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Abstract

Recently, in the book [A Combinatorial Approach to Matrix Theory and Its
Applications, CRC Press (2009)] the authors proposed a combinatorial approach
to matrix theory by means of graph theory. In fact, if A is a square matrix over
any field, then it is possible to associate to A a weighted digraph GA, called Coates
digraph. Through GA (hence by graph theory) it is possible to express and prove
results given for the matrix theory. In this paper we express the permanental
polynomial of any matrix A in terms of permanental polynomials of some digraphs
related to GA.

1 Introduction

Let A = (ai,j) be a square matrix of order n (over any field). The permanent of A is

defined as

per(A) =
∑

σ∈Sn

n∏

i=1

ai σ(i),

where Sn denotes the symmetric group over n elements. In general, permanents have im-

portant combinatorial meaning, in particular the permanents of (0, 1) matrices enumerate

matchings in bipartite graphs (see, for example [16]). Permanents also have applications

in physics of interacting Bose particles [25]. A brief but concise introduction into prop-

erties of permanents can be found, for example, in [20]. If we consider the characteristic
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matrix of A, that is xI − A, then per(xI − A) = π(A, x) is the permanental polynomial

of A. Besides the permanental polynomial of A, we will consider also the characteris-

tic polynomial φ(A, x) = det(xI − A), which depends on the more common notion of

determinant.

If A is a symmetric {0, 1}-matrix then A can be interpreted as the adjacency matrix of

a simple graph, and such a graph can eventually represent the skeleton of a hydrocarbon

molecule in the, so called, Chemical Graph Theory. Permanental polynomial is one of

the graph polynomials mostly considered in chemical graph theory. However, it is hard

to be computed and due to the latter reason, the literature on permanental polynomial

is far less than that on matching and characteristic polynomials. In fact, permanental

polynomials were initially studied only for smaller fullerenes (see [6, 7]). Later, more

attention has been paid to this problem [8–12,18,21, 26].

Here, following the papers [1,2], we give some formulas which express the permanental

polynomial of any square matrix (over any field) in terms of the permanental polynomial

of weighted digraphs. Before doing the latter we need to introduce some mathematical

definitions and notations.

Let G = (VG,AG) be a digraph with vertex set VG = {v1, v2, . . . , vn} and arc set

AG = {a1, a2, . . . , am}. Recall, if a ∈ AG is an arc then a = −→uv for some vertices

u, v ∈ VG; we also assume that it is oriented from u to v. Usually, an arc −→vv, whose
end-vertices coincide, is called a loop (for loops the orientation is unimportant). We say

that G is a weighted digraph, if to each edge is assigned a scalar in some field K. Let

WG ⊂ K be the set of arc weights of G (here K is any field). The function ωG : AG → WG

is the weight function of G. Usually, we assume that an arc a with zero weight does

not belong to AG, or equivalently, that a non-arc a belongs to AG but with zero weight;

so AG can be naturally reduced, or extended if necessary. It is also clear that to each

weighted digraph there corresponds a weight function, and vice versa. If WG consists of

nonnegative integers then G is called a multi-digraph (then each arc of weight k can be

substituted with k parallel arcs with weight one); in particular, if WG = {0, 1} then G is

a digraph.

Coates in [13] (see also [5]) defined a bijection between matrices and weighted digraphs.

Indeed consider the n× n matrix A = (aij) (over a field K), then the Coates digraph GA

is a weighted digraph defined as follows (cf. also Fig. 1):

• the vertex set of GA is equal to {1, 2, . . . , n}, where the i-th vertex (1 ≤ i ≤ n)
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corresponds to the i-th row (or equivalently, to the i-th column) of A;

• the arc set of GA consists of all arcs of the form
−→
ij with weight aij (1 ≤ i, j ≤ n);

for i = j the corresponding arc is a loop. If the weight of some arc is zero, then it

can be ignored (as already noted).

