

A Novel Approach for the Classical Ramsey Number
Problem on DNA-Based Supercomputing

Xu Zhou 1, 2, Kenli Li1 and Makojoa Goodman1 Ahmed Sallam1

1 School of Computer and Communications, Hunan University, Changsha 410082
2 College of Mathematics and Information Engineering, JiaXing University, JiaXing 314200

People’s Republic of China

(Received April 8, 2010)

Abstract

Ramsey number problem is a classical NP-complete problem. It takes exponential time to solve classical
Ramsey number problem with traditional electronic computers. In this paper, we propose a new DNA
computing algorithm based on the divide and conquer algorithm to solve the classical Ramsey number
problem efficiently. The new algorithm is made up of a subspace generator, a parallel searcher, a subspace
searcher and the Ramsey number generator. With the use of divide and conquer algorithm, the new DNA
computing algorithm can be scaled-up to solve much greater size and harder Ramsey number problems
compared to the existing algorithms. In addition, the space-efficient and error-tolerant ability can also be
improved. By this approach, we have shown that DNA computing has vast potential for solving
NP-complete problems.

1. Introduction

Since Dr. Leonard Adleman [1] demonstrated the possibility of using molecular biology to

solve the Hamiltonian Directed Path Problem (HDPP), the DNA computing has shown a great

potential of solving NP-complete problems. DNA computing makes use of DNA molecules as

information storage materials and biological experiments as information processing operators

[2]. DNA computing provided a massive computational parallelism that allowed us to solve

hard computational problems in polynomial increasing time while a conventional Turing

machine requires exponential increasing time.

It is worth noting that many algorithms have been proposed to solve different

NP-complete problems. DNA computing has also been used to solve many NP problems

[3-14], satisfiability problem [3,4], the set-packing problem [5], the subset product problem

[6], the factoring integers problem [7], the subset-sum problem [8], the clique problem

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 66 (2011) 347-370

 ISSN 0340 - 6253

[5,9,10], the knapsack problem [11,12], the graph isomorphism problem [13] and the

dominate set problem [14]. However, most of the current DNA computing strategies are based

on enumerating all the candidate solutions and these algorithms require that the size of the

initial pool increases exponentially with the number of variables in the calculation so that the

capacity of a DNA computer is limited. Furthermore, these enumerating algorithms make the

length of the DNA strands too long to be length-efficient [15-16].

Ramsey theory is an important sub discipline of discrete mathematics. There are many

interesting applications of Ramsey theory including results in number theory, algebra,

geometry, topology, set theory, logic, information theory and theoretical computer science. A

lot of attention has been paid in research on finding the exact value of classical Ramsey

numbers but the results are still far from being satisfactory. There are only nine exact Ramsey

numbers known so far [17-19]. It takes an exponential time to solve Ramsey number problem

with the traditional electronic computers and it takes exponential DNA strands to solve

Ramsey number with the existing DNA computing algorithms.

In this paper, we have proposed a novel DNA computing algorithm to solve the Ramsey

number problem. Different from the traditional algorithm that surveys all the possible

assignment sequences generated in the beginning, we make use of the solution based on the

sticker-based model and the operations of Adleman-Lipton model [5-8]. The proposed

algorithm is based on the divide and conquer algorithm. The proposed algorithm offers ways

for speeding up the algorithm and increases the size of the Ramsey number problem without

increasing the time complexity. The new method will parallelize the processes of the

algorithm so that the implementation of the new algorithm can be accomplished much more

quickly. Furthermore, the new method will reduce the error rate.

The rest of the paper is organized as follows: section 2 introduces the DNA computation in

details. Section 3 presents the Ramsey Number Problem followed by section 4 which

proposes the DNA computing algorithm to solve the Ramsey Number Problem, section 5

presents the experimental simulation results and the last part section 6 gives the discussion

and conclusion of our work.

2. The improved DNA Computing Model

First, we apply the sticker-based model’s solution space in our algorithm. The novel model

employs only mature DNA biological operations. The basic principle operations are that the

-348-

operations of Adleman-Lipton model and Unit operation are selected for building this new

model.

2.1 Sticker–Based Solution Space

Our algorithm is based on the solution space of sticker-based model introduced in [1, 20].

As shown in Figure 1, the model involves stickers and a memory strand. The memory strand

is divided into k non-overlapping sub-strands that have m bases in a single-stranded DNA

with n bases. The sticker that has m bases is complementary to one of the k sub-strands in the

memory strand. During the computation process, each sub-strand is considered ‘1’ (on) or ‘0’

(off). If a sticker is annealed to its corresponding region on the given memory strand, then that

particular region is on for that strand. If no sticker is annealed to a region, then that region’s

bit is off. A memory complex is defined as a memory strand where parts of the sub-strands are

annealed by the matching stickers. Therefore, the computational information can be carried

out in a binary format along the memory complex.

Figure 1. Illustrations of the sticker model, which are encoded 010110 and 0101010 respectively.

In the sticker-based model, the input is a test tube called initial date pool and the output is a

sequence of test tubes that are called final date pool. The final date pool is read by analyzing

-349-

all the DNA strands in it.

Let us consider two integers m, n where m� n, let integer p= R (m, n). On the assumption

that there is a graph G with p vertices, the vertex set V(G) is denoted by {v1,v2,…,vp}and the

edge set E(G) is denoted by {{ vi, vj}; vi, vj SV(G), i� j}. In our novel algorithm, edges are

represented by their binary representations using stickers. For every edge, we denoted two

symbols represented by 15-base stickers to encode the information into DNA strands:

0 if is not in the graph 2({ , }) (1)
1 otherwise

e Gif e v v x i Ci j i p
0*� � � � �/
*.

 (1)

2.2 The Operations of the DNA Computing Model

Suppose that a tube is a multi-set of DNA strands over an alphabet set {A, G, C, T}, the

following biomolecular operations of the Adleman-Lipton model [5-8] will be used to

construct computational space of molecules.

1. Divide (T, S, (T, S)+, (T, S)�): To produce two tubes (T, S)+ and (T, S)�. (T, S)+ consists of

the DNA molecules in T which contain S as a sub-strand and (T, S) � consists of all the DNA

molecules in T which do not contain S.

