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Abstract

Counting the number of RNA structures is an important combinatorial problem in

computational biology. In this paper, we enumerate the number of RNA structures for a

special case, in which any arbitrary number of base pairs are allowed in the given RNA

sequence. The only criteria considered in our model, is the minimum length condition

for hairpin loops, assumed to be 1. The asymptotic behavior and its relation with the

number of involutions are presented from the analytical and combinatorial points of view.

1. Introduction

The most important problem and the greatest challenge in bioinformatics deals with

deciphering the code transforming sequences of biopolymers (such as RNAs, Proteins, etc.)

into special molecular structures. A sequence can be visualized as a string of symbols,
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together with the environment, encodes the molecular structure of the biopolymer. Several

methods are available to predict the RNA secondary structure without pseudoknots [11,

14, 16, 21] or with some types of pseudoknots [1, 9, 13, 17]. Some of these models

are statistical models with roots in combinatorial problems. Although these models are

much simpler than the energy based models [5, 16] (dealing with the thermodynamical

parameters), they often provide exact analytical solutions about the structure and entropy.

For these reasons, the combinatorics of the biopolymers’ structures has been considered

extensively during the past 30 years [4].

Extensive theoretical analysis for the number of RNA secondary structures, their com-

plexity, and their composition, has been studied previously [4, 10, 15, 19, 20]. Based

on graph-theoritical properties of RNA structures, some enumeration and classification

methods have been presented [2, 3].

Also, the combinatorial aspects of RNA secondary structures have been studied in

detail by Waterman [20]. A recursive formula for the number of distinct RNA secondary

structures is obtained and the analytical results, as well as the asymptotic behavior about

this recursive formula are presented. For pseudoknotted RNA structure, the combinatorial

properties have been studied by Hofacker et al. [4]. Also a recursive formula for the number

of pseudoknotted RNA structures is presented.

Jin et al. developed a general framework based on generating functions for the asymp-

totic expansion of the number of k-noncrossing RNA structures [6, 7]. They have proved

that for an arbitrary k the expansions exist, and via transfer theorem of analytic combina-

torics, it is possible to obtain the asymptotic expression for coefficients of the generating

function. Asymptotic expansions for k = 2 and k = 3 were also presented.

In [12], the relation between the RNA secondary structures and the Feynman dia-

grams is made more explicit by formulating a matrix field theory model, whose Feynman

diagrams give exactly all the pseudoknotted RNA structures. By using this matrix model

formulation, Vernizzi et al. [18] enumerated the number of RNA contact structures for

the simple case of an RNA molecule with a flexible backbone, in which any arbitrary base

pairs are allowed.

In this paper, we present some analytical results about the number of RNA structures

for a sequence of length n. Then by using the combinatorial methods, we introduce a new
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way to enumerate the number of RNA structures and provide its asymptotic behavior.

The rest of this paper is organized as follows: In Section 2, we review the basic defini-

tions of RNA structures. Section 3 presents the methodology of counting the number of

different RNA structures and its recursive formula. The analytical results of the recursive

formula are presented in Section 4. In Section 5, the problem of counting the number of

RNA structures is studied from the combinatorial point of view and a new asymptotic

behavior is presented. Finally, the conclusions are presented in Section 6.

2. RNA Structure: Basic Definitions

An RNA molecule is a sequence of nucleotides of four possible types, denoted by the

letters A, C, G, and U (stand for Adenine, Cytosine, Guanine, and Uracil, respectively),

connected by a backbone which is called RNA Primary Structure. For an RNA molecule

of length n, we index the nucleotides from 1 to n, starting from left (5′− end). Two

nucleotides that are connected via hydrogen bonds are called a base pair. There are two

kinds of base pairing, Watson-Crick and Wobble. In the Watson-Crick base pairing, A

always forms a base pair with U , as does G with C, and vice versa. In the Wobble base

pairing, G can form a base pair with U as well as U with G. We write i.j if the nucleotide

with index i is paired with the nucleotide with index j (i < j). For an RNA sequence of

length n, its structure is a set S of base pairs i.j with 1 ≤ i < j ≤ n, such that for all

i1.j1, i2.j2 ∈ S we have i1 = i2 if and only if j1 = j2 (each base can take part in at most

one base pairing). The set S is called pseudoknot-free structure if for all i1.j1, i2.j2 ∈ S

they are either nested (i1 < i2 < j2 < j1) or disjoint (i1 < j1 < i2 < j2). In many

situations these conditions allow us to first handle one base pair and then the other one

