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Abstract

We determine the n-vertex unicyclic graphs with the smallest, the second and the

third smallest hyper–detour indices for n ≥ 5, and the n-vertex unicyclic graphs with

the k-th largest hyper–detour indices for all k up to �n
2
�+ 4 for n ≥ 6 (and to five if

n = 5) . To obtain these results, we also determine the n-vertex unicyclic graphs of

cycle length r, 3 ≤ r ≤ n, with the smallest and the largest hyper–detour indices.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V (G) and edge set E(G) . For

u, v ∈ V (G), the (graph–theoretical) distance duv between u and v in G is the length

of a shortest path connecting them, and the detour distance luv is between u and v

in G the length of a longest path connecting them. Note that luu = duu = 0 for any

u ∈ V (G) .
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The oldest graph–theoretical molecular descriptor is the Wiener index introduced

in 1947 [1, 2]. The hyper–Wiener index was introduced by Randić [3] in 1993 for

trees, which was extended to all connected graphs by Klein et al. [4]. The Wiener

index of the graph G is defined as [2]

W (G) =
∑

{u,v}⊆V (G)

duv .

The hyper–Wiener index of the graph G is defined as [4]

WW (G) =
∑

{u,v}⊆V (G)

(
duv + 1

2

)
=

1

4

∑

u∈V (G)

∑

v∈V (G)

(
d 2

uv + duv
)
.

If the distance used in the definitions of the Wiener and the hyper–Wiener indices

is replaced by the detour distance, then the resulting quantities are called the de-

tour and the hyper–detour indices, respectively. The detour index was named so by

Lukovits [5] in 1996, which was also introduced by Amić and Trinajstić [6] earlier as

the Wiener–like index. The hyper–detour index of the graph G, denoted by ωω(G),

was proposed by Lukovits [5], see also [7]. It is defined as [5, 7, 8]

ωω(G) =
∑

{u,v}⊆V (G)

(
luv + 1

2

)
=

1

4

∑

u∈V (G)

∑

v∈V (G)

(
l 2uv + luv

)
.

Let V (G) = {u1, u2, . . . , un} . The detour–path matrix [9, 10] of G is an n × n

symmetricmatrix whose off–diagonal (i, j)-entry is the count of all paths of any length

(at least one) that are included within a longest path between vertex ui and vertex uj,

i.e.,
(luiuj+1

2

)
, and whose diagonal entries are all equal to 0 . Then the hyper–detour

index is calculated as the half–sum of the entries of the detour–path matrix [11]. Note

that ωω(G) = WW (G) if G is a tree.

Intercorrelation between hyper–detour index and other molecular descriptors such

as the Wiener index, the hyper–Wiener index, the Harary index, the hyper–Harary in-

dex, and the detour index was studied in [12] on three sets of branched and unbranched

alkanes and cycloalkanes with up to eight carbon atoms, and the hyper–detour index

has been tested in structure–property modeling, see, e.g., [13]. Recent applications

of the hyper–detour index may be found in, e.g., [14].

Xing et al. [15] studied the properties of the hyper–Wiener index of unicyclic

graphs. Zhou and Cai [16] began the study of the mathematical properties of the
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detour index. In this paper, we investigate the hyper–detour index of unicyclic graphs.

We determine the n-vertex unicyclic graphs with the smallest, the second and the

third smallest hyper–detour indices for n ≥ 5, and the n-vertex unicyclic graphs with

the k-th largest hyper–detour indices for all k up to �n
2
�+ 4 for n ≥ 6 (and to five if

n = 5) . To obtain these results, we also determine the n-vertex unicyclic graphs of

cycle length r, 3 ≤ r ≤ n, with the smallest and the largest hyper–detour indices.

2. PRELIMINARIES

Let Sn and Pn be the n-vertex star and path, respectively.

Lemma 2.1. [17] Let T be an n-vertex tree different from Sn and Pn . Then 1

2
(n −

1)(3n− 4) = WW (Sn) < WW (T ) < WW (Pn) =
1

24
n(n− 1)(n+ 1)(n+ 2) .