2. Combine(T0, T1, T2…Tn): To pour the contents of the n tubes T1, T2…Tn into one test tube

T0. After this operation, the tubes T1, T2…Tn will be empty.

3. Magnify (T0, T1, T2…Tn): To produce n new tubes T1, T2…Tn which are copies of T0 and

T0 becomes an empty tube.

4. Attach(T, S): To append S onto the end of every strand in T.

5. Cast-off(T): To discard all the DNA strands in tube T.

6. Read-out(T): To describe a single molecule contained in tube T.

7. Detect-if-empty(T): To check whether there is any DNA strand left in the tube T. If T

includes at least one DNA molecule it returns ‘yes,’ and if T contains no DNA molecule it

returns ‘no’.

Besides the operations above, our new model takes a new operation: Unit(T0, T1, T2).

8. Unit(T0, T1, T2): To bind strands in tube T1 with strands in tube T2. Each strand in T1 is

ligated to every DNA strand in T2 respectively. After the ligation, the new strands are stored in

tube T0.

-350-

The complexity of our DNA-based computing algorithm is computed by the total number

of the biological operations, the total number of the test tubes used, the length of the longest

DNA strands and the number of the DNA strands applied.

2.3 The Advantages of the DNA Computing Model

For the sticker-based model’s solution space and the Adleman–Lipton model’s operations,

our new model has three advantages [1, 5-8]:

� Firstly, the proposed model has a lower rate of errors for hybridization because of having

modified the program to generate good DNA sequence for constructing the solution space

of stickers. Only simple and fast biological operations in the Adleman–Lipton model

were employed to solve the problem.

� Secondly, the model has finished all the basic mathematical functions and the number of

tubes, the longest length of DNA library strands and the number of biological operations

are polynomial.

� Finally, the basic biological operations in the Adleman–Lipton model had been performed

in a fully automated manner in the lab. The full automation manner is essential not only

for the speedup of computation but also for error-free computation.

3. Ramsey Number Problem

Ramsey number problem is a famous optimization problem, and is also an NP-complete

problem [17]. For every pair m, n of positive integers there exists at least a positive integer k =

R(m, n) such that for every two-coloring of the pairs of an n-element set, say k = {0,…, k-1},

with colors red and blue, there exists either an m-element subset of n such that all its

two-element subsets (pairs) are red (we say that there exists a red s-subset of k) or there exists

a blue t-subset of k. R(m, n) is called the Ramsey number of (m, n). The Ramsey number R(m,

n) is also defined to be the smallest number k such that, the graph with this or more nodes

either contains a clique of size m or an independent set of size n [18-19].

From the definition of the Ramsey number problem, we figure out that the undirected

simple graph of order k =R(m, n) contains a clique of order m or an independent set of order n.

Ramsey's theorem states that such a number exists for all m and n.

By symmetry, it is true that R(m, n) = R(n, m). And we also have:

-351-

() ()
()

, ,

, 2

R m n R n m

R m m

�0*
/

�*.
, (,) 4 (2,) 2R m m R m m� � � (2)

From Equation 2, R(1, l)=R(m, n)=1, R(2, n)=n and R(m, 2)=m.

Upper bounds are given by Equation 3.

(1,) (, 1)

(,) 1 (1,) (, 1)
(1,) (, 1)

R m n R m n
R m n for R m n and R m n even

R m n R m n otherwise

� � �0
*� � � �/
* � � �.

, 1
2(,) m

m nR m n C �
� �� (3)

In this paper, we study the Lower bounds of the Ramsey Number Problem. Table 1 presents

some results about Ramsey Number problem.

Table 1. New results of Ramsey Number Problem (k�8, l�8) [20-28]

R(k, l) k = 3 k = 4 k = 5 k = 6
l = 3 6[21]

l = 4 9[21] 18[21]

l = 5 14[21] 25[24] 43-49[24,26]

l = 6 18[22] 35-41[24,25] 58-87[23,27] 102-165[23,28]

4. The Novel DNA Computing Algorithm for the Ramsey
Number Problem
Our novel algorithm for Ramsey Number problem is based on the new DNA computing

model discussed in section 2. The detailed description of our novel algorithm is presented as

follows.

4.1 The Framework of the Novel DNA Computing Algorithm

The main principle of the novel DNA algorithm for the Ramsey Number Problem is in the

following:

1) Introduce the divide and conquer algorithm to our new algorithm and partition the vertex

set V(G) into subsets V1, V2,…, Vd (if p mod n = 0 then d = p/n, else d = (p/n)+1). For

convenience, we suppose that p mod n = 0. Therefore, settling the Ramsey Number of R

-352-

(m, n, p) is translated into solving the Ramsey Number of R (m, n, n).

2) Produce the solution spaces for Ramsey Number problem R (m, n, n) and eliminate

unfeasible solutions from the solution spaces above.

3) Based on the satisfiable solution spaces from R (m, n, n), produce the full solution spaces

of the Ramsey Number problem R (m, n, p) that is equal to R (m, n) by merging the d

satisfiable solution spaces of R (m, n, n).

4.2 The Divide and Conquer Algorithm

In 1974, Horowitz and Sahni [30] introduced the divide and conquer to the solution of the

knapsack problem (also called the subset sum problem by some authors), and presented a

two-list algorithm which can greatly reduce the time to solve the knapsack problem using

enumeration algorithm. In fact the divide and conquer algorithm can solve the knapsack

instance only in O(2n/2) time and O(2n/2) space. The divide and conquer is also introduced into

our new DNA computing algorithm of Ramsey Number Problem (See Figure 2).

Figure 2. Partition the p elements of V into d subsets V1,V2,…, Vd on the assumption that m � n and d =
p/n.

We first partition the vertex set V ={v1,v2,…,vp} into d vertices sets V1 ={v1,v2,…,vn V2

={vn+1,v n+2,…, v2n},…, and Vd ={v(d-1)n+1,v(d-1)n+2,…,vp}where d is equal to p/n. Solving the

Ramsey Number Problem Ramsey(m, n, p) is thentranslated into settling the Ramsey Number

Problem Ramsey(m, n, n).

