if and only if the following two conditions hold:

(i) G has no forbidden edge, that is, G is elementary, and

(ii) G has a perfect matching M such that G has exactly two M -resonant faces (ex-

terior face allowed) and their boundaries have at least one common edge.

(A forbidden edge of G is an edge that does not belong to any perfect matching of

G.)

Theorem 3.21 [9] Let G be a connected plane bipartite graph with δ(G) > 1. If G has

a forcing face, then G is elementary.

H. Zhang and F. Zhang (2000) showed that any plane bipartite graph with more than

two vertices is elementary if and only if it has a reducible face decomposition. They also

applied RFD to provide a structural characterization for a plane bipartite graph G whose

Z(G) is a path.

Definition 3.22 [54] A reducible face decomposition (RFD) of a plane bipartite graph

G can be defined as following: Start from an edge e, and join its two end vertices by

a path P1 of odd length (called the ”first ear”) to form a finite face G1(= s1) of G.

Then proceed inductively to build a sequence of plane bipartite graphs as follows: if

Gi = e + P1 + P2 + · · · + Pi has already been constructed, add the (i + 1)th ear Pi+1 of

odd length by joining any two vertices in different colors of Gi such that Pi+1 lies in the

exterior of Gi and Pi+1 and a part of the periphery of Gi surround a finite face (si+1) of
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G for all 1 < i < n − 1. The decomposition G = Gn = e + P1 + P2 + · · · + Pn is called

reducible face decomposition of G, and denoted by RFD(G1, G2, · · · , Gn(= G)), which

is associated with a unique face sequence s1, s2, · · · , sn.

Theorem 3.23 [54] Let G be a plane elementary bipartite graph with more than two

vertices. Then Z(G) is a path if and only if G has an RFD(G1, G2, ..., Gn(= G)) as-

sociated with the face sequence s1, s2, · · · , sn and the ear sequence P1, P2, · · · , Pn such

that

(i) the Pi’s start with black (resp. white) vertices and end with white (resp. black)

vertices w.r.t. the clockwise orientation of the boundaries of the Gi’s;

(ii) si and si+1 have edges in common for all i; and

(iii) s1 is a periphery face of Gn(= G) or Gn−1.

Recall that each hexagon of a hexagonal system H is forcing if and only if Z(H) is a

path. But the sufficiency doe not hold in a plane bipartite graph by the following RFD

structural characterization of a plane bipartite each finite face of which is forcing.

Theorem 3.24 [9] Let G be a plane elementary bipartite graph with more than two

vertices. Then each finite face ofG is forcing if and only ifG has a RFD (G1, G2, · · · , Gn(=

G)) associated with the face sequence s1, s2, · · · , sn and the ear sequence P1, P2, · · · , Pn

satisfying

(i) the Pi’s start with black (resp. white) vertices and end with white (resp. black)

vertices w.r.t. the clockwise orientation of the boundaries of the Gi’s;

(ii) si and si+1 have edges in common for all i; and

(iii) s1 is a periphery face of Gn(= G).

By Theorems 3.23 and 3.24, if each finite face of a plane bipartite graph G is forcing,

then Z(G) is a path. But it is not true conversely.

Using the tool of Z(G), characterizations of those plane elementary bipartite graphs

with a forcing edge or a force face were given by H. Zhang and F. Zhang (2000), Che and

Chen (2008) respectively.

Theorem 3.25 [54] Let G be a plane elementary bipartite graph with more than two

vertices. Then G has a forcing edge if and only if one of the following statements holds:
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(i) Z(G) has a vertex M of degree one such that the unique M -resonant finite face is

a periphery face of G. Moreover, the periphery of G must be an M -alternating cycle.

(ii) Z(G) has a vertex M of degree two such that the two M -resonant finite faces of

G have a path in common and the periphery of G is not an M -alternating cycle.

Theorem 3.26 [9] Let s be a finite face of a plane elementary bipartite graph G. Then

s is a forcing face if and only if one of the following statements holds:

(i) Z(G) has a vertex M of degree one such that s is the unique M -resonant finite

face of G and s is a periphery face of G. Moreover, the periphery of G must be an

M -alternating cycle.

(ii) Z(G) has a vertex M of degree two such that s is one of the two M -resonant

finite faces, and these two faces are adjacent. Furthermore, if the periphery of G is an

M -alternating cycle, then s is periphery face of G.

