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Abstract

Using the methodology proposed in the paper [1], we derive the corresponding alter-

nating source and generating links from prismatic decorated graphs and obtain the general

formulas for Tutte polynomials and different invariants of the source and generating links

for 3- and 4-prismatic decorated graphs. By edge doubling construction we derive from

prismatic graphs different classes of prismatic knots and links: pretzel, arborescent and

polyhedral links of the form n∗p1.p2. . . . .pn.

1. INTRODUCTION

From the organic chemistry and molecular biology point of view, the most in-

teresting are complex knotted and linked chemical structures with a high degree of

symmetry. In the last decade chemists and mathematicians constructed new classes

of KLs, which derived by different geometrical construction methods from regular

and Archimedean polyhedra [2], fullerenes and nanotubes [3, 4], Goldberg polyhe-

dra (a kind of multi-symmetric fullerene polyhedra) [5], extended Goldberg polyhe-

dra and their corresponding links with even and odd tangles [6–8], dual polyhedral

links [9], etc. Jointly with mathematicians, chemists developed a new methodology for
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computing polynomial KL invariants: Jones polynomial [11, 12], Kauffman bracket

polynomial [11–13] and HOMFLY polynomial [14, 15], and polynomial invariants of

graphs: Tutte polynomials, Bolobás-Riordan polynomials, chromatic and dichromatic

polynomials, chain and sheaf polynomials that can be applied to KLs with a very

large number of crossings and their (signed) graphs. For the first time they analyzed

chirality of KLs with a large number of crossings obtained as polyhedral links [16,17].

In knot theory, a well-known construction methods for knots and links is the

middle edge construction extended by F. Jaeger, which means each crossing in an

edge mid-point is replaced by a twist collinear with the edge. Using the construc-

tion method, the HOMFLY polynomials of such links (called Jaeger links) can be

computed from their Tutte polynomials by replacements of variables [18]. In the

”generalized Jaeger construction” and ”generalized dual Jaeger construction” sev-

eral crossings placed along an edge of a graph G are replaced by twists collinear or

perpendicular to the edge [14].

The next construction, called edge doubling, can be used for obtaining 4-regular

graphs from 3-regular graphs: in every vertex of a 3-regular graph one edge is replaced

by a double edge [4]. After that, obtained 4-regular graphs can be transformed into

alternating or non-alternating KL diagrams.

The concept of ”polyhedral links” is a novel and meaningful mathematical model,

which is proposed by Qiu’s group for the first time in 2005. Since then, they have

published a series of papers in this field.

The first examples of highly-symmetrical nanometer-scale DNA regular polyhedra

obtained by self-assembling are DNA cube (i.e., regular 4-prism) synthesized by N.C.

Seeman and co-workers [19–21], and DNA octahedron (i.e., regular 4-bipyramid), de-

signed by W.M. Shih and co-workers [22]. These results are followed by the synthesis

of more complex, less symmetrical polyhedra: trigonal bipyramid created by one-step

assembly [23], and a series of n-prisms including triangular prism, pentameric and

hexameric prisms [24].

Our paper builds on works of F. Jaeger, W.-Y. Qiu and his colleagues. In the

paper [1] we proposed a general methodology for deriving knots and links (abbr.

KLs) from polyhedral graphs and analyzing their properties. In this paper we extend
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the results to decorated 3- and 4-prismatic graphs and obtain KLs from prism graph

by the generalized Jaeger construction and prismatic KLs from n-prisms by edge-

doubling.

In Section 2 we consider basic polyhedra whose graphs are n-prisms and dual

graphs are n-bipyramids (n � 3). Moreover, we extend the basic polyhedra 9∗ and

12C to the families of generalized Jaeger 3- and 4-prism links. In Section 3 we derive

general formulas for the Tutte polynomials of 3- and 4-prism decorated graphs. In

Section 4 we give lists of source and generating alternating KLs derived from 3- and

4-prism decorated graphs and compute their different invariants. From these source

and generating alternating links we derive families of non-alternating KLs, compute

various invariants and consider their properties, in particular chirality. In Subsection

4.1 we provide ”portraits of families”, plots of zeros of the Jones polynomials of KL

families corresponding to decorated prismatic graphs. In Section 5 we analyze KLs

obtained by edge-doubling construction from prismatic graphs.

Conway notation of KLs and definitions of all terms used in this paper are given

in [1,4,25,26], and the definitions and explanations of different knot theory invariants

are given in [1, 4, 27, 28]. Here we restate the definitions of a basic polyhedron, KL

family, and source link:

Definition 0.1. Basic polyhedron is a 4-regular, 4-edge-connected, at least 2-vertex

connected plane graph without bigons.

Definition 0.2. For a link or knot L given in an unreduced 1 Conway notation C(L)

denote by S a set of numbers in the Conway symbol excluding numbers denoting

basic polyhedron and zeros (determining the position of tangles in the vertices of

polyhedron) and let S̃ = {a1, a2, . . . , ak} be a non-empty subset of S. Family FS̃(L)

of knots or links derived from L consists of all knots or links L′ whose Conway symbol

is obtained by substituting all ai �= ±1, by sgn(ai)|ai+kai|, |ai+kai| > 1, kai ∈ Z. [1,4]

If all kai are even integers, the number of components is preserved within the

corresponding subfamilies, i.e., adding full-twists preserves the number of components

inside the subfamilies.
1The Conway notation is called unreduced if in symbols of polyhedral links elementary tangles 1

in single vertices are not omitted.
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Definition 0.3. A link given by Conway symbol containing only tangles ±1 and ±2

is called a source link, and link given by Conway symbol containing only tangles ±1,

±2 and ±3 is called generating link.

2. BASIC POLYHEDRA AND DECORATED GRAPHS DERIVED

FROM n-PRISMS

Basic polyhedron 9∗ is the first member of the family of basic polyhedra 9∗,

12C=123∗, 1599∗, 184460∗, . . ., with 3n crossings, two n-gonal faces, 2n triangu-

lar, and n 4-gonal faces, derived from n-prisms (n � 3) as middle graphs (Fig. 1.

For n = 1 (mod 2) we obtain knots, for n = 2 (mod 4) 2-component links, and for

n = 0 (mod 4) 4-component links, defined by braid words AbA(CbA)n−2CbC [29].

The signature of obtained KLs is

n Signature
3 2
4 1

n � 5 n− 1

All 4-component links from this family have cutting number 2, and all obtained KLs

are chiral. Since n-prisms and n-bipyramids are mutually dual, the same basic poly-

hedra (i.e., their mirror image KLs) can be obtained as middle graphs corresponding

to n-bipyramids.

Figure 1: Basic polyhedra 9∗, 123∗, 1599∗, and 184460∗.

According to Conway’s construction, all polyhedral alternating KLs can be ob-

tained from basic polyhedra by vertex substitutions, i.e., substituting vertices of basic

polyhedra by algebraic tangles [4, 25]. Conway notation for polyhedral KLs is built
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on this idea. From the basic polyhedron 9∗, by the vertex substitutions we obtain

the family of alternating KLs 9∗e.a 0.i.f.b 0.g.d.c 0.h (Fig. 2a). Their corresponding

graphs are decorated 3-prism graphs obtained by generalized Jaeger construction,

illustrated in Fig. 2b.

Figure 2: (a) KLs of the family 9∗a5.a1 0.a9.a6.a2 0.a7.a4.a3 0.a8; (b) their correspond-
ing 3-prism decorated graph P3 = P3(a1, a2, . . . , a9).

By vertex substitutions in the basic polyhedron 12C=123∗ we construct the fam-

ily of alternating KLs given by Conway symbol 123∗a3.a11 0.a8.a4.a12 0.a5.a1.a9 0.a6.

a2.a10 0.a7 (Fig. 3a). Their corresponding graphs are decorated 4-prism (cube) graphs

obtained by generalized Jaeger construction, illustrated in Fig. 3b.