-353-

4.3 The Construction of a Sub–Space Generator

After partitioning the p vertices into d subsets (See Figure 1), the Ramsey Number problem

R(m, n) is translated into the Ramsey Number problem R (m, n, n).

Suppose that there is k-bits binary number representing k edges of the graph with n vertices,

where k is equal to C2
n, for each bit xa applied to represent the ath edge of the graph (1� a� k),

there will be two different 15-base DNA sequences generated. The sequences represent ‘0’

and ‘1’ for xa, respectively. For convenience, we denote x1
a to represent the condition that xa is

equal to ‘1’ and x0
a to represent the condition that xa is equal to ‘0’. The algorithm,

Sub-Space_Generator(Ti, Vi) is designed to produce the solution space of R (m, n, n).

Algorithm 1. Sub-Space_Generator(Ti, Vi)

<Input> : A tube Ti and the vertex set Vi
<Output>: The tube Ti which contains the solution space of Vi

1: For j =1 to C2
n

2: Magnify(Ti, T1, T2).
3: Attach(T1, x0

j).
4: Attach(T2, x1

j).
5: Combine(Ti, T1, T2).
6: End For

Lemma 1: Algorithm Sub-Space_Generator(Ti, Vi) is applied to generate the solution space of

the Ramsey Number R (m, n, n).

Proof: On the assumption that Ti, T1 and T2 are distinct test tubes and T1 and T2 are empty. The

Sub-Space_Generator(Ti, Vi), is implemented by the Magnify, Attach and Combine operations.

Lines 1-6 forms a loop for generating the solution space of the vertex set Vi. There are n

vertices in the set Vi. Hence, the number of edges is C2
n. Every time, line 3 is executed to

amplify tube Ti and to generate two new tubes, T1 and T2, which are copies of T0, tube T0

becomes empty. Then, line 4 is executed to append a DNA sequence (sticker), representing

the value “0” for xj, onto the end of every strand in tube T1. Line 5 is also executed to append

a DNA sequence (sticker), representing the value “1” for xj onto the end of every strand in

tube T2. Next, line 6 is executed to pour the contents of tube T and T2 into tube Ti. This

indicates that the DNA strands in tube T0 contain the DNA sequences of xj = 0 and xj = 1.

-354-

After repeating the execution of lines 3-6 for C2
n times, it finally produces tube Ti which

consists of 2k DNA sequences where k = C2
n representing 2k possible arrays of input.

Therefore, it is inferred that sticker-based solution space for 2k (k = C2
n) possible arrays of

input can be constructed with the sticker.

Lemma 2: Algorithm Sub-Space_Generator(Ti, Vi), three test tubes are used to construct

sticker-based solution space, an n(n-1)/2-bit binary number corresponds to an array of input,

2k (k = C2
n) DNA strands and it takes the following operations: (1)

2
n n � Magnify operations,

2n(n-1) Attach operations and (1)
2

n n � Combine operations.

4.4 The Construction of a Parallel Searcher

The Ramsey number R(m, n) is the smallest number such that every graph with this or

more nodes either contains a clique of size m or an independent set of size n. Therefore, the

DNA strands which contains the clique of size m or an independent set of size n are not the

solution for our Ramsey Number problem. Now, for us to eliminate the unlawful solution

strands, we introduce the Parallel_Searcher algorithm as follows.

Algorithm 2. Parallel_Searcher(T0, m, n, w)

<Input>: The tube T which contains the solution space of w vertices, the two integers in the
Ramsey Number R(m,n).
<Output>: The test tube T0 containing the valid solution DNA strands.

1: For i = 1 to Cm
w

2: For j = 1 to C2
m

3: Assume that ei,j is the jth edge of the ith Complete subgraph
4: Divide(T0, x1

i,j, (T0, x1
i,j)+, (T0, x1

i,j)�)
5: T1= (T0, x1

i,j)+ and T2 = (T0, x1
i,j)�.

6: Combine(T0 , T0, T1).
7: End For
8: Cast-off(T0).
9: Combine(T0 , T0, T2).

10: End For
11: For i = 1 to Cn

w
12: For j = 1 to C2

n
13: Assume that ei,j is the jth element of the ith independent set
14: Divide(T0, x1

i,j, (T0, x1
i,j)+, (T0, x1

i,j)�)
15: T1= (T0, x1

i,j)+ and T2 = (T0, x1
i,j)�.

16: Combine(T0 , T0, T2).

-355-

17: End For
18: Cast-off(T0).
19: Combine(T0 , T0, T1).
20: End For

Lemma 3: Algorithm, Parallel_Searcher(T, m, n, w) is executed to search the valid solution

strands from the Ramsey Number’s solution space.

Proof: The Parallel_Searcher(T, m, n, w), is implemented by means of the Divide,

Detect-if-empty and Combine operations. Line 1 is the outer loop and line 2 is the inner loop.

The algorithm uses the Divide operation to form two test tubes: T1 and T2. Tube T1 includes all

the strands that have xi,j = 1. Tube T2 consists of all the strands that have xi,j = 0. By executing

line 6, the Combine operation pours the DNA strands in tube T0 and T1 into tube T0 hence tube

T0 now contains the DNA strands that represent the complete subgraph. Next, on the

execution of line 8, the tube T0 is discarded. On the execution of line 9, the Combine operation

pours the DNA strands in tube T0 and T2 into tube T0. So, on the execution of lines 1-10, the

complete subgraph with m vertices will be discarded. During the execution of lines 11-20, the

independent set with n elements will be eliminated from the solution space. Lastly, all the

legal solution strands will be contained in tube T0.

Lemma 4: Algorithm Parallel_Searcher(T, m, n, w) uses three test tubes and takes the

following operations:

1. Cm
wC2

m+Cn
wC2

n = ! (1) ! (1)()
!()! 2 !()! 2

w m m w n n
m w m n w n

� �
R � R

� �
Divide operations

2. 2(Cm
wC2

m+Cn
wC2

n) + Cm
w+ Cn

w

= 2 ! (1) ! (1)()
!()! 2 !()! 2

w m m w n n
m w m n w n

� �
R � R

� �
+ ! !()

!()! !()!
w w

m w m n w n
�

� �
Combine operations.