(iii) Z(G) has a vertex M of degree n + 1 where n ≥ 2 and s, si (1 ≤ i ≤ n) are the

M -resonant finite faces such that s is adjacent to each si for 1 ≤ i ≤ n; si and sj have

disjoint boundaries whenever 1 ≤ i �= j ≤ n. Furthermore, if the periphery of G is an

M -alternating cycle, then s is a periphery face of G.

By Theorems 3.25 and 3.26, we can see that for any plane elementary bipartite graph

G, the existence forcing edges implies the existence of forcing faces in G, but not true

conversely.

3

S S

S

S

1

2

Figure 7. A plane bipartite graph with a forcing face s but no forcing edges.
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Remark 3.27 Let G be a plane elementary bipartite graph with more than two vertices.

(i) If e ∈ M is a forcing edge of a perfect matching M in G, then any M -resonant

face of G containing e is a forcing face of M .

(ii) If s is a forcing face of a perfect matching M in G, it is possible that no edges in

s ∩M are forcing edges of M , but edges in s ∩ (M ⊕ s) are forcing edges of M ⊕ s. For

example, see Fig. 1 (ii).

3.3 Plane Bipartite Graphs - Grids and Stop Signs

Sharp lower and upper bounds on forcing numbers of a 2n × 2n square grid were first

given by Pachter and Kim (1998) [29]. The bounds were also given by Lam and Pachter

(2003) [27] as a special case of their main result on (n, k) stop signs.

Theorem 3.28 [29][27] Let M be a perfect matching of a square grid P2n�P2n where

P2n is a path with 2n vertices. Then the forcing number f(P2n�P2n,M) is bounded by

n ≤ f(P2n�P2n,M) ≤ n2,

and both bounds are sharp.

An (n, k) stop sign where 0 ≤ k ≤ n−1 is the region obtained from the 2n×2n square

grid by deleting the squares along the k diagonal closest to each of the four corners, see

Fig. 8 provided in [27]. (n, k) stop signs generalize both square grids (when k = 0) and

Aztec diamonds (when k = n − 1). Lam and Pachter (2003) [27] gave sharp lower and

upper bounds on the forcing numbers of stop signs, and the bounds of Aztec diamonds

and square grids follow as corollaries.

Theorem 3.29 [27] Let G be an (n, k)- stop sign and M be a perfect matching of G.

Then the forcing number f(G,M) is bounded by

n ≤ f(G,M) ≤
(
n−

⌈
k − 1

2

⌉)(
n−

⌊
k + 1

2

⌋)

and both bounds are sharp.

Corollary 3.30 [27] For any perfect matching M of an Aztec diamond G of order n, the

forcing numer f(G,M) is bounded by

n ≤ f(G,M) ≤
⎧
⎨

⎩

n(n+2)

4
for n even

(n+1)2

4
for n odd

and both bounds are sharp.
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Figure 8. (5, 3) stop sign.

An induced subgraph G of a grid with vertex set V (G) is called a column continuous

subgrid if it has the following property: If (i1, j), (i2, j) ∈ V (G) where i1 < i2, then

for all integers i, such that i1 ≤ i ≤ i2, we have (i, j) ∈ V (G). For example, both an

(n, k) stop sign and a rectangle grid Pm�Pn are column continuous. Afshani, Hatami and

Mahmoodian (2004) gave the following result for the spectrum of a column continuous

subgrid in [1].

Theorem 3.31 [1] There are no gaps in the spectrum of a column continuous subgrid.

Corollary 3.32 [1] Let G be an (n, k)-stop sign where 0 ≤ k ≤ n− 1. Then

Spec(G) =

{
n, n+ 1, · · · ,

(
n−

⌈
k − 1

2

⌉)(
n−

⌊
k + 1

2

⌋)}

In particular,

(i) if k = 0, then G is a 2n× 2n square grid P2n�P2n and

Spec(P2n�P2n) = {n, n+ 1, · · · , n2},

(ii) if k = n− 1, then G is an Aztec diamond of order n and

Spec(G) =

⎧
⎪⎨

⎪⎩

{
n, n+ 1, · · · , n(n+2)

4

}
for n even

{
n, n+ 1, · · · , (n+1)2

4

}
for n odd .