For a connected graph G with u ∈ V (G), let Wu(G) =
∑

v∈V (G)

duv and WWu(G) =

1

2

∑
v∈V (G)

(d 2
uv + duv) . The following lemma is easy to check.

Lemma 2.2. Let T be an n-vertex tree with u ∈ V (T ), where n ≥ 3 . Let x and y be

the center of the star Sn and a terminal vertex of the path Pn, respectively. Then

n− 1 = Wx(Sn) ≤ Wu(T ) ≤ Wy(Pn) =

(
n

2

)
,

n− 1 = WWx(Sn) ≤ WWu(T ) ≤ WWy(Pn) =

(
n+ 1

3

)
.

In either case, left equality holds exactly when T = Sn and u = x, and right equality

holds exactly when T = Pn and u is a terminal vertex.

For n ≥ 5, let S ′
n be the tree formed by attaching a pendent vertex to a pendent

vertex of the star Sn−1, and for n ≥ 6, let S′′
n be the tree formed by attaching two

pendent vertices to a pendent vertex of the star Sn−2 .

Lemma 2.3. [17] Among the n-vertex trees, S ′
n for n ≥ 5 is the unique tree with the

second smallest hyper–Wiener index, which is equal to 1

2
(3n2 − n − 14), and S ′′

n for

n ≥ 6 is the unique tree with the third smallest hyper–Wiener index, which is equal

to 1

2
(3n2 + 5n− 44) .
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For a connected graph G with u, v ∈ V (G), let Luv denote
(
luv+1

2

)
= 1

2
(l 2uv + luv) .

Let ωu(G) =
∑

v∈V (G)

luv and ωωu(G) =
∑

v∈V (G)

Luv . Let Cn be the n-vertex cycle with

n ≥ 3 .

Lemma 2.4. [5] Let v be a vertex on the cycle Cr with r ≥ 3 . Then ωv(Cr) =

1

4
(3r2 − 4r + εr) where εr = 1 if r is odd and εr = 0 if r is even,

ωωv(Cr) =

{
(r−1)(r+1)(7r−3)

24
if r is odd,

r(r+1)(7r−10)

24
if r is even,

ωω(Cr) =

{
r(r−1)(r+1)(7r−3)

48
if r is odd,

r2(r+1)(7r−10)

48
if r is even.

Let Cr(T1, T2, . . . , Tr) be the graph constructed as follows. Let the vertices of

the cycle Cr be labeled consecutively by v1, v2, . . . , vr . Let T1, T2, . . . , Tr be vertex–

disjoint trees such that Ti and the cycle Cr have exactly one vertex vi in common for

i = 1, 2, . . . , r . Then any n-vertex unicyclic graph G with a cycle on r vertices is of

the form Cr(T1, T2, . . . , Tr), where
r∑

i=1

|Ti| = n, and |H| = |V (H)| for a graph H.

Proposition 2.1. For r ≥ 3, let G = Cr(T1, T2, . . . , Tr) . Then

ωω(G) =
r∑

i=1

WW (Ti) +
r∑

i=1

(|G| − |Ti|)WWvi(Ti) +
r∑

i=1

∑

j �=i

|Ti|lvivjWvj(Tj)

+
∑

1≤i<j≤r

[|Ti||Tj|Lvivj +Wvi(Ti)Wvj(Tj)] .

Proof. For a ∈ V (Ti) and b ∈ V (Tj) with 1 ≤ i < j ≤ r, we have

Lab =
1

2

(
l 2ab + lab

)

=
1

2

[
(davi + dbvj + lvivj)

2 + davi + dbvj + lvivj
]

=
1

2

(
d 2

avi
+ davi + d 2

bvj
+ dbvj + l 2vivj + lvivj + 2davidbvj + 2davilvivj + 2dbvj lvivj

)

=
1

2

(
d 2

avi
+ davi

)
+

1

2

(
d 2

bvj
+ dbvj

)
+ Lvivj + davidbvj + davilvivj + dbvj lvivj .