(if they are nested) or handle them independently (if they are disjoint). Two base pairs

i1.j1, i2.j2 ∈ S form a pseudoknot if i1 < i2 < j1 < j2 and S is called pseudoknotted

structure if it contains at least two base pairs which form pseudoknot. The difficulty

behind the pseudoknotted structures is that in many situations we can not handle its

base pairs separately and we should consider them all together. Therefore, dealing with

pseudoknotted structures is much more difficult than the pseudoknot-free structures.

In the rest of this paper, an RNA sequence of length n is assumed to be a sequence of

n points (1 − 2 − · · · − n), where each point i is connected to the points i − 1 and i + 1
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(1 < i < n). A point i is called unpaired if it is not connected to any points other than

i − 1 and i + 1. A point i is paired if there exists just one point j, other than i − 1 and

i+ 1, in which i and j make a base pair.

3. A Recursion Formula for the Number of RNA

Structures

Suppose that P (n) denotes the number of RNA structures for a given RNA sequence of

length n. In order to formulate the P (n), two different situations should be considered.

First, suppose that the last point (nth point) does not make any base pair. In this

situation, there are exactly P (n − 1) different structures. In second situation, suppose

that the last point makes a base pair with another point k, where 1 ≤ k ≤ n − 2. By

removing the points labeled n and k from the sequence, there are P (n − 2) different

structures for the remaining n − 2 points. In this situation the points k − 1 and k + 1

become neighbors and in our formalism, they can not make a base pair. Therefore, some

extra structures corresponding to the case where the point k−1 make a base pair with the

point k + 1 should be considered separately. By extending this formalism, again for the

situation when the point k−2 and k+2 make a base pair should be considered separately,

and so on. The schematic representation of our formalism is shown in figure 1. The solid

arcs in the figure show the base pairings between two end points and the dashed arcs

show the situation in which we do not know whether or not there is any base paring.

1 n 1 nn-1 1 n

1 n 1 n

n-1

n-1 n-1

k

k k

= +

+ + + +...

1 nn-1k

Figure 1: Schematic computation of P (n) .

-402-



By summarizing the above discussion, the following formula is obtained:

P (n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if n < 0,
1 if 0 ≤ n ≤ 2,
2 if n = 3,

P (n− 1) +
n−2∑

k=1

⎛

⎝
min(k−1,n−k−1)∑

t=0

P (n− 2t− 2)

⎞

⎠ otherwise.

(1)

By using the elementary calculus, this formula is simplified and for n ≥ 4 a nice recursive

formula is obtained as follows:

P (n) = P (n− 1) + (n− 2)P (n− 2) +
n−2∑

k=2

⎛

⎝
min(k−1,n−k−1)∑

t=1

P (n− 2t− 2)

⎞

⎠

= P (n− 1) + (n− 2)P (n− 2) +
n−3∑

k=1

⎛

⎝
min(k,n−k−2)∑

t=1

P (n− 2t− 2)

⎞

⎠

= P (n− 1) + (n− 2)P (n− 2) +
n−3∑

k=1

⎛

⎝
min(k−1,n−k−3)∑

t=0

P (n− 2t− 4)

⎞

⎠

= P (n− 1) + (n− 2)P (n− 2) + P (n− 4) +
n−4∑

k=1

⎛

⎝
min(k−1,n−k−3)∑

t=0

P (n− 2t− 4)

⎞

⎠

= P (n− 1) + (n− 2)P (n− 2) + P (n− 4) + P (n− 2)− P (n− 3)

= P (n− 1) + (n− 1)P (n− 2)− P (n− 3) + P (n− 4). (2)

In the next section, the analytical results of formula (2) are discussed. In table 1, the

number of different RNA structures for sequences of length n (1 ≤ n ≤ 20) are presented.