Figure 3: (a) KLs of the family 123∗a3.a11 0.a8.a4.a12 0.a5.a1. a9 0.a6.a2.a10 0.a7; (b)
their corresponding 4-prism decorated graph P4 = P4(a1, a2, . . . , a12).
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3. GENERAL FORMULAS FOR TUTTE POLYNOMIALS OF 3- AND

4-PRISMATIC DECORATED GRAPHS

According to Thistlethwaite’s Theorem, the Jones polynomial of an alternating

link, up to a factor, can be obtained from the Tutte polynomial by replacements:

x → −x and y → − 1

x
[30–32]. Moreover, from general formulas for Tutte polynomials

with negative values of parameters we obtain Tutte polynomials expressed as Laurent

polynomials. By the same replacements we obtain, up to a factor, Jones polynomials

of non-alternating links. Hence, from general formulas for Tutte polynomials we can

obtain Jones polynomials of KLs without restriction on the number of crossings.

It is well known that Tutte polynomials are not KL invariants, but they are

invariants of minimal KL diagrams treated as signed graphs, and they are much

stronger invariant than Jones polynomials obtained from them. For example, for the

graph G corresponding to the minimal diagram of an amphicheiral knot or link L,

TG(x, y) = TG(y, x). However, a chiral knot or link L given by its minimal diagram

can have equal Jones polynomials of L and its mirror image, but TG(x, y) �= TG(y, x).

In this section we derive general formulas for the Tutte polynomials of 3- and

4-prismatic decorated graphs using the classical definition of Tutte polynomial and

Theorem 0.1 ( [33], Theorem 3.1) stated below.

An ear in a graph is a path v1 ∼ v2 ∼ . . . ∼ vn ∼ vn+1 where d(v1) > 2,

d(vn+1) > 2 and d(v2) = d(v3) = . . . = d(vn) = 2. A cycle is viewed as a ”special”

ear where v1 = vn+1 and the restriction on the degree of this vertex is lifted. If a

graph contains an ear or a multi-edge, then all the edges involved can be removed by

a single operation. We denote an ear with s edges by Es, and an edge of multiplicity

s by es. Deletion of an ear G−Es is the deletion of all edges in Es. Contraction of a

multi-edge G/Es consists of deleting all edges in Es and identifying the endvertices,

while contracting an ear requires deleting all its edges and identifying v1 and vn+1.

Theorem 0.1. [33] Suppose that G is a biconnected graph that properly contains an

ear Es. Then

T (G) =
xs − 1

x− 1
T (G− Es) + T (G/Es).
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Since multiple edges are dual to ears, for multiple edges we immediately obtain

the Tutte polynomial of a dual graph.

Figure 4: Graphs G1-G7.

In order to derive general formulas for Tutte polynomials of 3- and 4-prism dec-

orated graphs we need a few more basic graphs and general formulas for their Tutte

polynomials [34]:

• The Tutte polynomial of graphs G1 = G1(a) (Fig. 4) of a-cycle Ea is

T (G1(a)) =
xa − 1

x− 1
+ y − 1.

• The Tutte polynomial of pretzel KL graphs (Fig. 4) G2 = G2(a, b, c) is

T (G2(a, b, c)) =
xa+b+c + (xa+1 + xb+1 + xc+1)(y − 1)− (xa + xb + xc)y

(x− 1)2
+

(xy − x− y)(xy − x− y − 1)

(x− 1)2
.

• For graphs G3 = G3(a, b, c, d, e) (Fig. 4) we have the general formula for the

Tutte polynomial:

T (G3(a, b, c, d, e) =
xe − 1

x− 1
T (G(a, b, (c+ d))) + T (G2(a, b, c)))T (G1(d)).

• The general formula for graphs G4 = G4(a, b, c, d, e, f) (Fig. 4) is:

T (G4(a, b, c, d, e, f)) = T (G3(a, b, d, e, f))+xd(Cc(x)+1)T (G1(a+b))T (G1(e+f)),
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where

Cc(x) =
xc − x

x− 1
.

• The Tutte polynomial of n+1-wheel graphs Wh(n+1) (i.e., n-pyramid graphs)

(Fig. 4) is given by the general formula [34]:

T (Wh(n+ 1)) = [
1

2
[(1 + x+ y) + [(1 + x+ y)2 − 4xy]1/2]]n+

[
1

2
[(1 + x+ y)− [(1 + x+ y)2 − 4xy]1/2]]n + xy − x− y − 1.

• The general formula for the Tutte polynomial of the decorated 3-pyramid graphs

G5(a, b, c, d, e, f) (Fig. 4) is:

T (G5) = T (G5(a, b, c, d, e, f) = Ca(x)T (G2(b+f, d, e))+Cb(x)T (G2(c+d, e, f+1))+

Cc(x)T (G2(d+ 1, e+ 1, f)) + Cd(x)T (G2(e+ f, 2, 1))+

Ce(x)T (G2(f + 1, 2, 1)) + Cf(x)T2(G(2, 2, 1)) + T (Wh(4)).

• The general formula for the Tutte polynomial of the decorated 4-pyramid graphs

G6 = G6(a, b, c, d, e, f, g, h) (Fig. 4) is:

G6(a, b, c, d, e, f, g, h) =

Ca(x)T (G4(b+ h, g, c, f, d+ e)) + Cb(x)T (G4(c+ g, f, d, e, h+ 1))+

Cc(x)T (G4(d+ f, e, 1, h, g + 1)) + Cd(x)T (G4(e+ 1, h, 1, g, f + 1))+

Ce(x)T (G5(2, 1, 1, g, f, h)) + Cf(x)T (G5(2, 1, 1, h, g, 1))+

Cg(x)T (G5(2, 1, 1, 1, h, 1)) + Ch(x)T (G5(2, 1, 1, 1, 1, 1)) + T (Wh(5)).

• The general formula for the Tutte polynomial of the decorated graphs G7 =

G7(a, b, c, d, e, f, g, h, i) (Fig. 4) is:

T (G7) = T (G7(a, b, c, d, e, f, g, h, i)) =

(Ca(x) + 1)T (G4(b+ c, d, e, f, g, h+ i)) + T (G6(d, f, g, e, b, h, i, c)).
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Theorem 0.2. The Tutte polynomial of a decorated 3-prism graphs P3 = P3(a1,
a2, a3, a4, a5, a6, a7, a8, a9) (Fig. 2b) is given by the general formula:

T (P3) = P3(a1, a2, a3, a4, a5, a6, a7, a8, a9) =

C1(x)T (G4(a8 + a9, a7, a3, a2, a4, a5 + a6)) + C2(x)T (G4(a7 + a9, a8, a3, 1, a5, a4 + a6))+

C3(x)T (G4(a7 + a8, a9, 1, 1, a6, a4 + a5)) + C4(x)T (G5(a7, a9, a8, 1, a5 + 1, a6 + 1))+

C5(x)T (G5(a7, a8, a9, a6 + 1, 1, 2)) + C6(x)T (G5(a7, a8, a9, 2, 2, 1))+

C7(x)T (G5(1, 1, 1, a8 + 1, a9 + 1, 1)) + C8(x)T (G5(1, 1, 1, a9 + 1, 2, 1))+

C9(x)T (G5(1, 1, 1, 2, 2, 1)) + T (P3(1, 1, 1, 1, 1, 1, 1, 1, 1)),

where

Ci(x) =
xai − x

x− 1
,

and P 1
3 = P3(1, 1, 1, 1, 1, 1, 1, 1, 1)) is the 3-prism graph with the Tutte polynomial

T (P 1

3 ) = 4x+9x2+8x3+4x4+x5+4y+13xy+9x2y+2x3y+8y2+7xy2+5y3+ y4.

The proof of this theorem follows from a series of recursive contractions/deletitions

and applications of Theorem 0.1 in the process of the reduction of multiple edges which

can be followed on Fig. 5.