Thus, we have

ωω(G)−
r∑

i=1

WW (Ti) =
∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

Lab
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=
∑

1≤i<j≤r

[
|Tj|WWvi(Ti) + |Ti|WWvj(Tj) + |Ti||Tj|Lvivj

+Wvi(Ti)Wvj(Tj) + |Tj|lvivjWvi(Ti) + |Ti|lvivjWvj(Tj)
]

=
r∑

i=1

(|G| − |Ti|)WWvi(Ti)

+
∑

1≤i<j≤r

[
|Ti||Tj|Lvivj +Wvi(Ti)Wvj(Tj)

]

+
r∑

i=1

∑

j �=i

|Ti|lvivjWvj(Tj) .

The result follows. �

For an edge e of the graph G, G−e denotes the graph obtained from G by deleting

the edge e, and for an edge of the complement of G, G+e denotes the graph obtained

from G by adding the edge e .

For integers r and n with 3 ≤ r ≤ n, let Un,r be the set of n-vertex unicyclic

graphs with cycle length r . Let Un be the set of n-vertex unicyclic graphs.

3. UNICYCLIC GRAPHS WITH SMALL

HYPER–DETOUR INDICES

In this section, we determine the n-vertex unicyclic graph(s) of cycle length r, 3 ≤
r ≤ n, with the smallest hyper–detour index and n-vertex unicyclic graphs with the

smallest, the second and the third smallest hyper–detour indices.

Let Sn,r = Cr(T1, T2, . . . , Tr), where |T1| = n− r+1, |T2| = · · · = |Tr| = 1, and T1

is a star with center v1 . In particular, Sn,n = Cn .

Lemma 3.1. For 3 ≤ r ≤ n,

ωω(Sn,r) =

{
3n2

2
+ (7r3+15r2−79r−27)n

24
+ −7r4−33r3+79r2+57r

48
if r is odd,

3n2

2
+ (7r3+15r2−82r−36)n

24
+ −7r4−33r3+82r2+72r

48
if r is even.

Proof. To compute ωω(Sn,r), consider the contributions of the pairs of vertices in

the star T1 = Sn−r−1, the pairs of vertices in the cycle, and the pairs with one vertex

in T1 and the other vertex in the cycle both different from v1 . It is easily seen that

ωω(Sn,r) = WW (Sn−r+1) + ωω(Cr) +
1

2

r∑

i=2

[
(1 + lv1vi)

2 + 1 + lv1vi
]
(n− r)
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= WW (Sn−r+1) + ωω(Cr) + (n− r)
r∑

i=2

(
1

2
l 2v1vi +

3

2
lv1vi + 1

)

= WW (Sn−r+1) + ωω(Cr)

+(n− r) [ωωv1(Cr) + ωv1(Cr)] + (n− r)(r − 1) .

Now the result follows from Lemmas 2.1 and 2.4. �

Proposition 3.1. Let G ∈ Un,r, where 3 ≤ r ≤ n . Then ωω(G) ≥ ωω(Sn,r) with

equality if and only if G = Sn,r .

Proof. It is obvious for r = n − 1, n . Suppose that r ≤ n − 2 . Let G =

Cr(T1, T2, . . . , Tr) be a graph with the smallest hyper–detour index in Un,r . By Propo-

sition 2.1 and Lemmas 2.1 and 2.2, Ti is a star with center vi for each i = 1, 2, . . . , r .

Suppose that there exist j and k with 1 ≤ j < k ≤ r such that |Tj|, |Tk| ≥ 2 .