Afshani et al (2004) [1] also gave the maximum forcing number of a rectangle grid

Pm�Pn and maximum forcing number of Pm�C2n. They pointed out that finding the
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forcing number of Pm�Pn does not seem to be easy and gave upper bounds on the

forcing numbers of some special rectangular grids. Kleinerman (2006) [22] also gave the

maximum forcing number of P2m�P2n using a constructive method.

Theorem 3.33 [1] [22] Let Pm�Pn be a rectangle grid. Then its maximum forcing

number

F (Pm�Pn) =
⌊m
2

⌋
·
⌊n
2

⌋
.

Theorem 3.34 [1] For every k, n ≥ 1, the maximum forcing number for Pm�C2n is

F (Pm�C2n) =

⎧
⎨

⎩
kn if m = 2k

kn+ 1 if m = 2k + 1 .

Theorem 3.35 [1] The upper bounds on the forcing number of rectangle grid

P2k�P(2k+1)l+r and P2k+1�P(2k+2)l+2r are:

(i) f(P2k�P(2k+1)l+r) ≤ kl +
⌈
r−1

2

⌉
, where 0 ≤ r ≤ 2k and l ≥ 1;

(ii) f(P2k+1�P(2k+2)l+2r) ≤ kl + r, where 0 ≤ 2r ≤ 2k + 1 and l ≥ 1.

3.4 Nonplanar Bipartite Graphs - Torus, Hypercubes, Toroidal

Polyhexes

Afshani et al (2004) [1] gave an upper bound on the maximum forcing number of the

special torus C2n�C2n: F (C2n�C2n) ≤ n2 + n
2
. For torus C2m�C2n (m,n > 1), both the

forcing number and the maximum forcing number are known.

Theorem 3.36 Let C2m�C2n (m,n > 1) be a torus. Then

(i) [32] (Riddle 2002) f(C2m�C2n) = 2min{m,n},
(ii) [22] (Kleinerman 2006) F (C2m�C2n) = mn.

For hypercubes Qn, Pachter and Kim (1998) [29] conjectured that f(Qn) = 2n−2 for

any positive integer n. The case when n is even was proved by Riddle (2002) [32]. It is

still open for odd n.

Theorem 3.37 [32] (Riddle 2002) f(Qn) = 2n−2 for any even n.

The spectra of hypercubes were studied by Adams et al (2004) [2]. The vertices of a

hypercube Qn can be denoted by the set {0, 1, 2, · · · , 2n−1}, where each vertex is viewed
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as a sequence of length n consisting of its binary representation with 0’s and 1’s. Two

vertices are adjacent if and only if their sequence representations differ in exactly one

component. For a given value k, 1 ≤ k ≤ n, a set of edges of the form anbn where an is

any sequence having 0 in the kth component and bn is obtained from an by changing the

kth component to 1, is called a set of parallel edges, and the edges are said to be in the

same direction.

Proposition 3.38 [2] Let M be a perfect matching of the hypercube Qn consisting edges

all in the same direction. Then f(Qn,M) = 2n−2.

Theorem 3.39 [2] Let Qn be a hypercube where n ≥ 1. Then

(i) Spec(Qn) = {2n−2} for n ≤ 4;

(ii) Spec(Q5) = {8, 9}; and
(iii) Spec(Qn) ⊇ {2n−2, 2n−2 + 1, · · · , 2n−2 + 2n−5} for n ≥ 5.

A surprising result proved by Alon (see [32]) states that for sufficiently large n, there

exists a perfect matching M of Qn such that any one of its forcing sets almost contains

all edges of M .

Theorem 3.40 (Alon 2002; in [32]) For sufficiently large n, there exists a perfect match-

ing M of Qn such that its forcing number f(Qn,M) > c2n−1 for any constant c < 1.

Alon’s proof used the well known result that the number of perfect matchings equals

the permanent of the biadjacency matrix and the proved (1979/80) Van der Waerden’s

permanent conjecture (1926) on the permanent of doubly stochastic matrix. In fact

Alon’s method can be applied to any k-regular bipartite graphs. Using Alon’s method,

Adams et al (2004) [2] obtained that for any k-regular bipartite graph G, as long as k is

sufficiently large, there exists a perfect matching M of G such that any forcing set of M

contains almost all the edges in M .