Theorem 0.3. Tutte polynomial of a decorated 4-prism graphs (Fig. 3b) P4 = P4(a1,
a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) is given by the general formula:

T (P4) = T (P4(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12)) =

C9(x)T (P3(a12, a10, a11, a3, a4, a1 + a2, a7, a8, a5 + a6))+

C10(x)T (P3(1, a11, a12, a4, a1, a2 + a3, a8, a5, a6 + a7))+

C11(x)T (P3(1, 1, 1, a1, a2, a3 + a4, a5, a6, a7 + a8))+

C12(x)T (P3(1, 1, 1, a2, a3, a1 + a4, a6, a7, a5 + a8))+

C1(x)T (G7(a5, a6, a2 + 1, 1, a7, a3, 1, a8, a4 + 1)) + C2(x)T (G7(a6, a7, a3 + 1, 1, a8, a4, 1, a5, 2))+

C3(x)T (G7(a7, a8, a4 + 1, 1, a5, 1, 1, a6, 2)) + C4(x)T (G7(a8, a5, 2, 1, a6, 1, 1, a7, 2))+

C5(x)T (G7(1, a6 + 1, 1, 1, a7, 1, 1, a8 + 1, 1)) + C6(x)T (G7(1, a7 + 1, 1, 1, a8, 1, 1, 2, 1))+

C7(x)T (G7(1, a8 + 1, 1, 1, 1, 1, 1, 2, 1))+ C8(x)T (G7(1, 2, 1, 1, 1, 1, 1, 2, 1))+ T (P 1

4
)

where

Ci(x) =
xai − x

x− 1
,

and P 1
4 = P4(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) is the 4-prism graph with the Tutte polyno-

mial

T (P 1
4 ) = 11x+ 32x2 + 40x3 + 29x4 + 15x5 + 5x6 + x7 + 11y + 46xy + 52x2y + 24x3y+

6x4y + 25y2 + 39xy2 + 12x2y2 + 20y3 + 8xy3 + 7y4 + y5.
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Figure 5: Resolving graph P3 = P3(a1, a2, a3, a4, a5, a6, a7, a8, a9).

Since n-prisms and n-pyramids are dual, the Tutte polynomials of decorated 3-

and 4-bipyramid graphs can be obtained by switching variables x and y in the Tutte

polynomials of decorated 3- and 4-prism graphs from Theorems 0.2 and 0.3.
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4. ALTERNATING KL FAMILIES DERIVED FROM 3- AND

4-PRISMATIC DECORATED GRAPHS

To eliminate repeats of KLs by our construction we used minimal Dowker codes

and Kauffman two-variable polynomials.

Since the results for source and generating links derived from prismatic decorated

graphs coincide, we are giving only the tables of generating links. Source links can

be obtained from generating links replacing symbol 3 by 1.

Among 512 generating links of the form 9∗a5.a1 0.a9.a6.a2 0.a7.a4.a3 0.a8 obtained

from decorated 3-prism graphs, there are 74 different families, given in Table 4.1 by

the lists of parameters a1, a2, . . . , a9.

Table 4.1

1 2,3,3,2,2,3,3,2,2 2 2,2,3,2,3,2,2,3,3 3 2,3,3,3,2,2,3,2,2 4 2,2,3,2,2,3,2,3,3
5 2,3,3,2,2,3,2,2,3 6 2,2,3,2,3,2,3,2,3 7 2,2,2,2,2,3,3,3,3 8 2,3,3,2,2,3,2,3,2
9 2,2,2,2,3,3,3,2,3 10 2,3,3,3,2,2,3,2,3 11 2,3,3,2,2,3,3,2,3 12 2,2,3,2,2,3,3,3,3
13 3,3,3,2,2,3,2,3,2 14 2,3,3,2,2,3,3,3,2 15 2,2,3,2,3,2,3,3,3 16 3,3,3,2,2,3,2,2,3
17 2,2,3,2,3,3,3,3,2 18 2,2,3,2,3,3,3,2,3 19 2,3,3,3,2,3,3,3,2 20 2,2,3,2,3,3,3,3,3
21 2,3,3,2,3,3,3,2,3 22 2,3,3,3,2,3,3,3,3 23 3,3,3,2,3,3,3,2,3 24 2,3,3,3,3,3,3,3,3
25 3,3,3,3,3,3,3,3,3 26 2,3,3,2,2,2,3,2,2 27 2,3,3,2,2,2,2,2,3 28 2,2,3,2,2,2,2,3,3
29 2,2,2,2,2,2,3,3,3 30 2,3,3,2,2,2,3,2,3 31 3,3,3,2,2,2,2,2,3 32 2,2,3,2,2,2,3,3,3
33 2,2,3,2,3,2,2,3,2 34 2,2,3,2,3,2,3,2,2 35 2,2,2,2,2,3,2,3,3 36 2,2,3,2,3,2,3,3,2
37 2,3,3,2,2,3,2,3,3 38 2,3,3,2,2,3,3,3,3 39 3,3,3,2,2,3,2,3,3 40 2,3,3,2,3,3,3,3,3
41 3,3,3,2,3,3,3,3,3 42 2,2,3,2,2,3,2,3,2 43 2,2,2,2,2,3,3,3,2 44 2,2,3,2,2,3,3,3,2
45 2,2,2,2,3,3,3,3,3 46 2,2,3,3,3,2,3,3,3 47 2,2,3,3,3,3,3,3,3 48 2,2,3,2,2,3,2,2,3
49 2,2,3,2,3,3,2,3,3 50 2,3,3,2,3,3,3,2,2 51 3,3,3,2,2,3,3,3,2 52 2,3,3,3,2,2,3,3,3
53 2,3,3,3,2,3,3,2,3 54 2,3,3,2,2,2,2,2,2 55 3,3,3,2,2,2,2,2,2 56 2,2,3,2,2,2,2,3,2
57 2,2,2,2,2,2,2,3,3 58 2,2,3,2,2,2,3,3,2 59 2,3,3,2,2,2,2,3,3 60 3,3,3,2,2,2,2,3,3
61 2,3,3,2,2,2,3,3,3 62 2,2,3,2,2,2,2,2,3 63 2,2,2,2,2,3,2,2,3 64 2,2,2,2,2,3,2,3,2
65 2,2,2,2,3,3,2,3,3 66 2,2,3,3,3,2,3,3,2 67 2,3,3,2,3,3,2,3,3 68 3,3,3,2,2,3,3,3,3
69 3,3,3,2,3,3,2,3,3 70 2,2,2,3,3,3,3,3,3 71 2,2,3,2,2,2,2,2,2 72 2,2,2,2,2,2,2,2,3
73 3,3,3,2,2,2,3,3,3 74 2,2,2,2,2,2,2,2,2

Number of components: First 25 families 1-25 are knots, 28 families 26-53
are 2-component links, 17 families 54-70 are 3-component links, 3 families 71-73 are
4-component links, and the family 74 consists of 5-component links.

Cutting number: The number of components that needs to be cut in a link L
in order to obtain split link is called the cutting number. It is an invariant of link
families: all members of a KL family have the same cutting number. Certainly, for
every 2-component link the cutting number is 1. However, cutting number is not
necessarily equal to c− 1, where c is number of components.

The families of source links 54, 60, 61, 66, 67, 71, 72, 74 and the families of
generating links 54, 55 71, 74 have the cutting number c − 2, and all the other
families of source and generating links have the cutting number c− 1.
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4096 generating links of the form 123∗a3.a11 0.a8.a4.a12 0.a5.a1.a9 0.a6.a2 .a10 0.a7
obtained from decorated 4-prism graphs belong to 144 different families, given in the
Table 4.2.