Table 1: The number of different RNA structures.
n P (n) n P (n) n P (n) n P (n)

1 1 6 37 11 16526 16 20732609
2 1 7 112 12 64351 17 94607409
3 2 8 363 13 259471 18 443476993
4 5 9 1235 14 1083935 19 2130346450
5 13 10 4427 15 4668704 20 10482534517

4. Analytical Results

In this section, we first present some properties of the recursive formula (2) and then we

show that I(n)/P (n) remains bounded for sufficiently large n, where I(n) is the number
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of involutions on a set of size n. An involution on a set S is a permutation π : S �→ S such

that for each s ∈ S, π2(s) = s. From [8], it is well known that the asymptotic behavior

of I(n) is approximated by the following formula:

1√
2
n

n
2 e(

−n
2

+
√
n− 1

4
).

First of all, we present two lemmas without proof to indicate that P (n) is a positive and

strictly increasing function.

Lemma 1. P (n) > 0, for each n ≥ 0.

Lemma 2. P (n) > P (n− 1), for each n ≥ 3.

Moreover, the following stronger statement indicates that the increasing rate of P (n)

is at least exponential.

Lemma 3. P (n) ≥
n−1∑

i=1

P (i), for each n ≥ 4.

Proof. (The proof is based on induction) It is easy to verify that P (4) ≥ P (1) + P (2) +

P (3), so the statement is true for n = 4. Now, suppose that the statement is true for

each number k, where 4 ≤ k < n. We show that the statement is also true for n. From

the formula (2) and previous lemmas, the term P (n− 2)−P (n− 3) +P (n− 4) is always

positive and we have the following inequality:

P (n) = P (n− 1) + (n− 1)P (n− 2)− P (n− 3) + P (n− 4)

≥ P (n− 1) + (n− 2)P (n− 2). (3)

Since (n− 2)P (n− 2) ≥ 2P (n− 2) (for each n ≥ 4), we can write (3) as follows:

P (n) ≥ P (n− 1) + 2P (n− 2) (4)

Now, from the induction hypothesis, the inequality (4) becomes as follows:

P (n) ≥ P (n− 1) + P (n− 2) +

n−3∑

i=1

P (i)

≥
n−1∑

i=1

P (i).
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The number of involutions on a set S of size n is given by the recursive formula

I(n) = I(n− 1) + (n− 1)I(n− 2) [8]. The term −P (n− 3) +P (n− 4) is always negative

(see Lemma 2), which implies that I(n) > P (n) and so I(n)/P (n) > 1. Now, we show

that I(n)/P (n) has an upper bound. To do this, we need the following lemmas.

Lemma 4. For n ≥ 1 we have

4
(
n1/4 − (n− 1)1/4

)
≤ 1

(n− 1)3/4
.

Proof. From the elementary calculus, we can write the following equivalencies:

4
(
n1/4 − (n− 1)1/4

)
≤ 1

(n− 1)3/4

⇐⇒

4n1/4(n− 1)1/4 ≤ 4n− 3

⇐⇒

443n2 − 44n ≤ 64232n2 − 434n+ 34

⇐⇒

13056n2 + 148n+ 81 ≥ 0

, where the last inequality is always correct for n ≥ 1.

Lemma 5. For n ≥ 1 we have

2
(
n1/4 − (n− 2)1/4

)
≤ 1

(n− 2)3/4
.

Proof. Using the same calculation performed in the proof of Lemma 4, we can do as

follows:

2
(
n1/4 − (n− 2)1/4

)
≤ 1

(n− 2)3/4

⇐⇒

2n1/4(n− 2)1/4 ≤ 2n− 3

⇐⇒

263n2 − 27n ≤ 2333n2 − 234n+ 34

⇐⇒

24n2 − 34n+ 81 ≥ 0.