Theorem 3.41 [2] For any k-regular bipartite graph G with N vertices in each partite

set,

F (G) ≥
(
1− log(2e)

log k

)
N ,

where e is the base of the natural logarithm.
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A toroidal polyhex H(p, q, t) with a torsion t (where integers p ≥ 1, q ≥ 1 and

0 ≤ t ≤ p − 1) is a cubic bipartite graph embedded on torus with every face being a

hexagon. It can be obtained in the following way: Let P be a p× q parallelogram section

cut from the hexagonal lattice such that every corner lies on the center of a hexagon, two

lateral sides pass through q oblique edges, top and bottom sides pass through p vertical

edges. identify the two lateral sides of P to form a cylinder, and then identify top and

bottom sides with a torsion t hexagons. An example for H(p, q, t) is depicted in Fig. 9

where p = 8, q = 4 and t = 2.

O
X

Y

6

4 50 1 2 3 6 7

7 0 1 2 3 4 5

Figure 9. Toroidal polyhex H(8, 4, 2).

Wang, Ye and Zhang (2008)[47] determined the forcing number of a toroidal polyhex,

by improving Riddle’s method for getting a lower bound of f(G) for bipartite graphs G.

Theorem 3.42 [47] For any toroidal polyhexH(p, q, t), its forcing number f(H(p, q, t)) ≥
min{p, q}, and equality holds for p ≤ q or p > q and t ∈ {0, p− q, p− q + 1, · · · , p− 1}.
In general, f(H(p, q, t)) is equal to the side length of a maximum equilateral triangle on

H(p, q, t).

Based on the above result, they also presented a linear algorithm to compute the

forcing number of H(p, q, t).

4 Non-Bipartite Graphs

Most known results on forcing on perfect matchings of non-bipartite graphs are those of

fullerene graphs. A fullerene graph is a 3-connected plane cubic graph with exactly 12
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pentagonal faces and the other faces being hexagonal. For example, the dodecahedron

is the fullerene C20 with 20 vertices, and the most important fullerene is buckminster-

fullerene C60 obtained by leap-frog transformation of the fullerene C20, see [20]. Fullerene

graphs have been studied in chemistry as fullerene molecules which have extensive appli-

cations in physics, chemistry and material science. Zhang, Ye and Shiu (2010) showed

that the forcing number of any fullerene graph was bounded below by 3, see [53]. Their

proof uses Kotzig’s classical theorem on unique perfect matching (1959) and two recent

results on fullerene graphs G: the 2-extendability by H. Zhang and F. Zhang (2001) in

[55], and the cyclically 5-edge-connectivity by Došlić (2003) in [10] and Qi and Zhang

(2008) in [31].

Figure 10. Buckminsterfullerene and its fullerene graph C60.

Theorem 4.1 [53] For a fullerene graph G, f(G,M) ≥ 3 for any perfect matching of G,

and this lower bound can be achieved by infinitely many fullerene graphs.

Spectra of forcing numbers for some special fullerene graphs C20, C60, C70 and C72

have been established.

Theorem 4.2 Spectra of forcing numbers of C20, C60, C70, and C72:

(i) [53] Zhang, Ye and Shiu (2010)

Spec(C20) = {3};

(ii) [42] Vukičević and Randić (2005)

Spec(C60) = {5, 6, 7, 8, 9, 10};
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(iii) [37] Randić and Vukičević (2006)

Spec(C70) = {5, 6, 7, 8, 9, 10, 11};

(iv) [40] Vukičević, Gutman and Randić (2006)

Spec(C72) = {5, 6, 7, 8, 9, 10, 11, 12}.

5 Other Related Work

5.1 Total (or Global) Forcing Number

Forcing sets and forcing numbers of perfect matchings of a graph are defined by the

“local” approach, i.e., defined with respect to particular perfect matchings of a graph.

Vukičević and Sedlar (2004) introduced “global” concepts on forcing perfect matchings

in [43] without reference to a particular perfect matching, called the total forcing sets

and the total forcing number of a graph.

A total forcing set of a graph G is a subset S of the edge set E(G) that completely

determines perfect matchings of G, which means that there are no two different perfect

matchings of G coinciding on S. The total forcing number of a graph G is the smallest

cardinality of a total forcing set of G.