Table 4.2

1 2,2,2,3,2,2,3,3,2,3,2,3 2 2,2,2,3,2,3,2,2,2,3,3,3 3 2,2,2,3,2,2,2,3,2,3,3,3
4 2,2,2,3,2,2,3,2,2,3,3,3 5 2,2,2,3,2,2,2,3,3,3,2,3 6 2,2,2,3,2,2,3,3,3,3,2,2
7 2,2,2,3,2,2,3,3,3,2,2,3 8 2,2,2,3,2,2,3,2,3,2,3,3 9 2,2,2,3,2,2,3,2,3,3,2,3
10 2,2,2,3,2,3,3,2,3,2,2,3 11 2,2,2,3,2,3,3,2,3,2,3,2 12 2,2,2,3,2,2,3,3,2,3,3,3
13 2,2,2,3,2,3,3,2,2,3,3,3 14 2,2,2,3,2,2,3,3,3,3,3,2 15 2,2,2,3,2,2,3,3,3,3,2,3
16 2,2,2,3,2,2,3,3,3,2,3,3 17 2,2,2,3,3,2,3,3,2,3,2,3 18 2,2,2,3,2,3,3,2,3,3,2,3
19 2,2,2,3,2,3,3,2,3,2,3,3 20 2,2,2,3,3,2,3,3,2,3,3,2 21 2,2,2,3,3,3,3,2,2,3,2,3
22 2,2,2,3,2,3,3,2,3,3,3,2 23 2,2,2,3,2,3,3,3,3,3,2,3 24 2,2,2,3,2,2,3,3,3,3,3,3
25 2,2,2,3,3,3,3,2,2,3,3,3 26 2,2,2,3,3,2,3,3,3,3,2,3 27 2,2,2,3,2,3,3,2,3,3,3,3
28 2,2,2,3,2,3,3,3,3,2,3,3 29 2,2,2,3,3,3,3,3,2,3,2,3 30 2,2,3,3,3,3,2,2,3,2,3,3
31 2,2,3,3,2,3,3,3,3,2,2,3 32 2,2,2,3,3,3,3,3,2,3,3,3 33 2,2,2,3,3,3,3,3,3,3,2,3
34 2,2,3,3,2,3,3,3,3,3,2,3 35 2,2,3,3,2,3,3,3,3,2,3,3 36 2,2,2,3,3,3,3,3,3,3,3,3
37 2,2,3,3,2,3,3,3,3,3,3,3 38 2,2,3,3,3,3,3,3,3,2,3,3 39 2,3,2,3,3,2,3,3,3,3,3,3
40 2,3,3,3,3,2,3,3,3,3,2,3 41 2,2,2,2,2,3,2,3,2,2,3,3 42 2,2,2,2,2,2,3,3,2,3,2,3
43 2,2,2,2,2,3,2,3,2,3,2,3 44 2,2,2,2,2,2,2,3,2,3,3,3 45 2,2,2,2,2,2,3,3,3,2,2,3
46 2,2,2,2,2,3,3,3,2,2,2,3 47 2,2,2,2,2,2,2,3,3,3,2,3 48 2,2,2,2,3,3,3,3,2,2,2,2
49 2,2,2,2,2,2,3,3,2,3,3,3 50 2,2,2,2,2,3,3,3,2,3,2,3 51 2,2,2,2,2,2,3,3,3,2,3,3
52 2,2,2,2,2,3,3,3,2,2,3,3 53 2,2,2,2,3,3,3,3,2,2,2,3 54 2,2,2,2,2,2,3,3,3,3,2,3
55 2,2,2,2,3,3,3,3,2,3,2,3 56 2,2,2,2,2,3,3,3,3,2,3,3 57 2,2,2,2,2,2,3,3,3,3,3,3
58 2,2,2,2,3,3,3,3,2,3,3,3 59 2,2,2,2,3,3,3,3,3,3,3,3 60 2,2,2,3,2,3,2,3,3,3,2,3
61 2,2,2,3,2,3,2,3,2,3,3,3 62 2,2,2,3,3,2,3,2,3,3,2,3 63 2,2,2,3,2,3,3,3,3,3,3,2
64 2,2,2,3,2,3,3,3,2,3,3,3 65 2,2,2,3,3,3,3,2,3,3,2,3 66 2,2,3,3,2,3,2,3,3,2,3,3
67 2,2,3,3,2,3,2,3,3,3,2,3 68 2,2,2,3,2,3,3,3,3,3,3,3 69 2,2,3,3,2,3,2,3,3,3,3,3
70 2,2,3,3,3,3,2,3,3,2,3,3 71 2,2,2,3,3,3,3,2,3,3,3,3 72 2,2,2,3,2,2,3,2,3,2,2,3
73 2,2,2,3,2,2,2,3,2,3,2,3 74 2,2,2,3,2,2,3,2,3,2,3,2 75 2,2,2,3,2,2,3,3,3,2,3,2
76 2,2,3,3,3,3,2,2,2,3,2,3 77 2,2,3,3,3,3,2,2,2,3,3,3 78 2,2,3,3,3,3,2,3,2,3,3,3
79 2,2,3,3,3,3,2,2,3,3,3,3 80 2,2,3,3,3,3,3,3,3,3,2,3 81 2,2,3,3,3,3,3,3,2,3,3,3
82 2,2,3,3,3,3,3,3,3,3,3,3 83 2,3,3,3,3,2,3,3,3,3,3,3 84 2,2,2,3,2,2,3,2,3,3,3,3
85 2,3,2,3,3,2,3,2,3,3,3,3 86 2,2,2,3,3,3,3,2,2,2,3,3 87 2,2,2,3,3,2,3,3,3,3,2,2
88 2,2,3,3,2,2,3,3,3,3,2,3 89 2,2,2,3,2,3,3,3,3,2,2,3 90 2,2,2,3,3,2,3,3,2,3,3,3
91 2,2,2,3,3,3,3,3,2,2,3,3 92 2,2,2,3,3,3,3,3,3,3,2,2 93 2,2,2,3,3,2,3,3,3,3,3,3
94 2,2,3,3,2,2,3,3,3,3,3,3 95 2,2,2,3,2,3,2,2,2,3,2,3 96 2,2,2,3,2,2,3,2,2,3,2,3
97 2,2,2,3,2,2,2,3,3,3,2,2 98 2,2,2,3,2,3,3,2,2,3,2,3 99 2,2,2,3,2,3,2,2,3,3,3,3
100 2,2,2,3,2,2,2,3,3,3,3,3 101 2,2,3,3,3,3,2,2,3,2,3,2 102 2,2,3,3,2,3,3,2,3,2,2,3
103 2,2,3,3,2,3,3,2,3,2,3,3 104 2,2,3,3,2,3,3,2,3,3,3,3 105 2,2,3,3,3,3,2,3,3,3,3,2
106 2,3,2,3,3,3,3,3,3,3,3,3 107 2,2,2,2,2,2,2,3,2,2,3,3 108 2,2,2,2,2,2,3,3,2,2,2,3
109 2,2,2,2,2,2,2,3,2,3,3,2 110 2,2,2,2,2,2,2,2,2,3,3,3 111 2,2,2,2,2,2,3,3,2,2,3,3
112 2,2,2,2,2,3,2,3,2,3,3,3 113 2,2,2,2,2,3,3,3,2,3,3,3 114 2,2,2,2,2,3,3,3,3,3,3,3
115 2,2,2,2,2,2,2,3,2,3,2,3 116 2,2,2,2,2,2,3,3,3,2,2,2 117 2,2,2,2,2,2,2,3,3,3,2,2
118 2,2,2,2,2,2,3,3,3,2,3,2 119 2,2,2,2,2,2,2,3,3,3,3,3 120 2,2,2,2,2,3,3,3,3,2,2,3
121 2,2,2,2,3,3,3,3,2,2,3,3 122 2,2,2,3,2,3,2,3,3,3,3,3 123 2,3,2,3,2,3,3,3,3,3,3,3
124 2,2,2,3,3,2,3,2,3,3,2,2 125 2,2,2,3,3,3,3,2,3,3,2,2 126 2,2,3,3,3,3,2,3,3,3,2,3
127 2,2,3,3,3,3,2,3,3,3,3,3 128 2,2,2,3,3,2,3,2,3,3,3,3 129 2,2,2,3,2,2,3,2,3,2,2,2
130 2,3,3,3,3,3,3,3,3,3,3,3 131 2,2,2,2,2,2,2,3,2,2,2,3 132 2,2,2,2,2,2,2,2,2,2,3,3
133 2,2,2,2,2,2,3,3,2,2,3,2 134 2,2,2,2,2,3,2,3,2,3,3,2 135 2,2,2,2,2,3,3,3,2,3,3,2
136 2,2,2,2,2,2,2,3,2,3,2,2 137 2,2,2,2,2,2,2,2,2,3,2,3 138 2,2,2,2,2,2,2,2,3,3,3,3
139 2,2,2,2,2,3,2,3,3,3,3,3 140 2,3,2,3,2,3,2,3,3,3,3,3 141 2,3,3,3,3,3,2,3,3,3,3,3
142 3,3,3,3,3,3,3,3,3,3,3,3 143 2,2,2,2,2,2,2,2,2,2,2,3 144 2,2,2,2,2,2,2,2,2,2,2,2
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Number of components: First 40 families 1-40 are knots, 66 families 41-106
are 2-component links, 24 families 107-130 are 3-component links, 12 families 131-
142 are 4-component links, one 5-component family 143, and the family 144 consists
of 6-component links.