A =

⎡

⎢⎢⎣

1 −1 0 2
1 −1 −1 0
2 0 2 −1
−1 0 0 0

⎤

⎥⎥⎦

1 2

34

-1

2

1

-12

-1

-1

1 -1

2
Fig. 1: A matrix A and its corresponding Coates digraph GA.

On the other hand, to a weighted digraph G, we can associate the adjacency (or

weight) matrix of G, that is the n × n matrix A = AG = (aij), where aij = ωG(
−−→vivj) if

−−→vivj ∈ AG, and aij = 0 otherwise. Clearly, given a weighted digraph G, if A = AG is its

adjacency matrix then G = GA. Conversely, given a matrix A, if G = GA then A = AG.

So, weighted digraphs and square matrices can be considered as same objects, and this

will be used later interchangeably. Similarly, we will consider π(G, x) and φ(G, x), namely

the permanental polynomial and the characteristic polynomial of G, respectively, as those

of its adjacency matrix A = AG.

If A is symmetric then the arcs −→uv,−→vu ∈ AG have the same weights and represent the

edge e = uv of G with common weight. Then, instead of the arc set, we can consider the

edge set of G denoted by EG = {e1, e2, . . . , em}, and G becomes a (weighted) graph, or

a multi-graph if the weights are (nonnegative) integers; in addition, G is a simple graph

if it has no multiple edges, nor loops. Then we write u ∼ v to indicate that vertices

u and v are adjacent. Finally, note that each weighted graph can be interpreted as a

weighted digraph obtained by substituting each edge by two parallel arcs with opposite

directions, and weights equal to the weight of the corresponding edge. In what follows we

shall suppress graph names in our notation if it is understood from the context.

IfX is a subset of the vertex set ofG, then G−X denotes the weighted digraph induced

by the vertex set V \X. If X = {v} then we abbreviate the latter to G− v. Similarly, if

Y is a subset of the arc (or edge) set of G, then G− Y denotes the spanning subgraph of
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G whose arc (edge) set is equal to A\Y (resp. E \Y ). If Y = {a} (Y = {e}) then we use

G− a (resp. G− e) instead. This notation is naturally extended if two or more vertices,

or arcs, or edges are deleted from G. Needless to say, in all these situations the weight

functions are the restrictions of the original ones. Given two vertex disjoint weighted

(di)graphs G and H, we denote by G∪̇H their disjoint union (then, their vertex sets, and

also arc (or edge) sets, are joined together, and weight functions naturally combined).

Now, we state the Coates permanent formula of any square matrix A. In order to do

that, we first need to introduce factors of GA. They are defined as follows:

a factor of GA is a spanning (weighted) sub-digraph whose all vertices have in-

degrees and out-degrees equal to 1; so it is a disjoint union of (weighted) directed

cycles. The set of all factors of GA, i.e. its factor space, is denoted by FGA
(or

by FG, or FA).

If F ∈ FA then c(F ) is a number of components (i.e. cycles) of F , whereas ωG(F ) is

the weight of F , equal to the product of weights of all arcs of F . More generally, if H is

any weighted sub-digraph of G then ωG(H) (= ωA(H)) is a product of weights of its arcs

(or edges for sub-graphs).

We are now in position to introduce the Coates permament formula, which is a simple

variant of the Coates determinant formula (see [13], or [5] p. 65). It reads:

per(A) =
∑

F∈FA

ω(F ). (1)

Note that the determinat variant of the above formula is

det(A) = (−1)n
∑

F∈FA

(−1)c(F )ω(F ).

In [1, 2], the authors made use of the latter formula (i.e. in the determinant variant) to

obtain the characteristic polynomial of any matrix in terms of some weighted digraphs.

In this paper, by making use of (1) we will essentially give the same formulas reported

in [2] but in the, permanent variant. Clearly proofs are almost the same, so we will omit

most of them and we refer the readers to read [2] in order to reproduce the proofs in its

permanent variant. For all other notation, or definitions not given here, see [19] or [14,15]

for graph spectra.

This paper has three main goals. First, to promote a combinatorial approach to linear

algebra in the spirit of the book [5], which just recently appeared. Secondly, to extend
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some formulas related to permanental polynomials in the spectral graph theory [3] to

weighted graphs and/or digraphs (with natural interpretation to matrices). Thirdly, the

formulas given here can be of some help in the problem of computing the permanental

polynomial of matrices. Indeed, in strong contrast to determinants, Valiant in [24] showed

that computing permanents is a #P -complete problem for {0, 1}-matrices. Due to the

latter reason, a considerable effort was spent by several authors on developing various

approximation methods (see, for example, [17] and references therein).

