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Abstract

The Wiener index is defined as the sum of distances between all unordered pairs of its
vertices. In [1], the authors claim to obtain the minimal Wiener index among connected
graphs on n vertices and radius r . We easily show that the conclusion is not correct by
examples. Therefore this question still remains open.

Introduction

For a connected graph G with vertex set V (G), the distance dG(u, v) between two

vertices u and v in G is the length of a shortest u − v path. The Wiener index is

a graph invariant defined as W (G) =
∑

{u,v}⊆V (G)

dG(u, v). The Laplacian matrix is

defined as L(G) = D(G) − A(G), where D(G) and A(G) are the diagonal matrix of

vertex degrees and adjacency matrix, respectively. The characteristic polynomial of

L is

det(λI − L(G)) =

n∑

k=0

(−1)k ck λn−k .

For trees, E. J. Farrell [2] obtained that cn−2 is equal to the Wiener index W (G). In

[1], C(a1, . . . , ad−1) is defined as a caterpillar obtained from a path Pd with vertices

v0, v1, . . . , vd by attaching ai pendent edges to vertex vi, i = 1, . . . , d− 1. Then in [1]

is considered Cn,d = C(0, . . . , 0, a� d
2
�, 0, . . . , 0) .
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Main results

Theorem 1. [1] Among connected graphs on n vertices and radius r, the caterpillar

Cn,2r−1 has minimal coefficient ck, for every k = 0, 1, . . . , n.

Corollary 2. [1] Among connected graphs on n vertices and radius r, the caterpillar

Cn,2r−1 has minimal Wiener index.

Remark 3: Corollary 2 is only true for trees, since for a tree T , cn−2(T ) = W (T ) .

If G is not a tree, then cn−2(G) is not necessarily equal to W (G) .

Example 4 shows a typographical problem in Theorem 1, i. e., the condition r ≥ 2,

is not included.

Example 4: Kn and Sn are the complete graph and star graph with n vertices. These

have radius 1, and Sn is the graph Cn,1 . By direct calculation, W (Kn) = n(n−1)
2

<

(n − 2)2 = W (Cn,1) .
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Figure 1: A counterexample with n = 5 and r = 2

When the condition r ≥ 2 is included in Theorem 1, it is also easy to find coun-

terexamples to Corollary 2.

Example 5: Let G1 be the graph in Figure 1. Then G1 and C5,3 are two connected

graphs with 5 vertices and radius 2. By direct calculations, W (G1) = 15 < 18 =

W (C5,3).

In summary, the following problem remains open:

Question 6: Which graph does attain the minimal Wiener index among connected

graphs with n vertices and radius r ?
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