Again, the last inequality is always correct for n ≥ 1.
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Lemma 6. P (n) ≥ 2n1/4P (n− 1), for each n ≥ 10.

Proof. (The proof is based on induction) For n = 10 the statement is true (it is easy to

check). Now, suppose that the statement is true for n − 1 and n − 2. We show that

the statement is true for n. By removing the positive term P (n − 4) from the recursive

formula (2), the following inequality is obtained:

P (n) ≥ P (n− 1) + (n− 1)P (n− 2)− P (n− 3) (5)

By replacing n by n− 1 in the recursive formula of P (n), the following recursive formula

is obtained for P (n− 1):

P (n− 1) = P (n− 2) + (n− 2)P (n− 3)− P (n− 4) + P (n− 5)

Now by removing the negative term −P (n − 4) + P (n − 5) from the recursive formula

of P (n− 1) and multiplying the obtained inequality by 2n1/4, the following inequality is

produced:

2n1/4P (n− 2) + 2n1/4(n− 2)P (n− 3) ≥ 2n1/4P (n− 1) (6)

By combining (5) and (6), it is sufficient to prove:

P (n− 1) + (n− 1)P (n− 2)− P (n− 3) ≥ 2n1/4P (n− 2) + 2n1/4(n− 2)P (n− 3) (7)

Now, from the induction hypothesis we have:

P (n− 1) ≥ 2(n− 1)1/4P (n− 2) (8)

and

(n− 2)P (n− 2) ≥ 2(n− 2)(n− 2)1/4P (n− 3) (9)

(where the term n − 2 is multiplied in both sides of the last inequality). By adding

inequalities (8), (9) and the following inequality

P (n− 2)− P (n− 3) ≥ P (n− 2)− P (n− 3)

we obtain the following inequality:

P (n− 1) + (n− 1)P (n− 2)− P (n− 3) ≥ 2(n− 1)1/4P (n− 2) + P (n− 2)

+2(n− 2)(n− 2)1/4P (n− 3)

−P (n− 3). (10)
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Now, in order to prove (7), it is sufficient to prove that the right side of (10) is greater

than or equal to the right side of (7), where the simplified inequality can be written as

follows:

P (n− 2) ≥ 2
[
n1/4 − (n− 1)1/4

]
P (n− 2)

+2
[
(n− 2)n1/4 − (n− 2)(n− 2)1/4

]
P (n− 3) + P (n− 3). (11)

Instead, by using the Lemmas 4 and 5, the inequality (11) becomes correct if the following

inequality holds:

P (n− 2) ≥ P (n− 2)

2(n− 1)3/4
+ (n− 2)

P (n− 3)

(n− 2)3/4
+ P (n− 3). (12)

The inequality (12) is equivalence with the following series of inequalities:
[
1− 1

2(n− 1)3/4

]
P (n− 2) ≥ (n− 2)1/4P (n− 3) + P (n− 3)

⇐⇒

2

[
1− 1

2(n− 1)3/4

]
(n− 2)1/4P (n− 3) ≥ (n− 2)1/4P (n− 3) + P (n− 3)

⇐⇒

2

[
1− 1

2(n− 1)3/4

]
(n− 2)1/4 ≥ (n− 2)1/4 + 1

⇐⇒[
1− 1

(n− 1)3/4

]
(n− 2)1/4 ≥ 1,

where the last one is satisfied for any n ≥ 7 and this completes the proof.

Previously, we proved that I(n)/P (n) > 1, for any n ≥ 3. Now, we present the main

theorem for the upper bound of I(n)/P (n).

Theorem 1. There exists a constant number M > 1 and a positive integer N , such that

I(n)/P (n) ≤ M , for each n ≥ N .

Proof. Recall from [8] that the number of involutions on a set of size n is expressed by

I(n) = I(n − 1) + (n − 1)I(n − 2). Suppose that R(n) denotes the fraction I(n)/P (n).