Došlić (2007) gave equivalent formal definitions of the above concepts under the names

of a global forcing set and the global forcing number of a graph in [11]. A global forcing

set in a simple connected graph G with a perfect matching is a set of edges S ⊆ E(G)

such that the restriction of the characteristic function of perfect matchings of G on S is

an injection. The number of edges in a global forcing set of the smallest cardinality is

called the global forcing number of G, and denoted by γ(G). The motivation for the study

of global forcing sets comes from the large-scale computations involving manipulations

of perfect matchings in fullerene graphs. By definition, a global forcing set can serve

as binary codes for perfect matchings of a graph. If G is a graph with K(G) perfect

matchings, then γ(G) ≥ �log2K(G)�.
Vukičević and Sedlar (2004) studied the total forcing number of a square triangular

grid Tn with n rows and n columns of vertices where n is even, see Fig. 11. They gave

both a lower bound and an upper bound on the total forcing number γ(Tn) and the limit

of the ratio γ(Tn)/|E(Tn)| as n tends to infinity.
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Theorem 5.1 [43] Let Tn be a square triangular grid with n rows and n columns of

vertices where n is even and γ(Tn) be the total forcing number of Tn. Then

5

4
n2 − 21

2
n+

41

4
≤ γ(Tn) ≤ 5

4
n2 + n− 2,

and γ(Tn)

|E(Tn)| tends to
5

12
as n tends to infinity.

Figure 11. A square triangular grid T4 with 4 rows and 4 columns of vertices.

Došlić (2007) [11] gave a characterization of global forcing sets and an upper bound

on the global forcing number of a graph. He also proved several results concerning global

forcing sets and numbers of benzenoid graphs. In particular, he proved that all cata-

condensed benzenoids and catafused coronoids with n hexagons have the global forcing

number equal to n, and that for peri-condensed benzenoids, the global forcing number is

always strictly less than the number of hexagons.

Proposition 5.2 [11] Let G be a simple connected graph with a perfect matching. An

edge set S ⊆ E(G) is a global forcing set of G if and only if the graph induced by E(G)\S
has at most one perfect matching.

A subgraph H ⊆ G is nice if G−H contains a perfect matching.

Proposition 5.3 [11] Let G be a simple connected graph with a perfect matching. Then

γ(G) ≤ |E(G)| − |V (G)| + 1. In particular, if G is a connected bipartite graph with a

perfect matching, then γ(G) = |E(G)| − |V (G)|+1 if and only if all even cycles in G are

nice.

A coronoid graph is a graph obtained from a peri-condensed benzenoid by deleting

some internal vertices and/or edges in such a way that no remaining vertices is of degree

one, there is only one bounded nonhexagonal face, and this face is not adjacent to the
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unbounded face of the graph. A coronoid graph is cataconfused if it has no vertices shared

between three hexagons.

Proposition 5.4 [11] (Došlić 2007) All cata-condensed benzenoids and catafused coro-

noids with n hexagons have the global forcing number equal to n, and that for peri-

condensed benzenoids the global forcing number is always strictly smaller than the num-

ber of hexagons.

Vukičević and Došlić (2007) [39] showed how to compute the global forcing number

of two classes of composite graphs: a link G1 ∼ G2 and a splice G1 ·G2. A link of G1 and

G2 anchored at the vertices v ∈ V (G1) and w ∈ V (G2) is a graph obtained by connecting

vertices v and w by an edge, and denoted by G1 ∼ G2. A splice of G1 and G2 is a graph

obtained by selecting a vertex v ∈ V (G1) and identifying it with some vertex from V (G2),

and denoted by G1 · G2. They gave explicit formulas for global forcing numbers of grid

graphs, complete bipartite graphs, complete graphs, and linear hexagonal chain.

Lemma 5.5 [39] Let G1 and G2 be simple connected graphs. Assume that G1 ∼ G2 is

their link anchored at the vertices v ∈ V (G1) and w ∈ V (G2), and G1 ·G2 is their splice

at v(w). Then their global forcing numbers are:

(i) γ(G1 ∼ G2) =

⎧
⎨

⎩
γ(G1) + γ(G2) if |V (G1)| is even

γ(G1 − v) + γ(G2 − w) if |V (G2)| is odd ,

(ii) γ(G1 ·G2) = γ(G1) + γ(G2 − v), where |V (G1| is even.