Let a ∈ V (Tj), b ∈ V (Tk) with a �= vj and b �= vk . Suppose without loss of gen-

erality that ωωa(G) ≤ ωωb(G) . Then for G′ = G − vkb + vjb ∈ Un,r, we have

ωωa(G)− ωωa(G
′) = L(a, b)− 1

2
(22 + 2) = Lab − 3 and then

ωω(G′)− ωω(G) = ωωb(G
′)− ωωb(G) = ωωa(G

′)− ωωb(G)

= ωωa(G) + 3− Lab − ωωb(G)

= ωωa(G)− ωωb(G) + 3− 1

2

[(
2 + lvjvk

)2
+ 2 + lvjvk

]

= ωωa(G)− ωωb(G)− 1

2

(
l 2vjvk + 5lvjvk

)
< 0,

which is a contradiction to the choice of G . Thus r− 1 of |T1|, |T2|, . . . , |Tr| are equal
to 1 and the remaining one is equal to n− (r − 1), i.e., G = Sn,r . �

Let Γn be the set of n-vertex unicyclic graphs C3(T1, T2, T3) with |T2| = |T3| = 1 .

Let Ψn be the set of n-vertex unicyclic graphs C3(T1, T2, T3) with |T1| ≥ |T2| ≥
max{|T3|, 2} . Let Φn be the set of n-vertex unicyclic graphs with cycle length at

least four. Then, Un = Γn ∪Ψn ∪ Φn .

For n ≥ 5, let B′
n be the n-vertex unicyclic graph formed by attaching a path P2

and n − 5 pendent vertices to a vertex of a triangle, and for n ≥ 6, let B′′
n be the

n-vertex unicyclic graph formed by attaching a star S3 at its center and n−6 pendent

vertices to a vertex of a triangle.
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Lemma 3.2. Among the graphs in Γn, B
′
n for n ≥ 5 is the unique graph with the

second smallest hyper–detour index, which is equal to 1

2
(3n2 + 11n− 38), and B′′

n for

n ≥ 6 is the unique graph with the third smallest hyper–detour index, which is equal

to 1

2
(3n2 + 17n− 64) .

Proof. The case n = 5 is trivial. Let G = C3(T1, T2, T3) ∈ Γn with n ≥ 6 . Note that

ωω(C3) = 9 . Then

ωω(G) = 9 +WW (T1) + 2
∑

u∈V (T1)\{v1}

(
luv2 + 1

2

)
,

which, together with Lemma 2.3, implies that B′
n and B′′

n are the unique graphs with

respectively the second and the third smallest hyper–detour indices, which are equal

to 1

2
(3n2 + 11n − 38) and 1

2
(3n2 + 17n − 64), respectively. This proves the lemma.

�

Let Sn(a, b, c) be the n-vertex unicyclic graph formed by attaching a − 1, b − 1

and c− 1 pendent vertices to the three vertices of a triangle, respectively, where a, b,

c ≥ 1 and a+ b+ c = n .

Lemma 3.3. Among the graphs in Ψn with n ≥ 5, Sn(n− 3, 2, 1) is the unique graph

with the smallest hyper–detour index, which is equal to 1

2
(3n2 + 19n− 80) .

Proof. Let G = C3(T1, T2, T3) ∈ Ψn with a ≥ b ≥ max{c, 2} and a+ b+ c = n, where

a = |T1|, b = |T2| and c = |T3| .
If G = Sn(a, b, c) and G �= Sn(n − 3, 2, 1), then it is easily seen that ωωx(G) ≤

ωωy(G) for pendent vertices x ∈ V (T1) and y ∈ V (T2) ∪ V (T3), and by the proof of

Proposition 3.1, we have

ωω(Sn(a, b, c)) ≥ ωω(Sn(a+ c− 1, b, 1)) ≥ ωω(Sn(n− 3, 2, 1))

and at least one of the two inequalities is strict. If G �= Sn(a, b, c), then by Proposition

2.1, we have ωω(G) > ωω(Sn(a, b, c)) ≥ ωω(Sn(n−3, 2, 1)) = 1

2
(3n2+19n−80) . Then

the result follows. �

Proposition 3.2. Among the graphs in Un,

(i) Sn,3 for n ≥ 3 is the unique graph with the smallest hyper–detour index, which is
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equal to 1