3. Cm
w+Cn

w = ! !()
!()! !()!

w w
m w m n w n

�
� �

Cast-off operations.

4.5 The Construction of a Sub–Space Searcher

By combining Algorithm 1 and Algorithm 2, we present the Sub-Space_Searcher

algorithm to find the satisfiable solution space of the Ramsey Number R(m, n, n). In this

-356-

algorithm, the reliable solution space of the vertex sets V1,…, Vd are produced in parallel.

Algorithm 3. Sub-Space_Searcher({V1,…, Vd}, m, n)

<Input>: The subsets V1,…,Vd and the variables m, n of the Ramsey Number
<Output>: The tubes T1,…,Td which contains the solution space related to the subsets V1,…,Vd

1: For i = 1 to d do
2: Init_Space_Generator(Vi).
3: Parallel_Searcher(Ti, m, n, n).
4: End For

Lemma 5: Algorithm Sub-Space_Searcher ({V1,…, Vd }, m, n) is executed to get the

satisfiable solution space of the Ramsey Number R(m, n, n) and the solution space related to

the subsets V1,…,Vd

Proof: Algorithm, Sub-Space_Searcher ({V1,… , Vd}, m, n), is implemented based on the

algorithm Init_Space_Generator(Vi) and Parallel_Searcher(Ti, m, n, n). Lines 1-4 form an

outer loop. On the first execution of line 2, Init_Space_Generator(V1) produces the solution

space of the Ramsey Number R(m, n, n) related to the subset V1. Next, the execution of line 3,

Parallel_Searcher(Ti, m, n, n) eliminates the unlawful DNA strands. We get the satisfiable

solution space by repeating the execution of lines 2, 3.

Lemma 6: From Sub-Space_Searcher({V1,…, Vd }, m, n) it takes d times

Init_Space_Generator(Vi) and d times Parallel_Searcher(Ti, m, n, n), where d = p/n. As a

result of Init_Space_Generator(Vi) and Parallel_Searcher(Ti, m, n, n) the Sub-Space_Searcher

algorithm takes operations as follows:

1.
2(1) (1)

2 2
n pd n p

n
� �

� Magnify operations.

2.
22(1)2(1) n pn pd

n
�

� � Attach operations.

3. (1)
2

n pd� +2(Cm
nC2

m+Cn
nC2

n)d= (1) ! (1) (1)2()
2 !()! 2 2

n pd n m m n n d
m n m

� � �
� R �

�
Combine

operations

4. (Cm
nC2

m+Cn
nC2

n)d = ! (1) (1)()
!()! 2 2

n m m n n d
m n m

� �
R �

�
Divide operations

5. (Cm
nC2

m+Cn
nC2

n)d = ! (1) (1)()
!()! 2 2

n m m n n d
m n m

� �
R �

�
Cast-off operations

-357-

Besides the operations above, this algorithm needs three d=p/n tubes and the number of

DNA strands left is 2 22 2 ()a m a b n
n n n mc c a c and b c�� � � � .

4.6 The Construction of a Ramsey Number Generator

In this section, a parallel Ramsey Number generator is proposed to combine the solution

space from the algorithm Sub-Space_Searcher({V1,…, Vd}, m, n). The process of merging the

sub solution space is shown in Figure 3. Firstly, we merge the contents of the tubes T1 and T2,

T3 and T4 , ….., Td-1 and Td to tubes T1, T3, ….., Td-1 by the Union operation respectively. Then, the

parallel searcher is executed to eliminate the illegal DNA strands from the tubes T1, T3,… , Td-1.

After the re-labeling of tubes T1, T3, …, Td-1 , we get the tubes T1, T2, …, Td/2. We repeat the

above operations until all the DNA strands are stored in one tubes T1. Finally, the test tube T1

will contain the solution space of our problem.

Figure 3. The process of merging the sub solution space

-358-

Algorithm 4. Ramsey_Number_Generator(T, p, m, n)

<Input>: The tube set T is {T1, T2,…Td} and the parameters p, m, n of the Ramsey Number.
<Output>: The tube T1 which contains the satisfiable solution space of the Ramsey Number.

1: f = d, w = 1
2: while f � 1 do
3: w = 2*w.
4: If (f %2==0) then
5: For i = 1 to f-1 Step 2 do
6: Suppose that Si is the number of element in Vi and Si+1 is the

number of elements in Vi+1.
7: Unit(Ti, Ti, Ti+1).
8: For j =1 to Si * Si+1
9: Magnify(Ti, Ti,2, T i,3).

10: Attach(Ti,2, x0
j).

11: Attach(T i,3, x1
j).

12: Combine(Ti, Ti,2, T i,3).
13: Parallel_Searcher(Ti, m, n, (w-1)n+1).
14: End For
15: End For
16: Re-label all pools 1 to f /2
17: Else
18: For i = 1 to f-2 Step 2 do
19: Unit(Ti, Ti, Ti+1).
20: For j =1 to Si * Si+1
21: Magnify(Ti, Ti,2, T i,3).
22: Attach(Ti,2, x0

j).
23: Attach(T i,3, x1

j).
24: Combine(Ti, Ti,2, T i,3).
25: Parallel_Searcher(Ti, m, n, (w-1)n+1).
26: End For
27: End For
28: Re-label all pools 1 to f /2
29: Re-label the last pool to f /2 +1
30: End If
31: f = f / 2
32: End
33: Parallel_Searcher(T1, m, n, p)

Lemma 7. Algorithm Ramsey_Number_Generator (T, p, m, n) is executed to get the solution

space of the Ramsey Number R(m, n).

Proof: Ramsey_Number_Generator(T, p, m, n) is implemented by the Magnify, Attach,

Combine ,Unit operations and the Parallel_Searcher(T, m, n, w) and it begins to merge the

-359-

subspace solution recursively in parallel. Lines 5-15 form an outer for loop on the condition

that f is even. The algorithm merges the subspace of the Ramsey Number Problem R(m, n, n)

and produces the satisfiable solution space of the Ramsey Number R(m, n, 2n). On the

execution of line 16, we re-label the solution space from 1 to f /2. When f is odd, lines 18-24

are executed.