Theorem 5.6 [39] Let Ri,j = Pi�Pj be the Cartesian product of two paths Pi and Pj of

i vertices and j vertices respectively. Then its global forcing number is

γ(Ri,j) = (i− 1)(j − 1)−
⌊
i− 1

2

⌋⌊
j − 1

2

⌋
.

Proposition 5.7 [39] The global forcing numbers of complete bipartite graphKn,n, com-

plete graph K2n, and a linear hexagonal chain Ln with n hexagons are:

γ(Kn,n) = (n− 1)2,

γ(K2n) = 2(n− 1)2,

γ(Ln) = n.
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Vukičević and Došlić (2007) [39] also provided an explicit formula of vertex global forc-

ing numbers of grid graphs. Let S be a subset of V (Ri,j) and g : M(Ri,j) → {L,R,D,U}ij

a function that to each perfect matching M ∈ M(Ri,j) assigns the directions of the edges

that cover the vertices from Ri,j. A set S ⊆ V (Ri,j) such that g|S is an injection is called

a vertex global forcing set, and the cardinality of smallest such set is called the vertex

global forcing number of Ri,j, denoted by ν(Ri,j).

Theorem 5.8 [39] Let Ri,j = Pi�Pj be the Cartesian product of two paths Pi and Pj of

i vertices and j vertices respectively. Then its vertex global forcing number is

ν(Ri,j) =

⌊
i− 1

2

⌋⌊
j − 1

2

⌋
.

5.2 Anti-Forcing Number

Vukičević and Trinajstić (2007) introduced the concepts of anti-forcing number and anti-

Kekulé number of a graph in [44]. Let G = (V (G), E(G)) be a graph G with a perfect

matching. An anti-forcing set of G is a set S ⊆ E(G) such that G − S has a unique

Kekulé structure. An anti-forcing set of the smallest cardinality is called a minimal

anti-forcing set, and its cardinality is the anti-forcing number of G, denoted by afn(G).

An anti-Kekulé set of G is a set S ⊆ E(G) such that G − S is a connected graph and

it has no Kekulé structures. An anti-Kekulé set of the smallest cardinality is called a

minimal anti-Kekulé set, and its cardinality is the anti-Kekulé number of G and denoted

by akn(G). Vukičević and Trinajstić (2007) exemplified these concepts on damaged

benzenoid parallelograms and obtained the anti-forcing number and anti-Kekulé number

of a benzenoid parallelogram. A benzenoid parallelogram Bm,n is a parallelogram-like

shaped benzenoid that consists ofm×n hexagons, arranged inm rows, each row consisting

of n hexagons. The edges of Bm,n can be divided into two classes E1 and E2, where edges

in E1 are drawn with normal lines and edges of E2 with bold lines, see Fig. 12 provided

in [44].
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Figure 12. Benzenoid parallelogram B4,4.

Theorem 5.9 [44] Let Bm,n be a benzenoid parallelogram that consists of m×n hexago-

ns, arranged in m rows, each row consisting of n hexagons. Then

(i) afn(Bm,n) = 1, for m,n ≥ 3.

(ii) akn(Bm,n) = 2, for m,n ≥ 3. Moreover, for every edge e ∈ E1, there is a minimal

anti-Kekulé set that contains e. There is no minimal anti-Kekulé set that contains any

edge in E2.

Vukičević and Trinajstić (2008) [45] showed that a cata-benzenoids has anti-Kekulé

number either 2 or 3, and both classes are classified. A hexagon in a cata-condensed

benzenoid is called a branched hexagon if it has three neighbors; Otherwise, it is called a

non-branched hexagon. A cata-condensed benzenoid is a more-branched cata-condensed

benzenoid if it has no two adjacent non-branched hexagons. Otherwise, it is a less-

branched cata-condensed benzenoid.

Theorem 5.10 [45] Let B be a cata-condensed benzenoid. Then

(i) if B is less-branched, then its anti-Kekulé number akn(B) = 2;

(ii) if B is more-branched, then its anti-Kekulé number akn(B) = 3.

A hexagonal chain (or, benzenoid chain) with n hexagons (where n > 2) possesses two

terminal hexagons and n − 2 non-terminal hexagons each of which has two neighbors.