2
(3n2 + 5n− 24);

(ii) C4 for n = 4, S5(2, 2, 1) for n = 5 and B′
n for n ≥ 6 are the unique graphs with

the second smallest hyper–detour index, which is equal to 30 for n = 4, 45 for n = 5,

and 1

2
(3n2 + 11n− 38) for n ≥ 6;

(iii) B′
5 for n = 5, Sn(n−3, 2, 1) for n = 6, 7, B′′

8 and S8(5, 2, 1) for n = 8, and B′′
n for

n ≥ 9 are the unique graphs with the third smallest hyper–detour index, which is equal

to 46 for n = 5, 71 for n = 6, 100 for n = 7, 132 for n = 8, and 1

2
(3n2 + 17n − 64)

for n ≥ 9 .

Proof. By Lemma 3.1, if r is odd with 3 ≤ r ≤ n− 1, then

24 [ωω(Sn,r+1)− ωω(Sn,r)] = (21r2 + 48r − 69)n− 14r3 − 69r2 + 26r + 57

≥ (21r2 + 48r − 69)(r + 1)− 14r3 − 69r2 + 26r + 57

= 7r3 + 5r − 12 > 0,

and if r is even with 4 ≤ r ≤ n− 1, then

24 [ωω(Sn,r+1)− ωω(Sn,r)] = (21r2 + 54r − 48)n− 14r3 − 72r2 + 8r + 48

≥ (21r2 + 54r − 48)(r + 1)− 14r3 − 72r2 + 8r + 48

= r(7r2 + 3r + 14) > 0 .

It follows that ωω(Sn,r) is increasing with respect to r ∈ {3, 4, . . . , n} . Thus, by

Proposition 3.1 and Lemma 3.1, Sn,3 is the unique graph in Un with the smallest

hyper–detour index, which is equal to 1

2
(3n2 + 5n − 24), proving (i). Moreover, Sn,4

is the unique graph in Φn with the smallest hyper–detour index, which is equal to

1

2
(3n2 + 27n− 96) .

Now we prove (ii). The case n = 4 is trivial. For n ≥ 5, the graphs in Un

with the second smallest hyper–detour index are just the graphs in Un \ {Sn,3} =

(Γn \ {Sn,3})∪Ψn ∪Φn with the smallest hyper–detour index, which, by Lemmas 3.2

and 3.3, is equal to min{1

2
(3n2 +11n− 38), 1

2
(3n2 +19n− 80), 1

2
(3n2 +27n− 96)} . It

is equal to 1

2
(3n2 + 19n− 80) = 45 for n = 5 and 1

2
(3n2 + 11n− 38) for n ≥ 6 . Then

(ii) follows.

¿From (i) and (ii) and by Lemmas 3.2 and 3.3, we find that the graphs in U5 with

the third smallest hyper–detour index are just the graphs in U5 \ {S5,3, S5(2, 2, 1)} =
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(Γ5 \ {S5,3})∪Φ5 with the smallest hyper–detour index, which is equal to min{1

2
(3×

52 + 11 × 5 − 38), 1
2
(3 × 52 + 27 × 5 − 96)} = min{46, 57} = 46, and for n ≥ 6,

the graphs in Un with the third smallest hyper–detour index are just the graphs in

Un \ {Sn,3, B
′
n} = (Γn \ {Sn,3, B

′
n}) ∪ Ψn ∪ Φn with the smallest hyper–detour index,

which is equal to min{1

2
(3n2 +17n− 64), 1

2
(3n2 +19n− 80), 1

2
(3n2 +27n− 96)} . For

n ≥ 9,
1

2
(3n2 + 17n− 64) <

1

2
(3n2 + 19n− 80) <

1

2
(3n2 + 27n− 96)

and for n = 6, 7, 8, the corresponding values are listed in Table 1. Now (iii) follows

easily. �

Table 1: Some graphs and their hyper–detour indices.