The rest of the paper is organized as follows: in Section 2 we will report the formulas

obtained in [2] for the determinant variant; in Section 3 we give the formulas reported in

Section 2 in their permanent variant; in Section 4 we give some examples for the formulas

obtained in this paper.

2 Determinant variant

There are several formulas which express the permanental polynomial of a simple graph

in terms of the permanental polynomial of its subgraphs. These formulas are mostly due

to Borowiecki et al. [3, 4]. In the latter papers the authors considered the proofs of the

corresponding determinant variant (based on the Coefficient Theorem of Sachs, see [14]

for example). We will follow the same strategy but instead of Sachs’ formula, we will rely

on the Coates formula (1). We now report the determinant variant of the formulas that

will be next given in the permanental variant. All these formulas are proved in [2].

The following formulas have been given by Schwenk in [23] in their simplest variant,

i.e. for simple graphs. So we say that they are Schwenk-like formulas (cf. Section 3 in [2]).

To keep formulas shorter, we omit the variable if its presence is clear from the context.

Theorem 2.1. Let A be any square matrix, and let G (= GA) be its Coates digraph. If

v is a fixed vertex of G then

φ(G) = (x− avv)φ(G− v)−
∑

−→
C∈Cv

ωA(
−→
C )φ(G− V(−→C )),

where Cv is the set of directed cycles of G of length ≥ 2 passing through v, while ωA(
−→
C ) =

∏
−→
ij∈A(

−→
C )

aij.
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Theorem 2.2. Let A be any square matrix, and let G (= GA) be its Coates digraph. If

−→uv (u 	= v) is a fixed arc of G then

φ(G) = φ(G−−→uv)− (auvavu)φ(G− u− v)−
∑

−→
C∈C−→uv

ωA(
−→
C )φ(G− V(−→C )),

where C−→uv is the set of all directed cycles of G of length ≥ 3 passing through −→uv, while
ωA(

−→
C ) =

∏
−→
ij∈A(

−→
C )

aij.

The above formulas have an easier expression in the case that matrix A is symmetric.

Theorem 2.3. Let A be any symmetric matrix, and let G (= GA) be its Coates digraph.

If v is a fixed vertex of G then

φ(G) = (x− avv)φ(G− v)−
∑

u�=v

a2uvφ(G− u− v)− 2
∑

C∈Cv
ωA(C)φ(G− V(C)),

where Cv is a set of all undirected cycles of G of length ≥ 3 passing through v, while

ωA(C) =
∏

ij∈E(C)
aij.

Theorem 2.4. Let A be any symmetric matrix, and let G (= GA) be its Coates digraph.

If uv (u 	= v) is a fixed edge of G then

φ(G) = φ(G− uv)− a2uvφ(G− u− v)− 2
∑

C∈Cuv
ωA(C)φ(G− V(C)),

where Cuv is the set of all undirected cycles of G of length ≥ 3 passing through uv, while

ωA(C) =
∏

ij∈E(C)
aij.

The coalescence of two rooted graphs G and H (with roots u and v, respectively),

given for simple graphs in Section 2, can be naturally extended to weighted digraphs

(including weighted graphs). At this place it is only noteworthy to add that loops at u

and v give rise to a loop at w (= u = v) in G ·H after identification, and that its weight

is equal to the sum of weights of the former two loops (of G and H).

Theorem 2.5. Let G · H be the coalescence of two rooted weighted digraphs G and H

whose roots are u and v, respectively. Then

φ(G ·H) = φ(G)φ(H − v) + φ(G− u)φ(H)− xφ(G− u)φ(H − v).

Next formulas are similar in principle to one given by Rowlinson in [22] for the

contraction-deletion algorithm, so we called them Rowlinson-like formulas (cf. Section
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4 in [2]). In fact, for Rowlinson-like formulas we contract two vertices and (some) edges

incident to them, so the digraphs involved in those formulas are not (in general) sub-

digraphs of the graph under consideration.

