MATCH Communications in Mathematical and in Computer Chemistry

Note on the Minimal Wiener Index of Connected Graphs With n Vertices and Radius r

Zhifu You and Bolian Liu*

School of Mathematics, South China Normal University, Guangzhou, 510631, P.R. China

(Received November 10, 2010)

Abstract

The Wiener index is defined as the sum of distances between all unordered pairs of its vertices. In [1], the authors claim to obtain the minimal Wiener index among connected graphs on n vertices and radius r. We easily show that the conclusion is not correct by examples. Therefore this question still remains open.

Introduction

For a connected graph G with vertex set V(G), the distance $d_G(u, v)$ between two vertices u and v in G is the length of a shortest u - v path. The Wiener index is a graph invariant defined as $W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u, v)$. The Laplacian matrix is defined as L(G) = D(G) - A(G), where D(G) and A(G) are the diagonal matrix of vertex degrees and adjacency matrix, respectively. The characteristic polynomial of L is

$$det(\lambda I - L(G)) = \sum_{k=0}^{n} (-1)^k c_k \lambda^{n-k} .$$

For trees, E. J. Farrell [2] obtained that c_{n-2} is equal to the Wiener index W(G). In [1], $C(a_1, \ldots, a_{d-1})$ is defined as a caterpillar obtained from a path P_d with vertices v_0, v_1, \ldots, v_d by attaching a_i pendent edges to vertex $v_i, i = 1, \ldots, d-1$. Then in [1] is considered $C_{n,d} = C(0, \ldots, 0, a_{\lfloor \frac{d}{2} \rfloor}, 0, \ldots, 0)$.

^{*}Corresponding author who is supported by NNSF of China (No. 11071088). E-mail address: liubl@scnu.edu.cn

Main results

Theorem 1. [1] Among connected graphs on n vertices and radius r, the caterpillar $C_{n,2r-1}$ has minimal coefficient c_k , for every k = 0, 1, ..., n.

Corollary 2. [1] Among connected graphs on n vertices and radius r, the caterpillar $C_{n,2r-1}$ has minimal Wiener index.

Remark 3: Corollary 2 is only true for trees, since for a tree T, $c_{n-2}(T) = W(T)$. If G is not a tree, then $c_{n-2}(G)$ is not necessarily equal to W(G).

Example 4 shows a typographical problem in Theorem 1, i. e., the condition $r \ge 2$, is not included.

Example 4: K_n and S_n are the complete graph and star graph with *n* vertices. These have radius 1, and S_n is the graph $C_{n,1}$. By direct calculation, $W(K_n) = \frac{n(n-1)}{2} < (n-2)^2 = W(C_{n,1})$.

Figure 1: A counterexample with n = 5 and r = 2

When the condition $r \ge 2$ is included in Theorem 1, it is also easy to find counterexamples to Corollary 2.

Example 5: Let G_1 be the graph in Figure 1. Then G_1 and $C_{5,3}$ are two connected graphs with 5 vertices and radius 2. By direct calculations, $W(G_1) = 15 < 18 = W(C_{5,3})$.

In summary, the following problem remains open:

Question 6: Which graph does attain the minimal Wiener index among connected graphs with n vertices and radius r?

References

- A. Ilić, A. Ilić, D. Stevanović, On the Wiener index and Laplacian coefficients of graphs with given diameter or radius, *MATCH Commun. Math. Comput. Chem.* 63 (2010) 91–100.
- [2] E. J. Farrell, An introduction to matching polynomials, J. Comb. Theory B 27 (1979) 75–86.