Cutting number: Among source links derived from 3-prismatic decorated graphs
8 have cutting number c − 2: 3-component source links 54, 55, 66, 68, and 70, 4-
component source links 71 and 73, and 5-component source link 74. The only source
link with Borromean property, which splits after cutting any its component, is the
3-component link 70: 9∗.2 0 : .2 0 : .2 0. Four generating links: 3-component links
54 and 55, 4-component link 71, and 5-component link 74 have the cutting number
c− 2, but none of them has Borromean property.

Among source links derived from 4-prismatic decorated graphs 13 of them have
cutting number c − 2: 3-component source links 110, 121, 126, 127 and 128, 4-
component links 132, 135, 137, 138, 139, and 141, 5-component link 143, and
6-component link 144. None of them has Borromean property.

Chirality: All source and generating links from the above lists are chiral.
Other invariants: Several other invariants of the source links 1-74 are given in

Table 4.3, where BJ-unlinking number is denoted by uBJ , ∞-unlinking number by
u∞, adequacy number by a, splitting number by sp, signature by s, hyperbolic volume
by hv, periods by p, order of the symmetry group of the corresponding polyhedron
by sym, and linking number by l.

Table 4.3
uBJ u∞ a sp s hv p sym l uBJ u∞ a sp s hv p sym l

1 3 4 28 2 22.9236 0 1 38 2 3 20 2 3 19.7367 0 1 1

2 2 4 27 4 22.577 0 1 39 3 2 22 2 5 20.1045 0 1 1

3 3 4 27 0 22.8496 2 4 40 3 3 18 2 1 18.1333 2 2 1

4 3 5 28 4 22.7508 0 1 41 2 3 16 2 3 16.7127 2 2 1

5 3 4 30 4 23.1429 2 2 42 3 1 32 3 5 24.2397 0 1 1

6 3 4 26 2 22.5309 0 1 43 3 1 28 3 5 23.7263 2 2 1

7 3 4 23 4 22.1811 2 2 44 4 1 26 4 1 22.5856 2 2 1

8 3 4 30 4 23.0947 2 2 45 3 3 20 3 3 20.6149 2 2 0

9 3 5 24 4 22.169 2 2 46 2 3 18 2 3 19.2668 2 2 2

10 3 5 23 4 21.225 0 1 47 2 3 16 2 1 17.761 2 4 0

11 3 4 24 4 21.3619 0 1 48 4 2 34 4 5 24.4626 2 4 0

12 2 4 22 2 21.0874 2 2 49 3 2 24 3 3 21.078 2 2 0

13 3 4 26 6 21.7517 2 2 50 3 3 24 3 1 21.2899 2 2 0

14 3 5 24 2 21.3284 0 1 51 3 1 22 3 5 20.045 2 2 2

15 3 4 21 4 20.8992 0 1 52 3 1 19 3 3 19.5908 2 2 0

16 3 4 26 6 21.8355 2 4 53 3 1 20 2 3 19.6449 2 2 0

17 2 4 22 0 20.9137 0 1 54 5 2 39 5 4 26.1739 2 4 2

18 4 5 23 4 21.0456 2 2 55 7 2 35 6 8 25.0323 2,3 12 6

19 4 5 20 4 19.6209 2 2 56 5 2 36 5 6 25.6704 0 1 2

20 2 4 19 2 19.4094 0 1 57 5 2 33 5 6 25.2408 2 2 4

21 2 4 21 0 19.7302 0 1 58 7 2 29 6 2 24.0056 2 2 6

22 2 5 17 2 18.0173 0 1 59 6 3 29 5 2 22.9882 2 2 5

23 2 3 19 4 18.3943 2 2 60 5 2 25 4 6 21.6749 2 2 3

24 2 4 15 0 16.4108 2 4 61 4 2 22 4 4 21.2337 2 2 1

25 2 2 14 2 15.0183 2,3 12 62 5 1 38 5 6 25.8537 2 2 1

26 3 3 32 3 3 24.4685 2 2 1 63 5 2 35 5 6 25.3681 2 4 3

27 3 3 34 3 5 24.6319 0 1 1 64 5 1 34 5 6 25.3158 2 2 1

28 3 4 31 3 5 24.1447 0 1 1 65 6 2 25 6 4 22.1942 2 4 6

29 3 3 26 3 5 23.6633 3 6 3 66 4 1 21 4 0 20.7946 2 4 2

30 3 3 27 3 3 22.8603 0 1 1 67 4 2 23 4 0 19.8873 2 4 1

31 5 3 30 3 7 23.3927 2 2 3 68 3 1 18 3 4 18.3786 2 2 2

32 3 3 24 3 5 22.4771 2 2 1 69 5 1 19 5 4 18.4371 2 4 5

33 3 3 31 3 5 24.1121 2 2 2 70 4 0 17 4 2 19.0564 2,3,6 12 0

34 3 3 30 3 3 24.0462 2 2 0 71 7 1 43 7 5 27.2861 0 4 2

35 3 3 29 3 5 23.7625 0 1 0 72 7 1 40 7 7 26.8349 2 2 4

36 3 3 25 3 1 22.4306 0 1 2 73 5 0 20 5 5 19.9548 2,3 6 3

37 2 2 26 2 1 21.495 0 1 1 74 9 0 47 9 2 28.3492 2,3 12 9
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4.1. ZEROES OF JONES POLYNOMIAL AND PORTRAITS OF KL-
FAMILIES

Plots of all zeroes of the Jones polynomial for KL family, referred to as the
characteristic ”portrait of family”. We interpret these plots in the light of results
in [35–40].

Portrait of the alternating 3-prism KL family 9∗a5.a1 0.a9.a6.a2 0.a7.a4.a3 0.a8 for
2 � ai � 4, 1 � i � 9, is given in Fig. 6.

Figure 6: Portrait of the family 9∗a5.a1 0.a9.a6.a2 0.a7.a4.a3 0.a8 for 2 � ai � 4,
1 � i � 9.

Portrait of the alternating 4-prism KL family 123∗a3.a11 0.a8.a4.a12 0.a5.a1.a9 0.a6
.a2.a10 0.a7, 2 � ai � 4, 1 � i � 12, is given in Fig. 7.

Figure 7: Portrait of the family 123∗a3.a11 0.a8.a4.a12 0.a5.a1.a9 0.a6.a2.a10 0.a7 for 2 �

ai � 4, 1 � i � 12.