In order to state them we need some further definitions. If u and v are two vertices

of some digraph, say G, then G[uv] denotes the digraph obtained from G − {−→uv,−→vu} by

contracting u and v. More precisely, we have: u and v are identified (giving rise to a

new vertex, say w); all arcs which were previously in-incident (or out-incident) to u, or

to v, are now in-incident (resp. out-incident) to w; if parallel arcs of the same direction

occur, they are substituted by a single arc (of the same direction) with resulting weight

obtained by summing the weights of former arcs; the same applies for parallel loops at w.

This is illustrated in Fig. 2 (the weights of the arcs not involved in the contraction are

not depicted).

u

v

2
1

1
1

3

3

2

G
w

2
2

1

5 G[uv]

Fig. 2: A multi-graph G and the graph G[uv].

A similar approach is used to define G〈uv〉. Denote by−→u∗ (−→∗v) the set of arcs (including
loops) out-coming from u (resp. in-coming to v). Let G∗

uv = G − −→u∗ − −→∗v − −→vu. So G∗
uv

does not have arcs between u and v, nor loops at u and v. Let G〈uv〉 be the digraph

obtained from G∗
uv by contracting u and v. So G〈uv〉 = G∗

uv[uv]. Similarly we define

G〈vu〉. In Fig. 3 we depict a weighted digraph G and the digraph G〈uv〉 (the weight of

arcs not involved in the contraction are not depicted).

Gu

v

2

1

-2

1
-1

1
2

-1

3

-2

G <uv>
w

2

-2
2

-1

Fig. 3: A weighted digraph G and the graph G〈uv〉.
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Theorem 2.6. Let A be any square matrix, and let G (= GA) be its Coates digraph. Let

−→uv (u 	= v) be a fixed arc of G. Then

φ(G) = φ(G−−→uv) + auvφ(G〈uv〉)− auv(x+ avu)φ(G− u− v),

where all graphs in question are defined as above.

Theorem 2.7. Let A be any square matrix, and let G (= GA) be its Coates digraph. Let

−→uv and −→vu (u 	= v) two arcs of G. Then

φ(G) = φ(G−−→uv −−→vu) + auvφ(G〈uv〉) + avuφ(G〈vu〉)
−[(auv + avu)x+ avuavu]φ(G− u− v),

where all graphs in question are defined as above.

Theorem 2.8. Let A be any symmetric matrix, and let G (= GA) be its Coates digraph.

Let uv (u 	= v) be a fixed edge of G of weight ω (= auv = avu). Then

φ(G) = φ(G− uv) + 2ωφ(G〈uv〉)− (2ωx+ ω2)φ(G− u− v),

where all graphs in question are defined as above.

Theorem 2.9. Let A be any symmetric matrix, and let G (= GA) be its Coates digraph.

Let uv (u 	= v) be a fixed edge of G, and ω (= auv = avu). Then

φ(G) = φ(G− uv) + ωφ(G[uv]) + ω(x− ω)φ(G− u− v)− ωφ(G− u)− ωφ(G− v),

where all graphs in question are defined as above.

3 Permanent variant

In this section we finally give the permanent variant of the formulas reported in Section

2. Note that these formulas can be also considered as matrix formulas. As already noted,

we will give just few proofs and we refer the reader to follow [2] in order to reproduce the

remaining ones.

In sequel we assume that π(G) = π(A) = per(xI−A), where G = GA. Let B = xI−A

(so per(B) = per(xI −A)). Then GB has a loop of weight x− aii at vertex i, and an arc

of weight −aij between vertices i and j (directed from i to j).
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We next assume that
⋃̇k

i=1
Fi is a partition of FB. Then from (1) we get

π(G) = per(B) =
k∑

i=1

∑

F∈Fi

ωB(F ). (2)

This simple observation leads to the following results.

Theorem 3.1. Let A be any square matrix, and let G (= GA) be its Coates digraph. If

v is a fixed vertex of G then

π(G) = (x− avv)π(G− v) +
∑

−→
C∈Cv

(−1)l(
−→
C )ωA(

−→
C )π(G− V(−→C )),

where Cv is the set of directed cycles of G of length ≥ 2 passing through v, while ωA(
−→
C ) =

∏
−→
ij∈A(

−→
C )

aij.

Proof. Let B = xI − A, and consider GB, the Coates digraph of B, so π(G) = per(B).