We can write R(n) as follows:

R(n) =
I(n)

P (n)
+

I(n)

P (n− 1) + (n− 1)P (n− 2)
− I(n)

P (n− 1) + (n− 1)P (n− 2)

=
I(n− 1) + (n− 1)I(n− 2)

P (n− 1) + (n− 1)P (n− 2)
+

I(n)

P (n)

(
P (n− 3)− P (n− 4)

P (n− 1) + (n− 1)P (n− 2)

)
.
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Now, suppose that S(n) denotes the following fraction:

I(n− 1) + (n− 1)I(n− 2)

P (n− 1) + (n− 1)P (n− 2)
.

Since R(n − 1) = I(n − 1)/P (n − 1) and R(n − 2) = I(n − 2)/P (n − 2), therefore from

the elementary calculus we can drive that S(n) is placed between R(n− 1) and R(n− 2),

i.e. S(n) ≤ max{R(n− 1), R(n− 2)}. So we have:

R(n) = S(n) +
I(n)

P (n)

(
P (n− 3)− P (n− 4)

P (n− 1) + (n− 1)P (n− 2)

)

= S(n) +R(n)

(
P (n− 3)− P (n− 4)

P (n− 1) + (n− 1)P (n− 2)

)

≤ S(n) +R(n)

(
P (n− 3)

(n− 1)P (n− 2)

)

≤ S(n) +R(n)

(
1

(n− 1)(n− 2)1/4

)

≤ S(n)

(
1− 1

(n− 1)(n− 2)1/4

)−1

≤ max{R(n− 1), R(n− 2)}
(
1− 1

(n− 1)(n− 2)1/4

)−1

. (13)

From the elementary calculus, we know that there exists a positive integer N such that

for each i ≥ N the following inequality is correct:

(
1− 1

(i− 1)(i− 2)1/4

)−1

≤
(
1 +

2

(i− 1)(i− 2)1/4

)
. (14)

From this inequality we have:

∞∏

i=N

(
1− 1

(i− 1)(i− 2)1/4

)−1

≤
∞∏

i=N

(
1 +

2

(i− 1)(i− 2)1/4

)
. (15)

The right side of (15) converges to a number, say M0. So we can write:

R(n) ≤ max{R(N − 1), R(N − 2)}
∞∏

i=N

(
1− 1

(n− 1)(n− 2)1/4

)−1

≤ M0 ×max{R(N − 1), R(N − 2)}. (16)

Therefore the theorem is correct if we let M = M0 ×max{R(N − 1), R(N − 2)}, where
M is a constant number.
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5. Combinatorics

Another way for counting the number of RNA structures is by using the combinatorial

properties of this problem and the principle if inclusion-exclusion. To do this, let Ir(n)

denotes the number of involutions on a set of n points in which at least r points among

n are mapped to their immediate next point (see Figure 5.). To compute Ir(n), we can

choose r points among n− r and then insert r extra points right after the selected points

without taking care about the other ones. By this formalism, we have the following

formula for Ir(n):

Ir(n) =

(
n− r

r

)
I(n− 2r), (17)

where I(n) denotes the number of involutions. In the RNA structure, no point is allowed

to make a base pair with its immediate next point, i. e. the number of RNA structures

is exactly the number of involutions in which no point is mapped to its immediate next

point. By using the inclusion-exclusion principle, the following formula is obtained for

the number of RNA structures:

P (n) = I0(n)− I1(n) + I2(n) · · ·+ (−1)�
n
2
�I�n

2
�(n)

=

�n
2
�∑

i=0

(−1)iIi(n)

=

�n
2
�∑

i=0

(−1)i
(
n− i

i

)
I(n− 2i). (18)

The following theorem indicates that the leading term of the serie (18), i.e. I0(n), can be

considered as an asymptotic behavior for P (n) (It should be noted that I0(n) = I(n)).

i1 i2 ir1 n− r

i1 i2 ir1 n

· · ·

· · ·

Figure 2: Schematic representation of Ir(n), where the circular points are inserted right
after the selected points.
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Theorem 2. For any large value of n, I0(n)/3 ≤ P (n) ≤ I0(n)/2.