Fig. 8 shows the portrait of the alternating KL family 6∗a1.a2.a3.a4.a5.a6 for 2 �

ai � 6, 1 � i � 6. The subfamily of amphicheiral KLs of the form 6∗a1.a1.a2.a3.a3.a2
for 2 � ai � 7, 1 � i � 3, and the subfamily of amphicheiral KLs of the form
6∗a1.a2.a3.a1.a2.a3 for 2 � ai � 7, 1 � i � 3, from the preceding portrait are
distinguished in Fig. 9.

Figures 6-8 suggest that almost all of the roots of the Jones polynomials approach
the unit circle under twisting1, they are dense in the unit circle [39], and critical
points are the third [35, 36] and sixth roots of unity.

1Adding a twist changes the corresponding parameter in a Conway symbol by ±1.
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Figure 8: Portrait of the KL family 6∗a1.a2.a3.a4.a5.a6 for 2 � ai � 6, 1 � i � 6.

Figure 9: (a) Portrait of the subfamily of amphicheiral KLs of the form
6∗a1.a2.a3.a3.a2.a1 for 2 � ai � 7, 1 � i � 3; (b) portrait of the subfamily of
amphicheiral KLs of the form 6∗a1.a2.a3.a1.a2.a3 for 2 � ai � 7, 1 � i � 3.

5. KL FAMILIES DERIVED FROM n-PRISMS BY EDGE DOUBLING

Every n-prism for n � 3 is a 3-regular graph – every vertex is 3-valent. Knowing
that every 4-regular graph represents a shadow of a KL, we can transform n-prisms
into 4-regular graphs by edge doubling: in every vertex substitute an edge by double
edge to obtain 4-regular graph [4].

In order to derive alternating sourceKLs from n-prisms by edge-doubling, we need
to enumerate all different edge-bicolored graphs. The edge-bicolored graphs obtained
from n-prisms for 3 � n � 6, where double edges are denoted by bold lines are shown
in Fig. 10. For n = 3, we get alternating source links 2 2 2 and 2, 2, 2, for n = 4 the
alternating source links 2, 2, 2, 2 and (2, 2) (2, 2)2, for n = 5 the alternating source
links 2, 2, 2, 2, 2, (2, 2), 2, 2, 2 and (2, 2), (2, 2), 2, for n = 6 the alternating source links
2, 2, 2, 2, 2, 2, (2, 2), 2, 2, 2, 2, (2, 2), (2, 2), 2, 2, (2, 2), 2, (2, 2), 2, (2, 2), (2, 2), (2, 2) and
6∗2.2.2.2.2.2, etc. (Fig. 11).

The numbers of different edge-bicolorings of n-prisms for 3 � n � 25 are given in
the following tables:

n 3 4 5 6 7 8 9 10 11 12 13 14
2 2 3 6 5 9 10 16 19 32 41 65

n 15 16 17 18 19 20 21 22 23 24 25
94 144 211 330 493 767 1170 1812 2787 4342 6713

2Notice that 2, 2, (2, 2) = (2, 2) (2, 2).
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Figure 10: Edge-bicolored n-prism graphs for n = 3, 4, 5, 6.

Notice that this sequence is not included in the On-line Encyclopedia of Integer Se-
quences [41].

By substituting single bigons by chains of bigons (k-twists) in source links we
obtain different classes of prismatic links. Among all Prismatic source links obtained
by Edge-Doubling (PED-links), there is only one rational link: 2 2 2 obtained from
a 3-prism. All the other source PED-links can be divided into three classes: pretzel
links p1, p2, . . . , pn (n � 3), arborescent links [4, 26] derived from the pretzel source
links by substituting one or more tangles 2 by tangles (2, 2), and polyhedral links
of the form np

1.p2. . . . .pn (for even n � 6). The only PED-link with two different
minimal diagrams is the rational link 2 2 2, and all the other links have a single
minimal diagram each.

In particular, for every n � 3 we obtain pretzel source link 2, 2, . . . , 2, where
number 2 occurs n times. By substituting bigons by pk-twists (1 � k � n, pk � 2),
we obtain all alternating pretzel links p1, p2, . . . , pn.

The number of different alternating generating pretzel links is equal to the number
necklaces of the length n, colored with at most two colors and invariant with regard to
the dihedral symmetry group Dn. According to the Pólya enumeration theorem [42]
this number is given by the general formula:

1

2n

∑

d|n

ϕ(n)2
n
d + 2

n−1
2 for n odd
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Figure 11: Alternating source KLs obtained from edge-bicolored prism graphs for
n = 3, 4, 5, 6.

1

2n

∑

d|n

ϕ(n)2
n
d + 2

n
2
−1 + 2

n
2
−2 for n even

where ϕ(n) is Euler’s totient function, counting the number of positive integers i less
than n such that GCD(n, i) = 1. If n = pk11 pk22 . . . pkii , where p1, p2, . . ., pi are different
prime numbers, and k1, k2, . . ., ki are positive integers, then ϕ(n) = n

∏i
k=1

(1− 1

pi
).

Hence, the number of pretzel source links for 3 � n � 20 is given by the sequence
A000029 from the On-Line Encyclopedia of Integer Sequences [41]:

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 6 8 13 18 30 46 78 126 224 380 687 1224 2250 4112 7685 14310 27012

Theorem 0.4. If the number of odd parameters pk in a pretzel link p1, p2, . . . , pn is
q (0 � o � n− 1), the number of components c of the pretzel link is c = n− q. If all
parameters pk are odd, the number of components is 2 for even n, and 1 for odd n.

Next invariant we consider for pretzel links is uBJ unknotting number. For pretzel
links of the form p1, p2, p3 the following theorem holds [4]:

Theorem 0.5. • The family 2k + 1, 2l + 1, 2m+ 1 (k � l � m � 2) has uBJ =
l +m.

• the family 2k, 2l, 2m has uBJ = u = k + l +m3

• for pretzel knots 2k + 1, 2l, 2m+ 1 with (k � m � 1) we have4

2k + 1, 2l, 2m+ 1 uBJ

l = 1 m+ k

k � l > 1 m+ k

l > k � 1 m+ k + 1

• 2k, 2l + 1, 2m (k � m) has uBJ = u = k + l5.

3Notice that the linking number guarantees that uBJ = u.
4Notice that in first two cases, l = 1 and k � l > 1, the signature guarantees that uBJ = u.
5Notice that the signature guarantees that uBJ = u.
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For pretzel links of the form L = p1, p2, . . . , pn with n � 4 and with all pk � 2
we conjecture that uBJ -unknotting numbers can be computed in the following way:
if the generating link of L is L′ = p′1, p

′
2, . . . , p

′
n, and distance d between L and L′ is

d =
∑n

i=1

pi−p′i
2

, then uBJ(L) = uBJ(L
′) + d, where uBJ(L

′) = 3[n
2
] if all p′i are odd

(i.e., if all p′i are equal to 3), and otherwise uBJ(L
′) = n.

For every non-oriented knotK, we have two different orientations and two oriented
knots denoted by K ′ and K ′′.

Definition 0.4. A knot K is called invertible (or reversible) if oriented knots K ′ and
K ′′ are equivalent. Otherwise, it is called non-invertible.

The existence of non-invertible knots was shown by H. F. Trotter (1963), who
discovered non-invertible knot 7, 5, 3 and the whole family of non-invertible pretzel
knots (2p+ 1), (2q + 1), (2r + 1) (p �= q, p �= r, q �= r) (Fig. 12)6 Unlike in 1963, now
we know that almost all knots are non-invertible [28].

L. Kauffman and S. Lambropoulou proved that all oriented rational KLs are
invertible ( [43], Theorem 1.21). Hence, the first algebraic non-invertible knots appear
among pretzel knots.

Figure 12: Non-invertible pretzel knot 7, 5, 3.

No general technique is known for determining if a knot is invertible. The program
SnapPea [45] by J. Weeks (whose 2.0 version is also part ofKnotscape) and SnapPy [45]
by M. Culler and N. Dunfield compute knot symmetry group and detect non-invertible
knots. However, in the case of pretzel knots we can propose a simple geometrical
criterion [4].