Assume that a hexagon h is adjacent to exactly two other hexagons h1 and h2. If the

inner dual of of these three hexagons is a straight line, then h is called linearly adhesive;

otherwise, angularly adhesive. Each branched and angularly connected hexagon in a

cata-condensed hexagonal system is said to be a kink, in contrast to the terminal and

linearly connected hexagons. A linear chain Ln with n hexagons is a hexagonal chain
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without kinks. A fibonacene chain Fn with n hexagons is a hexagonal chain without

linearly adhesive hexagons. A segment is a maximal linear chain in a cata-condensed

system, including the kinks and/or terminal hexagons at its end. A segment including

a terminal hexagon is a terminal segment. The number of hexagons in a segment S is

called its length and is denoted by l(S).

For the anti-forcing number of a benzenoid chain B with k kinks (unbranched cata-

condensed benzenoids) a formula afn(B) = �k
2
� was given by Vukičević and Trinajstić

(2008)[45], see Theorem 5 on page 723 in [45]. We note that the formula is not correct.

In the same paper they also gave a tight upper bound for the anti-forcing number of any

cata-condensed benzenoid B with n(> 1) hexagons: afn(B) ≤ �n
2
�, and showed that

there is a cata-condensed benzenoid Bn with n hexagons such that afn(Bn) = �n
2
�, see

Theorem 6 on page 725 in [45]. In their proof, it was claimed that the zig-zag benzenoid

Bn with n hexagons (see Fig. 10 on that same page) has afn(Bn) = �n
2
�. We must point

out that this is not correct either. To see the two anti-forcing numbers are wrong, we

give the example in Fig. 13, where B is a benzenoid chain with k = 7 kinks and n = 9

hexagons. It is easy to check that B − {e1, e2, e3} has a unique perfect matching, and B

has the anti-forcing number 3, which is less than both �k
2
� and �n

2
�.

K

1
e2

e

3e

K K

K K

K K

Figure 13. A counterexample to Theorem 5 on page 723 and to the tight upper bound of

Theorem 6 on page 725 in [45].

Deng (2007) gave an algorithm for computing anti-forcing numbers of hexagonal

chains and determined the bounds for the anti-forcing numbers of hexagonal chains [12].

Theorem 5.11 [12] Let G be a hexagonal chain with n hexagons. Then

(i) If the number of segments in G is s, then afn(G) ≤ s+1

2
;
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(ii) If G is a fibonacene chain Fn, then afn(Fn) =
⌈
n
3

⌉
;

(iii) if G is neither a linear chain Ln nor a fibonacene chain Fn, then

1 = afn(Ln) < afn(G) < afn(Fn) =
⌈n
3

⌉
.

Deng (2008) also determined the anti-forcing numbers of double hexagonal chains and

characterized the extremal graphs in [13]. An double hexagonal chain consists of 2 con-

densed identical hexagonal chains. It can be constructed inductively from a naphthalene

by a stepwise fusion of new naphthalene, and at each step, a type of fusion is selected

from θ-type fusing, where θ ∈ {α, β} explained in Figure 14 provided in [13].

(2)

a
b

c
d

e

r
s
t

u
v

(1)

Figure 14. (1) α-type fusing: b ≡ r, c ≡ s, d ≡ t, e ≡ u,

(2) β-type fusing: a ≡ s, b ≡ t, c ≡ u, d ≡ v.

Let B(θ1, θ2, · · · , θn) be the double hexagonal chain obtained from naphthalene B

by θ1-type, θ2-type, · · · , θn-type, fusing successively. Then B(θ1, θ2, · · · , θn) has n + 1

naphthalenes or 2(n+1) hexagons. If θi = θi+1 for each i, then B(θ1, θ2, · · · , θn) is called
the double linear hexagonal chain and denoted by DLn; if θi �= θi+1 for each i, then

B(θ1, θ2, · · · , θn) is called the double zig-zag hexagonal chain and denoted by DZn, see

Figure 15 provided in [13].

Theorem 5.12 [13] Let G = B(θ1, θ2, · · · , θn) be a double hexagonal chain with n + 1

naphthalenes and k segments. Then afn(G) = k.