To apply (2), we first partition FB. Let F ∈ FB. Then F =
−→
Cv∪̇F̂ , where

−→
Cv is a cycle

passing through v, while F̂ a factor in G−V(−→Cv). Let l(
−→
C ) be the length of corresponding

cycle. Then we distinguish the following subsets (partition cells) of FB:

• F1 = {F : l(
−→
Cv) = 1};

• F2 = {F : l(
−→
Cv) ≥ 2}.

Given F =
−→
Cv∪̇F̂ , then ωB(F ) = ωB(

−→
Cv)ωB(F̂ ). Therefore we have:

(i)
∑

F∈F1
ωB(F ) = (x − avv)

∑
F̂∈FB̂

ωB̂(F̂ ), where B̂ = B − v is obtained from B by

deleting its v-th row and column. So we have

∑

F∈F1

ωB(F ) = (x− avv)π(G− v).

(ii)
∑

F∈F2
ωB(F ) =

∑
−→
C∈Cv(−1)l(

−→
C )ωA(

−→
C )

∑
F̂∈FB̂

ωB̂(F̂ ),

where B̂ = B − V(−→C ) is obtained from B by deleting the rows and columns indexed by

vertices from V(−→C ) (note, ωB(
−→
C ) = (−1)l(

−→
C )ωA(

−→
C )). So we have

∑

F∈F2

ωB(F ) =
∑

−→
C∈Cv

(−1)l(
−→
C )ωA(

−→
C )π(G− V(−→C )).

The rest of the proof easily follows.
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In the case of symmetric matrices we easily deduce the following result:

Theorem 3.2. Let A be any symmetric matrix, and let G (= GA) be its Coates digraph.

If v is a fixed vertex of G then

π(G) = (x− avv)π(G− v) +
∑

u�=v

a2uvπ(G− u− v)

+ 2
∑

C∈Cv
(−1)l(

−→
C )ωA(C)π(G− V(C)),

where Cv is a set of all undirected cycles of G of length ≥ 3 passing through v, while

ωA(C) =
∏

ij∈E(C)
aij.

Theorem 3.3. Let A be any square matrix, and let G (= GA) be its Coates digraph. If

−→uv (u 	= v) is a fixed arc of G then

π(G) = π(G−−→uv) + (auvavu)π(G− u− v) +
∑

−→
C∈C−→uv

(−1)l(
−→
C )ωA(

−→
C )π(G− V(−→C )),

where C−→uv is the set of all directed cycles of G of length ≥ 3 passing through −→uv, while
ωA(

−→
C ) =

∏
−→
ij∈A(

−→
C )

aij.

Theorem 3.4. Let G · H be the coalescence of two rooted weighted digraphs G and H

whose roots are u and v, respectively. Then

π(G ·H) = π(G)π(H − v) + π(G− u)π(H)− xπ(G− u)π(H − v).

We now consider the permanental variant of Rowlinson-like formulas given in Section

2. We will prove just the first one and we again refer the readers to [2] to reproduce the

remaining ones. Let a = −→uv be an arc in A, so we consider the following partition for the

factor space of B = xI − A:

(i) F1 with F ∈ F1 if F does not contain a;

(ii) F2 with F ∈ F2 if F contains a and a′;

(iii) F3 with F ∈ F3 if F contains a, but not a′.

F3 is the term which gives rise to sum over all cycles passing through a in A. In next

lemma we can express the contribution of F3 by the permanental polynomial of some

graphs in which the arc a is contracted.
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Lemma 3.5. Let A be any square matrix. Under the above notation we have

∑

F∈F3

ωB(F ) = −auvπ(G〈uv〉) + auvxπ(G− u− v).

Proof. Let B = xI − A, and consider GB, the Coates digraph of B, so π(G) = per(B).

Next, let a = −→uv. If F ∈ F3 then F =
−→
Ca∪̇F̂ , where

−→
Ca is a cycle (of length ≥ 3) passing

through a. Observe first that the arcs
−→
ut (t 	= v), −→sv (s 	= u) and −→vu do not belong to F .