Lemma 8. Algorithm Ramsey_Number_Generator(T, p, m, n) takes the following operations:

1. 2
dlog' $% " Unit operations.

2. 2 2 2 2
22 3(2) (4) () ()

2 22 2 2
d

k

d d d d dn n n n k log� � � � � Magnify operations.

3. 2 2 2 2
22 32((2) (4) ()) (log)

2 22 2 2
d

k

d d d d dn n n n k� � � � � Attach operations.

4. 2 2 2 2
22 3(2) (4) () ()

2 22 2 2
d

k

d d d d dn n n n k log� � � � � Combine operations.

Besides the operations above, this algorithm takes
2
dlog' $% " times the algorithm

Parallel_Searcher(Ti, m, n, wn) and it requires d+2 = p/n+2 test tubes.

4.7 The Complete Algorithm for Ramsey Number Problem

The following DNA algorithm is applied to solve the Ramsey Number Problem R(m, n, p)

Algorithm 5. Ramsey_Number(m, n, p)

<Input>: The parameters p, m, n of the Ramsey Number
<Output>: The Ramsey Number R(m, n)

1: Sub-Space_Searcher({V1,…, Vd}, m, n).
2: Ramsey_Number_Generator(T1, p, m, n).
3: If (Detect-if-empty(T1) = ‘yes’) then
4: Ramsey_Number(m, n, p+1).
5: Else
6: R (m, n) = p
7: End If

Theorem 9: From the steps in Algorithm 1, the Ramsey Number problem R(m, n) can be

found.

Proof: On the execution of line 1, Sub-Space_ Searcher({V1,…, Vd }, m, n), the satisfiable

subsolution space of the Ramsey Number R(m, n, n) is produced. The algorithm,

-360-

Ramsey_Number_Generator(T, p, m, n), is mainly used to construct a full solution space and

search the solution of Ramsey Number R(m, n). Line 3 detects whether there is a DNA strand

in tube T1. If it returns ‘yes’, line 4, the algorithm Ramsey_ Number(m, n, p+1) will be

executed to find the Ramsey problem (m, n, p+1). If on the execution of line 3, it returns ‘no’,

line 6 will be executed, and the solution of the Ramsey Number R (m, n) is equal to p.

Theorem 10: The Ramsey Number problem R (m, n) can be solved with O(p2) biological

operations, O(p/n) tubes , O(2 2 2 s m s y n s z
p pC C� �� �) 2 2 2(,)p m ns C y C and z C� � � strands, and the

longest library strand O(p2).

Proof:

1: Algorithm 5 includes seven main lines. From the algorithm, Sub-Space_

Searcher({V1,…,Vd}, m, n), line 1, is executed to produce the satisfiable solution space for the

Ramsey Number problem R(m, n, n). It is obvious that it takes (n-1)p2/2n Magnify operations,

2(n-1)p2/n Attach operations, ((n-1)p/2)+ 2(Cm
nC2

m+Cn
nC2

n)d Combine operations, (Cm
nC2

m+

Cn
nC2

n)d Divide operations, and (Cm
nC2

m+Cn
nC2

n)d Cast-off operations. The number of the

operations is:
2 2

2

(1) 2(1) (1) (1)...(1) (1) (1)...(1) (1)() () () 2 () ()
2 2 2((2)!) 2 2((2)!) 2
(1)...(1) (1)()

2((2)!) 2
3(1) (1)...(1) (1)() 4 (

2((2)!) 2

n p n p n p n n n m n n n n n m n nd d d
n n m m

n n n m n n d
m

n p n n n m n n
n m

� � � � � � � � � � �
� � R � R � R � � R

� �
� � � �

� � R
�

� � � � �
� � R �

�
2

)

()

d

O p

R

�

Line 2 produces the solution space for the Ramsey Number Problem R(m, n, p) and it

takes the following operations:

1. 2
dlog' $% "Unit operations,

2. 2 2 2 2
22 3(2) (4) () ()

2 22 2 2
d

k

d d d d dn n n n k log� � � � � Magnify operations,

3. 2 2 2 2
22 32 ((2) (4) ()) (log)

2 22 2 2
d

k

d d d d dn n n n kR � � � � � Attach operations,

4. 2 2 2 2
22 3(2) (4) () ()

2 22 2 2
d

k

d d d d dn n n n k log� � � � � Combine operations.

So the total number of the operations taken in line 2 is:

-361-

2 2 2 2 2 2 2 2
2 2 3 2 3

2 2 2 2
2 3

2 2 2 2
2 2 3

/
2

((2) (4) ())+2 ((2) (4) ()
2 2 2 22 2 2 2 2 2

+((2) (4) ()))
2 22 2 2

= 4 ((2) (4) ())
2 22 2 2

d
k k

k

d
k

p n

d d d d d d d d d dlog n n n n n n n n

d d d d dn n n n

d d d d dlog n n n n

log

' $� � � � � R � � � �% "

� � � �

' $� R � � � �% "

� 2

2

14 ((1 2)))
2

()

pn p

O p pn

' $� R � � � �% "

� �

So the number of the biological operations In Algorithm 5 is O(p2).

2. In new algorithm, the illegal strands will be removed in the process of producing the

solution space. Finally, the number of the DNA strands is 2 2 2 s m s y n s z
p pC C� �� � which is

O(2 2 2 s m s y n s z
p pC C� �� �) 2 2 2(,)p m ns C y C and z C� � � .

3. From Algorithm 1 to Algorithm 5, the number of test tubes needed is d= p/n and the

number of tubes is O(p/n) .

4. In the Ramsey Number Problem R(m, n, p), there are CP
2 = p(p-1)/2 edges in the graph

with p vertices. Hence, we need p(p-1)/2 bits to represent the p(p-1)/2 edges and the number

of the longest DNA strands is O(p2).

5. Experimental Results by Simulated DNA Computing

For the purposes of simulating our new algorithm, reference is made to Michael at

2005[5-8] and the article [29].We consider the Ramsey Number Problem R(3, 3) = 6 as an

example. In our example, we must find the Ramsey graph from the graph with six vertices.