Proof. By using the induction, it is easy to show that Ii+1(n) ≤ Ii(n) (0 ≤ i ≤ �n/2�).
To show that I0(n)/3 ≤ P (n) we do as follows:

I0(n)

I2(n)
=

(
n
0

)
I(n)(

n−2

2

)
I(n− 4)

=
2n

n
2 e(

−n
2

+
√
n− 1

4
)

(n− 2)(n− 3)(n− 4)
n−4
2 e(

−n−4
2

+
√
n−4− 1

4
)

=
2( n

n−4
)(

n−4
2

)n2e(
√
n−√

n−4−2)

(n− 2)(n− 3)
=

2e2n2e−2

(n− 2)(n− 3)
� 2. (19)

By performing the same computation, it is easy to show that I0(n)/I1(n) � 1 and

I2(n)/I3(n) � 3. Therefore we have:

P (n) =

�n
2
�∑

i=0

(−1)iIi(n)

≥ I0(n)− I1(n) + I2(n)− I3(n)

≥ 2

3
I2(n) =

1

3
I0(n). (20)

On the other hand, we have:

P (n) =

�n
2
�∑

i=0

(−1)iIi(n)

≤ I0(n)− I1(n) + I2(n) �
1

2
I0(n). (21)

The proof is completed by combining the inequalities (20) and (21).

Since the number of RNA structures grows exponentially, the logarithmic behavior

of its growing rate with respect to the boundaries given in the theorem 2 is represented

in Figure 3. By looking to this figure, we then conjectured that P (n) = I(n)/e as it is

proved in the following theorem.

Theorem 3. For any large value of n, P (n) � I(n)/e.

Proof. By using the induction, it is easy to show that Ii+1(n) ≤ Ii(n) (0 ≤ i < �n/2�).
To prove the theorem, we have:

P (n) =

�n
2
�∑

i=0

(−1)iIi(n)

= I0(n)

�n
2
�∑

i=0

(−1)i
Ii(n)

I0(n)
. (22)
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Figure 3: Logarithmic behavior of P (n) with respect to its boundary functions.

Suppose that Sn =
∑�n/2�

i=0
(−1)i(Ii(n)/I0(n). Since Ii+1(n)/I0(n) < Ii(n)/I0(n) and

limn→∞ Ii(n)/I0(n) = 0, so Sn is a convergence serie. Now it is sufficient to show that

limn→∞ Sn = 1/e. By using the asymptotic formula of I(n) we have:

lim
n→∞

I1(n)

I0(n)
= lim

n→∞

(
n−1

1

)
I(n− 2)

I0(n)

� lim
n→∞

1√
2
(n− 1)(n− 2)

n−2
2 e(−

n−2
2

+
√
n−2− 1

4
)

1√
2
n

n
2 e(−

n
2
+
√
n− 1

4
)

� lim
n→∞

(n− 1)(n− 2)
n
2
−1e(1+

√
n−2)

n
n
2 e

√
n

� lim
n→∞

(n− 2)
n
2 e1

n
n
2

� 1. (23)

By performing the similar calculations, we can show that:

lim
n→∞

I2(n)

I0(n)
= lim

n→∞

(
n−2

2

)
I(n− 4)

I0(n)

� lim
n→∞

1

2!

(n− 2)(n− 3)(n− 4)
n
2
−2e(2+

√
n−4)

n
n
2 e

√
n

� lim
n→∞

1

2!

(n− 4)
n
2 e2

n
n
2

� 1

2!
. (24)

And in general, we have limn→∞ Ii(n)/I0(n) = 1/i!. By using these results, the proof is
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completed as follows:

lim
n→∞

Sn =
∞∑

i=0

(−1)i
Ii(n)

I0(n)

�
∞∑

i=0

(−1)i

i!

� 1

e
. (25)

6. Conclusions

In this paper we have discussed about enumerating the number of RNA structures for

a sequence of length n. Some properties of the presented recursive formula (2) are in-

troduced and proved. Also the relation between the number of RNA structures for a

sequence of length n and the number of involutions for a set of size n is discussed. The

only criteria considered for the RNA structures was that the loops should contain at least

one base. Perhaps one of the interesting problems in this area is how to determine the

number of RNA structures for a sequence of length n such that each loop has at least l

bases and each stem has at least h base pairs.