Corollary 5.13 [13] Let G = DZn be a double zig-zag hexagonal chain with n + 1

segments. Then afn(G) =
⌊
n
2

⌋
+ 1.
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1
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1
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3

3

3

3
4

4

Figure 15. (a) Double linear hexagonal chain, DL4 = B(α, α, α, α);

(b) Double zig-zag hexagonal chain, DZ4 = B(α, β, α, β);

(c) Double hexagonal chain B(α, α, β, α, β, β, α).

Corollary 5.14 [13] Let G = B(θ1, θ2, · · · , θn) be any double hexagonal chain with n+1

naphthalenes. Then

1 = afn(DLn) < afn(G) < afn(DZn) =
⌊n
2

⌋
+ 1 .

6 Open Questions and Conjectures

Question 6.1 Find Spec(G) for specific graphs G.

• Find Spec(Pm�Pn) for a general rectangular grid.

– The spectrum is known for square grid Pn�Pn (see Afshani, Hatami, Mah-

moodian (2004) [1])

– Afshani et al [1] found the maximum forcing matching number for Pm�Pn:

F (Pm�Pn) =
⌊
m
2

⌋ ⌊
n
2

⌋
.

– To find Spec(Pm�Pn), we only need find f(Pm�Pn), since it is kown that there

is no gap in Spec(Pm�Pn).
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– Afshani et al [1] pointed out that finding f(Pm�Pn) does not seem to be so

easy.

• Find Spec(C2m�C2n)

– Known: (Riddle 2002) f(G) = 2min{m,n} ; (Kleinerman 2006) F (G) = mn.

– It would be solved if we can show that there is no gap in Spec(C2m�C2n).

• Find Spec(Pm�Cn).

– Afshani, Hatami, Mahmoodian (2004) asked:

(1) Find f(Pm�Cn); (2) Find F (P2m�C2n+1).

– They obtained: (1) F (P2m�C2n) = mn; (2) F (P2m+1�C2n) = mn+ 1.

Question 6.2 Find necessary and sufficient conditions for a plane bipartite graph G

(with more than 1 perfect matching) to have no gaps in Spec(G).

Known: (Afshani, Hatami, Mahmoodian (2004)) For any finite set A of positive

integers, there is a plane bipartite graph G such that Spec(G) = A.

Question 6.3 (H. Zhang, Ye, Shiu (2010) [53]):

• Find sharp upper bound for the forcing number f(G,M) of fullerene graphs G.

• Determine all fullerene graphs G with f(G) = 3.

• Determine all fullerene graphs G of which all perfect matchings M have the same

forcing number f(G,M).

Question 6.4 (Afshani, Hatami, Mahmoodian (2004) [1])

What is the computational complexity of the following problem: Given a planar graph

G, find the smallest (or largest) forcing number of G.

Known:

– Finding the smallest forcing set of a perfect matching is NP-complete for bipartite

graphs with maximum degree 3. (Adams et al 2004)

– Finding the smallest forcing number of a graph is NP-complete for bipartite graphs

with maximum degree 4. (Afshani et al 2004)

Question 6.5 Study forcing for graphs on other closed surfaces: forcing edges, forcing

faces, forcing numbers, spectra.

Each closed surface can be constructed from an oriented polygon with an even number

of sides, called a fundamental polygon of the surface, by pairwise identification of its edges.

For example, in each polygon below, attaching the sides with matching labels (A with

A, B with B), so that the arrows point in the same direction, yields the indicated surface.
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Figure 16. Surfaces.

Question 6.6 How to characterize the graphs G on 2n vertices whose forcing number

f(G) reaches the largest possible value n− 1?

Conjecture 6.1 (Pachter and Kim (1998)[29])

For hypercube, f(Qn) = 2n−2.

The case n even was proved by Riddle (2002) It is still open for n odd.

Conjecture 6.2 (Che and Chen) For any fullerene graph G, Spec(G) has no gap.

Conjecture 6.3 (Che and Chen) Every fullerene graph G has a perfect matching M

such that G has no M -alternating hexagons.

We note that Conjectures 6.2 and 6.3 are true for C20, C60 , C70 , and C72 from the

work of Randić et al.
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[5] A. T. Balaban, M. Pompe, M. Randić, π–electron partitions, signatures, and Clar
structures of selected benzenoid hydrocarbons, J. Phys. Chem. A 112 (2008) 4148–
4157.

-133-
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