There are C6
2 edges of the graph with five vertices, so it needs C6

2 =15 bits to represent the

edges.

5.1 DNA Code

For each bit used in our new algorithm, there are two distinct 15 bases value sequences

designed for our experiment. One represents the value one for xi
1 and the other one represents

the value zero for xi
0. DNA sequences and the energy used generated by the modified

Adleman program are shown in Table 2.

-362-

Table 2. DNA Sequences chosen to represent the 15 bits (blocks) for settling the Ramsey Number Problem

R(3,3) = 6

bit 5’ 3’DNA Sequence Entropy energy
(S)

Enthalpy energy
(H) Free energy (G))

x0
1 AATTAACAATCATCT 273.0 104.3 24.1

x1
1 AATTCCCATTCCCTA 273.0 108.5 27.8

x0
2 CCACCCTCATCCTAT 266.6 101.3 21.5

x1
2 AATTCACAAACAATT 299.4 114.4 25.0

x0
3 ATTCACTTCTTTAAT 283.5 107.8 23.0

x1
3 CCTTTCTAACCTTCA 272.6 103.8 28.2

x0
4 TCTCTCTCTAATCAT 270.5 105.2 28.2

x1
4 TTTACCCTCATTACT 255.8 97.6 20.9

x0
5 CTTACAATCTTACCT 234.9 106.7 23.0

x1
5 AACATACCCCTAATC 291.2 112.6 25.6

x0
6 ATTCTAACTCTACCT 277.1 105.2 25.0

x1
6 AATTCATCATCAATT 270.8 105.0 24.1

x0
7 TCTCCCTATTTATTT 278.6 107.8 24.3

x1
7 TAATTCCATAACCTA 288.2 110.2 25.9

x0
8 CCAATTCCAATAATC 290.6 113.0 24.5

x1
8 AAAACTCACCCTCCT 288.7 113.7 22.3

x0
9 AAATTAATACATTAA 294.0 115.9 28.2

x1
9 TCTAATATAATTACT 283.7 104.8 22.4

x0
10 CCATCATCTACCTTA 286.3 108.4 22.6

x1
10 TTACTCTTAACATCT 282.8 112.1 24.4

x0
11 TATCTTTCTTTATCA 285.7 111.3 25.9

x1
11 TTAATCAAATCCCTA 266.0 102.1 22.6

x0
12 AATTCACTTTCTATC 275.5 105.3 22.9

x1
12 CTTCTCCACTATACT 288.3 111.1 27.8

x0
13 CTCTTAATCTCATTC 291.5 112.4 25.3

x1
13 CCTTATCATCCAATC 284.9 112.8 24.3

x0
14 AAACTCTACATACAC 285.5 109.9 27.0

x1
14 TTTCAATAACACCTC 271.6 105.6 24.3

x0
15 CCTAAATCTCCAATA 266.0 101.9 22.4

x1
15 AAATCTATCTAATTC 283.6 106.6 21.9

5.2 Solving Process of the Novel Algorithm for the Ramsey Number
Problem

For the purposes of simulating algorithm 5, we make use of our example (R(3, 3) = 6). The

vertex set is V = {v1, v2, v3, v4, v5, v6}. For convenience, we let i to represent the vertex vi

(1�i�6) and the vertex set V= {1, 2, 3, 4, 5, 6}. From the algorithm, we first partition the six

vertices of V into two parts V1 ={1, 2, 3 } and V2 = {4, 5, 6}. Now, solving the Ramsey

Number Problem R(3,3,6), we present the solution by solving the Ramsey Number Problem

R(3,3,3).

By executing line 1of algorithm 5, the algorithm produces the subspace of the Ramsey

-363-

Number R(3,3,3) and we get two tubes T1 and T2. In tube T1 we consider the edges only to

refer to V1 = {1, 2, 3} and get the DNA Strands {000, 001, 010, 011, 100, 101, 110, 111} that

represent the eight graphs in Figure 4 respectively.

Figure 4. Eight graphs with the vertexes {v1, v2, v3}

In tube T2 we consider the edges only to refer to V1 ={1, 2, 3} and get the DNA Strands

{000, 001, 010, 011, 100, 101, 110, 111} that represent the eight graphs in Figure 5

respectively.

4

5 6

4

5 6

4

5 6

4

5 6

4

5 6

4

5 6

4

5 6

4

5 6

Figure 5. Eight graphs with the vertexes {v4, v5, v6}

-364-

On the execution of Parallel_Searcher, the illegal strands {000,111} in tubes T1 and T2 are

removed. Therefore, the strands left in T1 are {001, 010, 011, 100, 101, 110}. The strands left

in T2 are {001, 010, 011, 100, 101, 110}.

After the execution of line 1, we get the satisfiable solution space of the Ramsey Number

Problem R(3,3,3). To produce the solution space for our problem R(3,3,6), line 2 is executed.

On the execution of line 2, the Unit operation binds strands in tube T1 with strands in tube T2.

After the Unit operation, the DNA strands of the solution space are{ 001001, 010001, 011001,

100001, 101001, 110001, 001010, 010010, 011010, 100010, 101010, 110010, 001011,

010011, 011011, 100011, 101011, 110011, 001100, 010100, 011100, 100100,101100, 110100,

001101, 010101, 011101, 100101, 101101,110101, 001110, 010110, 011110, 100110, 101110,

110110 }.

The edges refer to both V1 and V2 such as e(1,4), e(1,5), e(1,6), e(2,4), e(2,5), e(2,6), e(3,4),

e(3,5), e(3,6) will be considered present. The full solution space is shown parting into four

parts in Table 3. If we let x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 x11, x12, x13, x14 and x15 to represent

the edge e1,2, e1,3, e2,3, e4,5, e4,6, e5,6, e1,4, e2,4, e3,4, e1,5, e2,5, e3,5, e1,6 ,e2,6 ,e3,6, respectively, we

get the solutions from the column one of Table 3(See Table 4).