So, they can be ignored, or equivalently, we can assume that F is a factor of G∗
uv +

−→uv
(note, G∗

uv has no loops at u and v). Let G〈uv〉 be the digraph obtained from G∗
uv by

contracting u and v. Note, that after this contraction arcs in-coming to w were those

in-coming to u, and arcs out-coming from w were those out-coming from v; in addition,

there are no loops at w (= u = v). After this contraction, F becomes F ′ =
−→
C ′

w∪̇F̂ , where
−→
C ′

w is a cycle passing through w resulting from
−→
Ca by a contraction (note that its length

is ≥ 2). Let A′ be the adjacency matrix of G〈uv〉 and B′ = xI − A′. So F ′ runs over all

factors of B′ containing a cycle at w of length at least two. Then we have

∑

F∈F3

ωB(F ) = −auv
∑

F ′∈F ′
2

ωB′(F ′),

where F ′
2 = {F ′ : F ∈ F3} in view of bijection F ↔ F ′ (note, F ′ ∈ FB′ and l(

−→
C ′

w) ≥ 2; in

addition ωB(F ) = −auvωB′(F ′)). On the other hand (cf. Theorem 3.1) we have

π(G〈uv〉) = xπ(G〈uv〉 − w) +
∑

F ′∈F ′
2

ωB′(F ′).

Since G〈uv〉 − w = G− u− v, we have

π(G〈uv〉) = xπ(G− u− v) +
∑

F ′∈F ′
2

ωB′(F ′).

Therefore we have

∑

F∈F3

ωB(F ) = −auv
∑

F ′∈F ′
2

ωB′(F ′) = −auv[π(G〈uv〉)− xπ(G− u− v)],

as required.

We can now prove the formula given in the following theorem:

Theorem 3.6. Let A be any square matrix, and let G (= GA) be its Coates digraph. Let

−→uv (u 	= v) be a fixed arc of G. Then

π(G) = π(G−−→uv)− auvπ(G〈uv〉) + auv(x+ avu)π(G− u− v),

where all graphs in question are defined as above.
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Proof. Consider the matrix B = xI − A and apply (2) to subsets F1, F2 and F3, (see

items (i)–(iii) from above). So we have (for item (iii) cf. Lemma 3.5):

(i)
∑

F∈F1
ωB(F ) = π(G−−→uv);

(ii)
∑

F∈F2
ωB(F ) = auvavuπ(G− u− v);

(iii)
∑

F∈F3
ωB(F ) = −auv[π(G〈uv〉)− xπ(G− u− v)].

The rest of the proof easily follows.

The following corollary easily follows from two consecutive applications of Theorem

3.6: first to G (with respect to arc −→uv), and next to G−−→uv (with respect to arc −→vu).

Corollary 3.7. Let A be any square matrix, and let G (= GA) be its Coates digraph. Let

−→uv and −→vu (u 	= v) two arcs of G. Then

π(G) = π(G−−→uv −−→vu)− auvπ(G〈uv〉)− avuπ(G〈vu〉)
+[(auv + avu)x+ avuavu]π(G− u− v),

where all graphs in question are defined as above.

If A is a symmetric matrix, from the above corollary we can immediately the following

formula:

Theorem 3.8. Let A be any symmetric matrix, and let G (= GA) be its Coates digraph.

Let uv (u 	= v) be a fixed edge of G of weight ω (= auv = avu). Then

π(G) = π(G− uv)− 2ωπ(G〈uv〉) + (2ωx+ ω2)π(G− u− v),

where all graphs in question are defined as above.

Proof. In the symmetric case we first put in the formula from Corollary 2.7 that G−−→uv−
−→vu = G − uv, and next substitute auv and avu by ω. Then we observe that G〈uv〉 and

G〈vu〉 are the converse digraphs. So their adjacency matrices are the transpose of each

other. Therefore π(G〈uv〉) = π(G〈vu〉), and the proof follows.

Theorem 3.9. Let A be any symmetric matrix, and let G (= GA) be its Coates digraph.

Let uv (u 	= v) be a fixed edge of G, and ω (= auv = avu). Then

π(G) = π(G− uv)− ωπ(G[uv]) + ω(ω − x)π(G− u− v) + ω(π(G− u) + π(G− v)),

where all graphs in question are defined as above.
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Remark 3.1. Two facts deserve to be mentioned. First, if G is an empty graphs, i.e.

without vertices, then π(G) = 1. Secondly, it is worth noting that now the Rowlinson-like

formulas cannot be obtained alternatively by algebraic manipulations as it was the case

for the characteristic polynomials, where elementary row and column transformations for

determinants are allowed.