Every pretzel knot p1, p2, . . . , pn (n � 3) can be drawn as a regular n-gon with
vertices denoting pk-tangles, called t-diagram. Vertices in a t-diagram are treated as
symmetric, and the mirror line contains at least one vertex.

Conjecture 0.1. A pretzel knot is non-invertible iff all pk (1 � k � n) are odd7 and
its t-diagram is not mirror-symmetric.

Knot 7, 5, 3 is the smallest pretzel knot without mirror-symmetrical t-diagram.
Hence, it is non-invertible. The Fig. 13 illustrates the Conjecture 0.2, where pret-
zel knots 3, 3, 3, 5, 7 and 3, 3, 5, 3, 7 are non-invertible, since their t-diagrams are not
mirror-symmetric, and the knot 3, 5, 5, 3, 7 is invertible.

6The proof of their non-invertibility can also be found in the book [27], (Theorem 11.11).
7According to Theorem 0.4, n must be an odd number.
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Figure 13: t-diagrams of non-invertible pretzel knots 3, 3, 3, 5, 7 and 3, 3, 5, 3, 7, and
invertible pretzel knot 3, 5, 5, 3, 7.

From arborescent PED-source links corresponding to n-prisms, we derived 12
generating links for n = 4, 32 for n = 5, 88 for n = 6, 204 for n = 7, 522 for n = 8,
and 1714 for n = 9. For n = 6 we derived 13 polyhedral links, for n = 8 their number
is 30, and for n = 10 we derived 78 polyhedral generating PED-links. Generating
links we distinguished by computing their minimal Dowker codes. Notice that among
the generating PED-links there are many mutant KLs that cannot be distinguished
by polynomial KL invariants.

The number of components of pretzel KLs is given by Theorem 04. In order to
compute the number of components of an arborescent PED-link we need to introduce
a type of tangle [4]. All tangles can be divided into three basic types: [0], [1], and [∞]
(Fig. 14a). In arborescent KLs we distinguish:

• standard tangles of the types [0] and [1] – single ”vertical” even and odd twists;

• tangles of the type [1] that consist from two parallel horizontal odd tangles.
Hence, they act as standard tangles of the type [1];

• two kinds of tangles of type [0]:

(i) tangles which consist from an odd an even horizontal twist. Hence, they act
as standard tangles of the type [0], and

(ii) tangles which consist of two even twists. They act as standard tangles of
the type [0], but add one more component. Hence, they are denoted by [0]1.

In order to compute the number of components of an arborescent PED-link, it
is sufficient to substitute tangles by their corresponding graphical type-symbols and
count the number of components of the obtained link. For example, type-symbol
[∞] [∞] [∞] [0]1 [0]1 [0]1 corresponds to the generating link 2, 2, 2, (2, 2), (2, 2), (2, 2),
so it has 6 components (Fig. 14b). The type-symbol [1] [1] [∞] [0] [0] [0] corresponds
to the generating link 3, 3, 2, (3, 2), (3, 2), (3, 2), so it is a knot (Fig. 14c). Naturally,
all KLs with a common generating link have the same number of components.

Besides pretzel KLs, probably the most interesting from the chemistry point of
view are links of the form (p1, p2) (p3, p4) obtained from a cube, and polyhedral links
of the form n∗p1.p2. . . . .pn obtained from n-prisms for even n � 6. They are given by
braid words Ap1bp2Ap3bp4 , and Ap1bp2 . . . Apn−1bpn , respectively.

Among all source PED-links only amphicheiral links are (2, 2) (2, 2) derived by
edge-bicoloring of 4-prism (i.e., a cube), and polyhedral links of the form n∗2.2. . . . .2
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Figure 14: (a) Types of tangles; (b) the number of components of the gen-
erating link 2, 2, 2, (2, 2), (2, 2), (2, 2) is 6; (c) the number of components of
3, 3, 2, (3, 2), (3, 2), (3, 2) is 1.

obtained from n-prisms for even n (n � 6). These source links generate infinite
families of amphicheiral PED-links. From the source link (2, 2) (2, 2) we obtain the
infinite family of amphicheiral links (p, q) (p, q), from 6∗2.2.2.2.2.2 two families of
amphicheiral KLs: 6∗p.q.r.r.q.p and 6∗p.q.r.p.q.r (Fig. 15a), from 8∗2.2.2.2.2.2.2.2 the
family 8∗p.q.r.s.s.r.q.p, from 10∗2.2.2.2.2.2.2.2.2.2 two families: 10∗p.q.r.s.t.t.s.r.q.p,
and 10∗p.q.r.s.t.p.q.r.s.t, etc.

According to [47], aKL with a single minimal diagram is amphicheiral iff its graph
G is self-dual. Since all polyhedral KLs derived from n-prisms by edge-doubling have
a single minimal diagram, we have the following theorem:

Theorem 0.6. From n-prisms by edge-doubling we derive exactly two kinds of am-
phicheiral polyhedral KLs of the following form:

• (2k)∗p1.p2 . . . .pk.pk . . . .p1 for every n = 2k (k � 3);

• (4k + 2)∗p1.p2 . . . .p2k+1.p1 . . . .p2k+1 for every n = 4k + 2 (k � 1).

The proof of this theorem is illustrated in the Fig. 15b, where multiple edges
of G are denoted by bold lines and numbers giving their multiplicity, and ears
are denoted by lines and indexes giving their lengths (numbers of line segments),
where indexes 1 are omitted. The first family of graphs corresponds to KLs of
the form (2k)∗p1.p2 . . . .pk.pk . . . p1 (Fig. 15c), and the other to KLs of the form
(4k + 2)∗p1.p2 . . . .p2k+1.p1.p2 . . . .p2k+1. It is easy to conclude that they are self-dual,
so the corresponding alternating KLs are amphicheiral. Among all graphs corre-
sponding to polyhedral KLs derived from n-prisms by edge doubling these are the
only self-dual graphs, so this completes the proof.

Definition 0.5. A rational tangle is called positive if its Conway symbol contains only
positive numbers. A tangle of the form t = r1, . . . , rn, where r1, . . ., rn (n � 2) are

-84-



Figure 15: (a) Amphicheiral knot 6∗4.4.3.2.2.3 and its graph; (b) amphicheiral knot
6∗4.3.2.4.3.2 and its graph; (c) graphs illustrating Theorem 0.6.

positive rational tangles and at least two of them are nontrivial8 is called Montesinos
tangle.

Let t denote the tangle t = rn, . . . , r1. Note that for every rational tangle r = r.
We propose the following conjecture:

Conjecture 0.2. Every knot of the form (4k + 2)∗t1.t2 . . . .t2k+1.t1.t2 . . . .t2k+1 or
(2k)∗t1.t2 . . . .tk.tk . . . t1, where ti (1 � i � k) are arbitrary rational or Montesinos
tangles, is amphicheiral.

Every tangle without additional components is of type [0], [1], or [∞]. KLs of the
form 6∗r1.r2.r3.r1.r2.r3 are knots iff the ordered triple of types of the tangles r1, r2, and
r3 is one of triples: ([0], [0], [1]), ([0], [0], [∞]), ([0], [1], [0]), ([0], [1], [∞]), ([0], [∞], [0]),
([0], [∞], [1]), ([1], [0], [0]), ([1], [0], [∞]), ([1], [∞], [0]), ([1], [∞], [∞]), ([∞], [0], [0]),
([∞], [0], [1]), ([∞], [1], [0]), ([∞], [1], [∞]), ([∞], [∞], [1]), or ([∞], [∞], [∞]). Oth-
erwise they are 3-component links. Among these 3-component links chiral are links
with the ordered triple of tangle types ([0], [∞], [∞]), ([1], [1], [∞]), ([∞], [0], [∞]),
([∞], [1], [1]), or ([∞], [∞], [0]). For the remaining 3-component links of this kind we
are not able to propose criteria for chirality.