graph
hyper–detour indices

n 6 7 8

B′′
n

1

2
(3n2 + 17n− 64) 73 101 132

Sn(n− 3, 2, 1) 1

2
(3n2 + 19n− 80) 71 100 132

Sn,4
1

2
(3n2 + 27n− 96) 87 120 156

4. UNICYCLIC GRAPHS WITH LARGE

HYPER–DETOUR INDICES

In this section, we determine the n-vertex unicyclic graph(s) of cycle length r, 3 ≤
r ≤ n, with the largest hyper–detour index and the n-vertex unicyclic graphs with

the k-th largest hyper–detour indices for all k up to �n
2
�+ 4 for n ≥ 6 (and to five if

n = 5).

Let Pn,r = Cr(T1, T2, . . . , Tr), where |T1| = n− r+1, |T2| = · · · = |Tr| = 1, and T1

is a path with a terminal vertex v1 . In particular, Pn,n = Cn .

Lemma 4.1. For 3 ≤ r ≤ n,

ωω(Pn,r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n4+2n3+(3r2−6r+2)n2+(−3r3+12r2−15r+4)n
24

+5r4−19r3+19r2−5r
48

if r is odd,

n4+2n3+(3r2−6r−1)n2+(−3r3+12r2−12r−2)n
24

+5r4−19r3+16r2+4r
48

if r is even.
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Proof. To compute ωω(Pn,r), consider the contributions of the pairs of vertices in

the path T1 = Pn−r+1, the pairs of vertices in the cycle, and the pairs with one vertex

in T1 and the other vertex in the cycle both different from v1 . It is easily seen that

ωω(Pn,r) = WW (Pn−r+1) + ωω(Cr) +
1

2

r∑

i=2

n−r∑

j=1

[
(j + lv1vi)

2 + j + lv1vi
]

= WW (Pn−r+1) + ωω(Cr)

+
1

2
(r − 1)

n−r∑

j=1

(
j2 + j

)
+

r∑

i=2

n−r∑

j=1

jlv1vi +
1

2
(n− r)

r∑

i=2

(
l2v1vi + lv1vi

)

= WW (Pn−r+1) + ωω(Cr)

+(r − 1)

(
n− r + 2

3

)
+

(
n− r + 1

2

)
ωv1(Cr) + (n− r)ωωv1(Cr) .

Now the result follows from Lemmas 2.1 and 2.4. �

Proposition 4.1. Let G ∈ Un,r, where 3 ≤ r ≤ n . Then ωω(G) ≤ ωω(Pn,r) with

equality if and only if G = Pn,r .

Proof. It is obvious for r = n − 1, n . Suppose that r ≤ n − 2 . Let G =

Cr(T1, T2, . . . , Tr) be a graph with the largest hyper–detour index in Un,r . By Propo-

sition 2.1 and Lemmas 2.1 and 2.2, Ti is a path with vi as one of its end vertices for

each i = 1, 2, . . . , r . Suppose that there exist j and k with 1 ≤ j < k ≤ r such that

|Tj|, |Tk| ≥ 2 . Let a �= vj and b �= vk be terminal vertices of Tj and Tk, respectively.

Suppose without loss of generality that ωωa(G) ≥ ωωb(G) . Let c be the neighbor of

b in G . Then for G′ = G− cb+ ab ∈ Un,r, we have

ωω(G′)− ωω(G) = ωωb(G
′)− ωωb(G)

=
∑

u∈V (G)\{b}

(
1 + lau + 1

2

)
− ωωb(G)

=
∑

u∈V (G)\{b}

(
lau + 1

2

)
+

∑

u∈V (G)\{b}
(lau + 1)− ωωb(G)

= ωωa(G)− Lab +
∑

u∈V (G)\{a,b}
(lau + 1) + 1− ωωb(G)

= ωωa(G)− ωωb(G) + n− 1 +
∑

u∈V (G)\{a,b}
lau − Lab .