4 Appendix

In this appendix we give some examples for the formulas shown in Section 3. In the

figures, the vertices are labelled with letters so that a = 1, b = 2, . . ., while the weights

will be reported close to the corresponding arcs.

Example 4.1 Let A be the matrix in Fig. 1 and G be the corresponding Coates digraph

associated to A. We now consider the formula from Theorem 3.3 and apply it to the arc
−→
ab. The (oriented) cycles through

−→
ab of length ≥ 3 are

−→
C1 =

−→
abc and

−→
C2 =

−−→
abcd, with

(−1)l(
−→
C1)ω(

−→
C1) = −2 and (−1)l(

−→
C2)ω(

−→
C2) = 1. Hence

π(G) = π(G−−→
ab)− π(G− a− b)− 2π(G− a− b− c) + π(∅)

Since π(G−−→
ab) = x4 − 2x3 − 3x2 +4x+4, π(G− a− b) = x(x− 2), π(G− a− b− c) = x

and π(∅) = 1, we get

π(G) = x4 − 2x3 − 4x2 + 4x+ 5,

that is the permanental polynomial of the matrix A.

Example 4.2 We consider the same matrix A from the latter example and we make

use of the formula from Theorem 3.6 applied to the arc
−→
ab. We now depict in Fig. 4 the

graphs G and G〈ab〉, in which w is the vertex arising from the contraction.

a b

cd

-1

2

1

-12

-1

-1

1 -1

2

w

cd

-1
2

-1

-1

2

Fig. 4: The graphs G and G〈ab〉.
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It is easy to check that π(G〈ab〉) = x3 − 2x2 − 2x+ 1. We have:

π(G) = π(G−−→
ab) + π(G〈ab〉)− (x+ 1)π(G− a− b)

= x4 − 2x3 − 4x2 + 4x+ 5,

by Theorem 3.6.

To conclude this paper, we give an example for the formula of Theorem 3.9 related to

symmetric matrices, i.e. weighted undirected graphs.

Example 4.3 Let A, G and G[ab] be defined as in Fig. 5.

A =

⎡

⎢⎢⎣

0 2 −1 −2
2 −1 2 0
−1 2 3 1
−2 0 1 −1

⎤

⎥⎥⎦ a

b

c

d

2 2

1-2

-1

-1

3

-1

G
w

cd
1

-2 1

-1

3-1

G[ab]

Fig. 5: The matrix A, its corresponding Coates digraph G and the graph G[ab].

Now we have:

π(G) = π(G− ab)− 2π(G[ab]) + 2(2− x)π(G− a− b) + 2(π(G− a) + π(G− b))

= (x4 − x3 + 5x2 − 8x+ 1)− 2(x3 − x2 + x− 9) + 2(2− x)(x2 − 2x− 2)

+2((x3 − x2 + 2) + (x3 − 2x2 + 3x− 15))

= x4 − x3 + 9x2 − 8x− 15,

by Theorem 3.9.

Acknowledgments
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binatoire, B09b (1983); available at

http://www.emis.ams.org/journals/SLC/opapers/s09kraeu.pdf.

[21] V. R. Rosenfeld, I. Gutman, A novel approach to graph polynomials, MATCH Com-

mun. Math. Comput. Chem. 24 (1989) 191–199.

[22] P. Rowlinson, A deletion-contraction algorithm for the characteristic polynomial of

a multigraph, Proc. Roy. Soc. Edinburgh 105A (1987) 153–160.

[23] A. J. Schwenk, Computing the characteristic polynomial of a graph, in: R. Bari, F.

Harary (Eds.), Graphs and Combinatorics , Springer–Verlag, Berlin, 1974, pp. 153–

172.

[24] L. G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8

(1979) 189–201

[25] J. Wosiek , A simple formula for Bose–Einstein corrections, Phys. Lett. B 399 (1997)

130–135.

[26] W. G. Yan, F. J. Zhang, On the permanental polynomials of some graphs, J. Math.

Chem. 35 (2004) 175–188.

-396-