Table 3. The satisfiable solution space of the Ramsey Number Problem R (3, 3)

The solution
space of the
edge e1,2 e1,3 e2,3
e4,5 e4,6 e5,6

The solution of the edge
e1,4 e2,4 e3,4

The solution of the edge
e1,5 e2,5 e3,5

The solution of the edge
e1,6 e2,6 e3,6

001001 011, 100, 101, 110, 111 011, 100, 101, 110, 111 011, 100, 101, 110, 111
010001 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
011001 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
100001 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
101001 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
110001 000, 001, 010, 011, 100 000, 001, 010, 011, 100 000, 001, 010, 011, 100
001010 011, 100, 101, 110, 111 011, 100, 101, 110, 111 011, 100, 101, 110, 111
010010 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
011010 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
100010 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
101010 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
110010 000, 001, 010, 011, 100 000, 001, 010, 011, 100 000, 001, 010, 011, 100
001011 011, 100, 101, 110, 111 011, 100, 101, 110, 111 011, 100, 101, 110, 111
010011 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
011011 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
100011 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101

-365-

101011 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
110011 000, 001, 010, 011, 100 000, 001, 010, 011, 100 000, 001, 010, 011, 100
001100 011, 100, 101, 110, 111 011, 100, 101, 110, 111 011, 100, 101, 110, 111
010100 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
011100 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
100100 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
101100 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
110100 000, 001, 010, 011, 100 000, 001, 010, 011, 100 000, 001, 010, 011, 100
001101 011, 100, 101, 110, 111 011, 100, 101, 110, 111 011, 100, 101, 110, 111
010101 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
011101 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
100101 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
101101 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
110101 000, 001, 010, 011, 100 000, 001, 010, 011, 100 000, 001, 010, 011, 100
001110 011, 100, 101, 110, 111 011, 100, 101, 110, 111 011, 100, 101, 110, 111
010110 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
011110 010, 011, 100, 110 010, 011, 100, 110 010, 011, 100, 110
100110 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
101110 001, 011, 100, 101 001, 011, 100, 101 001, 011, 100, 101
110110 000, 001, 010, 011, 100 000, 001, 010, 011, 100 000, 001, 010, 011, 100

Table 4. The satisfiable solution space of from the column one in Table 3

x1 x2 x3 x4 x5 x6 x7 x8 x9
x10 x11 x12 x13 x14 x15

x1 x2 x3 x4 x5 x6 x7 x8 x9
x10 x11 x12 x13 x14 x15

x1 x2 x3 x4 x5 x6 x7 x8 x9
x10 x11 x12 x13 x14 x15

x1 x2 x3 x4 x5 x6 x7 x8 x9
x10 x11 x12 x13 x14 x15

001001011011011 001001100011011 001001101011011 001001110011011
001001111011011 001001011100011 001001100100011 001001101100011
001001110100011 001001111100011 001001011101011 001001100101011
001001101101011 001001110101011 001001111101011 001001011110011
001001100110011 001001101110011 001001110110011 001001111110011
001001011111011 001001100111011 001001101111011 001001110111011
001001111111011 001001011011100 001001100011100 001001101011100
001001110011100 001001111011100 001001011100100 001001100100100
001001101100100 001001110100100 0010011111 00100 001001011101100
001001100101100 001001101101100 001001110101100 001001111101100
001001011110100 001001100110100 001001101110100 001001110110100
001001111110100 001001011111100 001001100111100 001001101111100
001001110111100 001001111111100 001001011011101 001001100011101
001001101011101 001001110011101 001001111011101 001001011100101
001001100100101 001001101100101 001001110100101 001001111100101
001001011101101 001001100101101 001001101101101 001001110101101
001001111101101 001001011110101 001001100110101 001001101110101
001001110110101 001001111110101 001001011111101 001001100111101
001001101111101 001001110111101 001001111111101 001001011011110
001001100011110 001001101011110 001001110011110 001001111110111
001001011111111 001001100111111 001001101111111 001001110111111
001001101100110 001001110100110 001001111100110 001001011101110
001001111011110 001001011100110 001001100100110 001001100101110

-366-

001001101101110 001001110101110 001001111101110 001001011110110
001001100110110 001001101110110 001001110110110 001001111110110
001001011111110 001001100111110 001001101111110 001001110111110
001001111111110 001001011011111 001001100011111 001001101011111
001001110011111 001001111011111 001001011100111 001001100100111
001001101100111 001001110100111 001001111100111 001001011101111
001001100101111 001001101101111 001001110101111 001001111101111
001001011110111 001001100110111 001001101110111 001001110110111
001001111111111

For example, the DNA strand 001001011011011 represents the graph shown in Figure 6.

By the parallel searcher, we can see that there will be a 3-clique containing the vertex 2, 3 and

4 in Figure 6. Hence, the DNA strand 001001011011011 is no part of the solution and will be

removed from the solution space. Applying the parallel searcher to the DNA strand above, we

find out that no DNA strand from column one of Table 3 is left.

Figure 6. The graph represented by the DNA strand ‘001001011011011’

After searching all the DNA strands in Table 3 with the parallel searcher, there is no DNA

strand left in the final data pool and detecting the test tube T returns ‘no’. So the solution to

the Ramsey Number Problem R(3,3) is 6.

6. Discussion and Conclusion

As it has been shown, DNA computing has the advantage of massive computational

parallelism [31]. However, from [32], we can see that DNA computer’s power is limited by

the volume of DNA that can be manipulated in the lab. At present, the DNA volume’s

exponential explosion problem has been the critical factor that constraint the development of

-367-

the DNA computing. In this paper, we demonstrated the power of DNA-based

supercomputing by showing that the Ramsey number problem can be solved under this

computation model efficiently. For the purposes of decreasing the DNA volume complexity

of the Ramsey Number problem, the divide and conquer algorithm is taken into the

DNA-based computing and a novel DNA computing algorithm is proposed. Compared to

enumerating DNA computing algorithm for Ramsey Number problem, our new method is

more volume-efficient and has a lower error rate.