Let z0z1 . . . zs be the longest path from z0 = a to zs = b in G, where s = lab ≥
|Tj| − 1+ |Tk| − 1+ � r

2
� ≥ |Tj|+ |Tk| . Thus 1 < |Tj| < lab − 1 . Obviously, lazi ≥ i for
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i = 1, 2, . . . , s−1 and laz|Tj | = |Tj|−1+r−1 = |Tj|+r−2 > |Tj| . Then
∑

u∈V (G)\{a,b}
lau ≥

s−1∑
i=1

lazi >
lab−1∑
i=1

i = 1

2
(l 2ab − lab), and thus n− 1+

∑
u∈V (G)\{a,b}

lau−Lab > n− 1− lab ≥ 0 .

We have ωω(G′) > ωω(G), which is a contradiction to the choice of G . It follows

that G = Pn,r . �

For integer i with i = 2, 3, . . . , �n
2
�, let Qn,n−2(1, i) be the unicyclic graph obtained

by attaching a pendent vertex to v1 and a pendent vertex to vi of the cycle Cn−2 .

Proposition 4.2. Among the graphs in Un with n ≥ 5, Cn, Pn,n−1 and Pn,n−2 are

the unique graphs with respectively the largest, the second and the third largest hyper–

detour indices, which are respectively equal to 1

48
n(n−1)(n+1)(7n−3), 1

48
(7n4−17n3+

29n2−55n+36) and 1

48
(7n4−31n3+107n2−257n+318) for odd n, 1

48
n2(n+1)(7n−10),

1

48
(7n4 − 17n3 + 32n2 − 52n+ 48) and 1

48
(7n4 − 31n3 + 104n2 − 260n+ 288) for even

n, Qn,n−2(1, k − 2) is the unique graph with the k-th largest hyper–detour index for

k = 4, 5, . . . , �n
2
� + 2, which is equal to 1

48
(7n4 − 31n3 + 71n2 − 161n + 210) + 1

2
(n−

k + 4)(n − k + 3) for odd n, and 1

48
(7n4 − 31n3 + 68n2 − 164n + 192) + 1

2
(n − k +

4)(n − k + 3) for even n, Sn,n−2 is the unique graph with the
(
�n
2
�+ 3

)
-th largest

hyper–detour index, which is equal to 1

48
(7n4 − 31n3 + 71n2 − 161n + 354) for odd

n, and 1

48
(7n4 − 31n3 + 68n2 − 164n + 336) for even n, and if n ≥ 6, then Pn,n−3 is

the unique graph with the
(
�n
2
�+ 4

)
-th largest hyper–detour index, which is equal to

1

48
(7n4−45n3+215n2−699n+1050) for odd n, and 1

48
(7n4−45n3+218n2−696n+1104)

for even n .

Proof. Suppose that 3 ≤ r ≤ n− 1 . If r is odd, then by Lemma 4.1, we have

24 [ωω(Pn,r+1)− ωω(Pn,r)]

= 6(r − 1)n2 + 9(−r2 + 2r − 1)n+ 10r3 − 15r2 + 2r + 3 .

Let f1(n) be the expression in the right–hand side of the above equation. Since

n ≥ r + 1, the derivative f ′
1(x) satisfies

f ′
1(n) = 12(r − 1)n+ 9(−r2 + 2r − 1)

≥ 12(r − 1)(r + 1) + 9(−r2 + 2r − 1)

= 3(r − 1)(r + 7) > 0,
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and then f1(n) is increasing for n ≥ r+1 . It follows that 24 [ωω(Pn,r+1)− ωω(Pn,r)] =

f1(n) ≥ f1(r+ 1) = 7r3 + 5r− 12 > 0 . Then we have ωω(Pn,r+1) > ωω(Pn,r) for odd

r ≥ 3 . If r is even, then by Lemma 4.1, we have

24 [ωω(Pn,r+1)− ωω(Pn,r)] = 6rn2 + 3(−3r2 + 4r)n+ 10r3 − 12r2 − 4r .