KLs of the form 6∗r1.r2.r3.r3.r2.r1 are knots iff the ordered triple of types of
tangles r1, r2, and r3 belongs to: ([0], [0], [1]), ([0], [0], [∞]), ([0], [1], [0]), ([0], [1], [1]),
([0], [∞], [0]), ([0], [∞], [∞]), ([1], [0], [0]), ([1], [0], [∞]), ([1], [1], [0]), ([1], [1], [∞]), ([∞],
[0], [0]), ([∞], [0], [1]), ([∞], [1], [1]), ([∞], [1], [∞]), ([∞], [∞], [0]), or ([∞], [∞], [∞]),
chiral 2-component links if the triple of types is ([0], [1], [∞]), ([0], [∞], [1]), ([1], [∞], [0]),
([1], [∞], [∞]), ([∞], [1], [0]), or ([∞], [∞], [1]), and 3-component links otherwise. Among
the 3-component links, those with the triple of types ([∞], [0], [∞]) are chiral, and for
other 3-component links of this kind we are not able to propose criteria for chirality.

8Different from 1.

-85-



However, having a multi-component amphicheiral alternating generating link, we
are able to extend it to a multi-parameter family of amphicheiral links by pre-
serving its symmetry. For example, the 3-component amphicheiral generating link
6∗2 1 1 2.3.3.2 1 1 2.3.3 extends to the four-parameter family of 3-component amphichei-
ral links 6∗(2k1) 1 1 (2k2).(2k3 + 1).(2k4 + 1).(2k1) 1 1 (2k2).(2k3 + 1).(2k4 + 1).

An uniform amphicheiral knot, i.e., a knot with t1 = . . . = tn, can be obtained
from the basic polyhedron 6∗ by using a tangle of the type [∞] (Fig. 169), and from
8∗ or 10∗ by using a tangle of the type [1], or [∞].

Figure 16: (a) Uniform amphicheiral knot 6∗t.t.t.t.t.t with t = 2 1, 2; (b) uniform
amphicheiral knot 6∗t.t.t.t.t.t.

The family 6∗a1.a2.a3.a4.a5.a6 contains 13 generating KLs, given in the Table 4.4.

Table 4.2

1 6∗2.2.2.2.3.3 2 6∗2.2.3.2.2.3 3 6∗2.2.3.3.3.3 4 6∗2.3.2.3.3.3
5 6∗2.2.2.2.2.3 6 6∗2.2.2.3.3.3 7 6∗2.2.3.2.3.3 8 6∗2.3.2.3.2.3
9 6∗2.3.3.3.3.3 10 6∗2.2.2.2.2.2 11 6∗2.2.2.3.2.3 12 6∗2.3.3.2.3.3
13 6∗3.3.3.3.3.3

Generating KLs 1-4 are knots, 5-9 are 2-component links, and 10-13 are 3-
component links. Generating KLs 1, 2, 3, 10, 12, 13 are amphicheiral.

5.1. TUTTE POLYNOMIALS OF PED-LINK GRAPHS

The Tutte polynomial of pretzel KL graphs (Fig. 4) G2 = G2(a, b, c) with three
parameters is

T (G2(a, b, c)) =
xa+b+c + (xa+1 + xb+1 + xc+1)(y − 1)− (xa + xb + xc)y

(x− 1)2
+

(xy − x− y)(xy − x− y − 1)

(x− 1)2
.

General formulas for the Tutte polynomial of pretzel KL graphs (Fig. 17) with
an arbitrary number of parameters n > 3 can be obtained from the following relation

9Notice that knots from Fig. 16 cannot be distinguished by any polynomial invariant, but only
by their minimal Dowker codes.
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T (G(p1, . . . , pn)) =
xpn − 1

x− 1
T (G(p1, . . . , pn−1)) + T (G1(p1)) . . . T (G1(pn−1)).

Figure 17: Pretzel KL p1, p2, . . . , pn and its graph.

Figure 18: (a) Graph G(a, c, d); (b) graph G((a, b) (c, d)).

The general formula for the Tutte polynomial of the graphs G((a, b) (c, d)) [34],
corresponding to the link family (a, b) (c, d) (Fig. 18b) is

T (G((a, b) (c, d))) =
xb − 1

x− 1
T (G(a c d)) + (

xa − 1

x− 1
+ y − 1)(

yc+d − 1

y − 1
+ x− 1),

where T (G(a c d)) is given by the formula:

T (G(a c d)) =
xa − 1

x− 1
(
yc − 1

y − 1
+ x− 1)(

yd − 1

y − 1
+ x− 1) + (

yc+d − 1

y − 1
+ x− 1).

In order to derive the general formula for the Tutte polynomial corresponding to
the graphs G(6∗a1.a2.a3.a4.a5.a6) (Fig. 19a), we need the general formulas for the
Tutte polynomials of graphs G(a b c) (Fig. 19b), G(a b c d e) (Fig. 19c) given in [34],
and decorated graph G3 = G3(a1, a2, a3, a4, a5, a6) (Theorem 0.3 in [1]) (Fig. 19d).

The general formula for the Tutte polynomial of the graphs G(a b c) is
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Figure 19: (a) G(6∗a1.a2.a3.a4.a5.a6); (b) graph G(a b c); (c) graph G(a b c d e) and its
dual; (d) decorated graph G3 = G3(a1, a2, a3, a4, a5, a6); (e) graph G(6∗1.a2.1.a4.1.a6)
and its dual graph G3(1, a2, 1, a4, 1, a6).

T (G(a b c)) =
(x+ y)(xa − 1)(xc − 1)

(x− 1)2
+

yb(xc+1 + xa − x− 1)

(x− 1)

+
(xa − 1)(xc − 1)(yb − y2)

(x− 1)2(y − 1)
− (xc − y)yb,

and the general formula for the Tutte polynomial of the graphs G(a b c d e) is

T (G(a b c d e)) =
yb − 1

y − 1
T (G1(a))T (G(c d e)) + T (G((a+ c) d e)).

Theorem 0.7. The Tutte polynomial of the graph G = G(6∗a1.a2.a3.a4.a5.a6) is given
by the general formula:

T (G) = C1(x)T (G(a2 a3 a4 a5 a6) + C3(x)T (G(a2 1 a6 a5 a4))+

C5(x)T (G(a4 1 a2 1 a6)) + T (G3(1, a2, 1, a4, 1, a6)),

where

Ci(x) =
xai − x

x− 1
,

and by G is denoted dual of a graph G.
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Figure 20: Resolving graph G(6∗a1.a2.a3.a4.a5.a6).

The proof of Theorem is illustrated in Fig. 20, with the corresponding dual graphs
illustrated in Fig. 19.

6. CONCLUSION

In the paper [1] we proposed the universal model for analyzing different knotted
polyhedral structures relevant for chemistry. In this paper we applied this method for
the analysis of more complicated knotted polyhedral structures derived from 3- and
4-prismatic graphs as decorated graphs. The other construction – edge doubling, ap-
plied to prismatic graphs in order to obtain knotted structures resulted in derivation of
pretzel, arborescent and polyhedral KLs. Among them, the special attention is given
to the polyhedral KLs of the form 6∗a1.a2.a3.a4.a5.a6 and 8∗a1.a2.a3.a4.a5.a6.a7.a8
derived from 3-prisms and 4-prisms by edge doubling, especially because they are the
first families of knotted prismatic structures containing amphicheiral KLs. More-
over, the Jones polynomials of their corresponding alternating KLs are obtained by
change of variables in the Tutte polynomials, given by their general formulae. Invari-
ants for families of polyhedral KLs are obtained recursively from the computations
for source and generating links. ”Portraits of families” visualize distributions of zeros
of the Jones polynomials. Based on duality duality, the results obtained for decorated
prismatic graphs extend to the decorated bipyramid graphs.
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