References

[1] T. Akutsu, Dynamic programming algorithms for RNA secondary structure predic-

tion with pseudoknots, Discr. Appl. Math. 104 (2000) 45–62.

[2] H. Gan, S. Pasquali, T. Schlick, Exploring the repertoire of RNA secondary motifs

using graph theory; implications for rna design, Nucleic Acids Res. 31 (2003) 2926–

2943.

[3] C. Haslinger, P. Stadler, RNA structures with pseudo-knots: Graph-theoretical,

combinatorial and statistical properties, Bull. Math. Biol. 61 (1999) 437–467.

[4] I. Hofacker, P. Schuster, P. Stadler, Combinatorics of RNA secondary structures,

Discr. Appl. Math. 88 (1998) 207–237.

-412-



[5] H. Isambert, E. Siggia, Modeling RNA folding paths with pseudoknots: Application

to hepatitis delta virus ribozyme, Proc. Natl. Acad. Sci. USA 97 (2000) 6515–6520.

[6] E. Y. Jin, J. Qin, C. M. Reidys, Combinatorics of RNA structures with pseudoknots,

Bull. Math. Biol. 70 (2008) 45–67.

[7] E. Y. Jin, C. M. Reidys, Asymptotic enumeration of RNA structures with pseudo-

knots, Bull. Math. Biol. 70 (2008) 951–970.

[8] D. E. Knuth, The Art of Computer Programming: Sorting and Searching , Vol. 3,

Addison–Wesley Longman, Amsterdam, 1998.

[9] R. B. Lyngso, C. N. Pedersen, RNA pseudoknot prediction in energy based models,

J. Comput. Biol. 7 (2000) 409–428.

[10] M. Nebel, Combinatorial properties of RNA secondary structures, J. Comput. Biol.

9 (2002) 541–573.

[11] R. Nussinov, G. Pieczenik, J. Griggs, D. Kleitman, Algorithms for loop matchings,

SIAM J. Appl. Math. 35 (1978) 68–82.

[12] H. Orland, A. Zee, RNA folding and large n matrix theory, Nucl. Phys. B. 620

(2002) 456–476.

[13] E. Rivas, S. Eddy, A dynamic programming algorithm for RNA structure prediction

including pseudoknots, J. Mol. Biol. 285 (1999) 2053–2068.

[14] G. Studnicka, G. Rahn, I. Cummings, W. Salser, Computer method for predicting the

secondary structure of single-stranded RNA, Nucleic Acids Res. 5 (1978) 3365–3387.

[15] M. Tacker, P. Stadler, E. Bornberg-Bauer, I. Hofacker, P. Schuster, Algorithm in-

dependent properties of RNA secondary structure prediction, Eur. Biophys. J. 25

(1996) 115–130.

[16] I. J. Tinoco, O. Uhlenbeck, M. Levine, Estimation of secondary structure in ribonu-

cleic acids, Nature 230 (1971) 362–367.

[17] Y. Uemura, A. Hasegawa, S. Kobayashi, T. Yokomori, Tree adjoining grammars for

RNA structure prediction, Theor. Comput. Sci. 210 (1999) 277–303.

-413-



[18] G. Vernizzi, H. Orland, A. Zee, Enumeration of RNA structures by matrix models,

Phys. Rev. Lett. 94 (2005) 168103.

[19] G. Viennot, M. Vauchaussade de Chaumont, Enumeration of RNA secondary struc-

tures by complexity, Lect. Notes Biomath. 57 (1985) 360–365.

[20] M. S. Waterman, Secondary structure of single-stranded nucleic acids, in: Studies

on Foundations and Combinatorics , Vol. 1, Academic Press, New York, 1978, pp.

167–212.

[21] M. Zuker, P. Stiegler, Optimal computer folding of large RNA sequences using

thermodynamics and auxiliary information, Nucleic Acids Res. 9 (1981) 133–148.

-414-