Let f2(n) be the expression in the right–hand side of the above equation. Since

n ≥ r + 1, the derivative f ′
2(x) satisfies

f ′
2(n) = 12rn+ 3(−3r2 + 4r) ≥ 12r(r + 1) + 3(−3r2 + 4r) = 3r(r + 8) > 0,

and then f2(n) is increasing for n ≥ r+1 . It follows that 24 [ωω(Pn,r+1)− ωω(Pn,r)] =

f2(n) ≥ f2(r+1) = r(7r2+3r+14) > 0 . Then we have ωω(Pn,r+1) > ωω(Pn,r) for even

r ≥ 4 . Thus, ωω(Pn,r) is increasing with respect to r ∈ {3, 4, . . . , n} . By Proposition

4.1 and Lemma 4.1, Cn, Pn,n−1 and Pn,n−2 are the unique graphs with respectively

the largest, the second largest, and the third largest hyper–detour indices.

It is easily seen that

ωω(Qn,n−2(1, i)) = ωω(Cn−2) + 2
n−2∑

j=1

1

2

[(
1 + lv1vj

)2
+ 1 + lv1vj

]
+

(
2 + lv1vi + 1

2

)

= ωω(Cn−2) + 2ωωv1(Cn−2) + 2ωv1(Cn−2)

+2(n− 2) +

(
lv1vi + 3

2

)
.

Note that ωω(Qn,n−2(1, i)) is increasing for �n−2

2
� ≤ lv1vi ≤ n − 3 . By Propositions

3.1 and 4.1, the hyper–detour indices of graphs in Un,n−2 for n ≥ 5 can be ordered as:

ωω(Pn,n−2) > ωω(Qn,n−2(1, 2)) > ωω(Qn,n−2(1, 3))

> · · · > ωω
(
Qn,n−2

(
1,
⌊n
2

⌋))
> ωω(Sn,n−2) .

By Lemma 3.1, we have

ωω(Sn,n−2) =

{
1

48
(7n4 − 31n3 + 71n2 − 161n+ 354) if n is odd,

1

48
(7n4 − 31n3 + 68n2 − 164n+ 336) if n is even.

By Lemma 4.1, we have

ωω(Pn,n−3) =

{
1

48
(7n4 − 45n3 + 215n2 − 699n+ 1050) if n is odd,

1

48
(7n4 − 45n3 + 218n2 − 696n+ 1104) if n is even.
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It follows that the hyper–detour indices of graphs in U5 can be ordered as: ωω(C5) >

ωω(P5,4) > ωω(P5,3) > ωω(Q5,3(1, 2)) > ωω(S5,3) . Suppose that n ≥ 6 . If n is odd,

then

ωω(Sn,n−2)− ωω(Pn,n−3) = 2n(7n2 − 72n+ 269)− 696 > 0,

and if n is even, then

ωω(Sn,n−2)− ωω(Pn,n−3) = 2n(7n2 − 75n+ 266)− 768 > 0 .

Thus among the graphs in Un for n ≥ 6, the first a few largest hyper–detour indices

can be ordered as:

ωω(Cn) > ωω(Pn,n−1) > ωω(Pn,n−2) > ωω(Qn,n−2(1, 2)) > ωω(Qn,n−2(1, 3))

> · · · > ωω
(
Qn,n−2

(
1,
⌊n
2

⌋))
> ωω(Sn,n−2) > ωω(Pn,n−3) .

Note that ωω(Qn−2(1, i)) is equal to
1

48
(7n4 − 31n3 + 71n2 − 161n+ 210) + 1

2
(n− i+

2)(n− i+1) if n is odd, and 1

48
(7n4−31n3+68n2−164n+192)+ 1

2
(n− i+2)(n− i+1)

if n is even. The result follows easily. �
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