In the future, molecular computing may be a good choice for massively parallel

computations. For the objective to reach a free stage in using DNA computers just as using

classical digital computers, many technical difficulties have to overcome before this can be a

reality such as real time updating a solution when the initial condition of a problem changes,

finding out the exact answer quickly and efficiently or when the size of the initial data pool

increases exponentially with the number of variables. We hope that our study will make a

contribution in DNA computing and can also clarify that DNA-based computing is a

technology that is worth pursuing.

Acknowledgement

This research is supported by the Projects of National Natural Science Foundation of China
under grants (60603053, 90715029), the Ministry of Education for New Century Excellent
Talent Support Program, Natural Science Foundation of Zhejiang province under grant
Y1090264, Natural Science Foundation of Hunan province under grant 07JJ6109.

References

[1] K. H. Zimmermann, Efficient DNA sticker algorithms for NP–complete graph
problems, Comput. Phys. Commun. 144 (2002) 297–309.

[2] W. L. Chang, M. Ho, M. Guo, X. Jiang, J. Xue, M. Li, Fast parallel DNA–based
algorithms for molecular computation: Determining a prime number, Proceedings of
the Third International Conference on Information Technology and Applications, 2005,
pp. 447–452.

[3] W. L. Chang, T. T. Ren, J. Luo, M. Feng, M. Guo, K. W. Lin, Quantum algorithms for
biomolecular solutions of the satisfiability problem on a quantum machine, IEEE
Trans. Nanobiosci. 7 (2008) 215–222.

[4] D. F. Li, X. R. Li, H. T. Huang, Scalability of the surface–based DNA algorithm for
3–SAT, BioSystems 85 (2006) 95–98.

-368-

[5] M. Ho, W. L. Chang, M. Guo, Fast parallel solution for set–packing and clique
problems by DNA–based computing, IEICE Trans. Inf. Syst. E87-D(7) (2004)
1782–1788.

[6] M. Ho, Fast parallel molecular solutions for DNA–based supercomputing: The
subset–product problem, BioSystems 80 (2005) 233–250.

[7] W. L. Chang, M. Guo, M. Ho, Fast parallel molecular algorithms for DNA–based
computation, IEEE Trans. Nanobiosci. 4 (2005) 133–163.

[8] W. L. Chang, M. Guo, Molecular solutions for the subset–sum problem on
DNA–based supercomputing, BioSystems 73 (2004) 117–130.

[9] Y. Li, C. Fang, Q. Ouyang, Genetic algorithm in DNA Computing: A solution to the
maximal clique problem, Chinese Sci. Bull. 49 (2004) 967–971.

[10] Q. Huiqin, L. Mingming, Z. Hong, Solve maximum clique problem by sticker model
in DNA computing, Prog. Nat. Sci. 14 (2004) 1116–1121.

[11] K. L. Li, F. J. Yao, J. Xu, Improved molecular solutions for the knapsack problem on
DNA–based supercomputing, Chinese J. Comput. Res. Develop. 44 (2007) 1063–1070.

[12] E. Horowitz, S. Sahni, Computing partitions with applications to the knapsack problem,
J. ACM 21(1974) 277–292.

[13] S. Y. Hsieh, M. Y. Chen. A DNA–based graph encoding scheme with its applications
to graph isomorphism problem, Appl. Math. Comput. 203 (2008) 502–512.

[14] M. Guo, M. Ho, W. L. Chang. Fast parallel molecular solution to the dominating–set
problem on massively parallel biocomputing, Parallel Comput. 30 (2004) 1109–1125.

[15] B. Fu, R. Beigel, Length bounded molecular computing, BioSystems 52 (1999)
155–163.

[16] B. Fu. Volume Bounded Molecular Computation, Ph.D. Thesis, Dep. Comput. Sci.,
Yale Univ., 1997

[17] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP–Completeness, Freeman, San Francisco, 1979.

[18] R. Graham, B. Rothschild, J. Spence, Ramsey theory, Elec. J. Comb. Dyn. Surv. 11
(2006) 3–36.

[19] B. D. Mckay, K M Zhang, The value of the Ramsey number R(3,8), J. Graph Theor.
16 (1992) 99–105.

[20] I. M. Martínez–Pérez, K. H. Zimmermann, Parallel bioinspired algorithms for NP
complete graph problems, J. Parallel Distrib. Comput. 69 (2009) 221–229.

[21] R. E. Greennwood, A M Cleason, Combinatorial relations and chromatic graphs,
Canadian J. Math. 7 (1955) l–7.

-369-

[22] J. E. Graver, J. Yackel, Some graph theoretic results associated with Ramsey’s
theorem, J. Comb. Theor. 4 (1968) 125–175.

[23] J. G. Kalbfleisch, Chromatic Graphs and Ramsey’s Theorem, Waterloo, Canada: Univ.
Waterloo, 1966.

[24] B. D. Mckay, S. P. Radziszowski, R(4, 5)=25, J. Graph Theor. 19 (1995) 309–322.

[25] G. Exoo, Announcement: on the Ramsey numbers R(4, 6), R(5, 6) and R(3, 12), Ars
Combin. 35 (1993) 85–85.

[26] G. Exoo, Alowerboundfor R(5, 5), J. Graph Theor. 13 (1989) 97–98.

[27] T. Spenced, Upper bounds for Ramsey numbers via linear programming [EB/OL],
(1993) [2007]. http://www. mathworld.wolfram.com/RamseyNumbor.html.

[28] X. D. Xu, Z. Xie, G. Exoo, S. P. Radziszowski, Constructive lower bounds on classical
multicolor Ramsey numbers, Elec. J. Comb. 11 (2004) 35–58.

[29] S. D. Lu, The Experimentation of Molecular Biology, Peking Union Medical College
Press.1999

[30] E. Horowitz, S. Sahni, Computing partitions with applications to the knapsack problem,
J. ACM 21 (1974) 277–292.

[31] K. L. Li, S. T. Zhou, J. Xu, Fast parallel molecular algorithms for DNA–based
computation: Solving the elliptic curve discrete logarithm problem over GF(2n), J.
Biomed. Biotech. 1 (2008) 1–10.

[32] B. Richard, F. Bin, Solving intractable problems with DNA computing, Proceedings of
the Thirteenth Annual IEEE Conference on Computational Complexity, 1998, pp.
154–168.

-370-

