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Abstract

We determine the n-vertex unicyclic graphs with the smallest, the second and the
third smallest hyper—detour indices for n > 5, and the n-vertex unicyclic graphs with
the k-th largest hyper-detour indices for all k up to [5] +4 for n > 6 (and to five if
n =5). To obtain these results, we also determine the n-vertex unicyclic graphs of

cycle length r; 3 < r <n, with the smallest and the largest hyper—detour indices.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V(G) and edge set E(G). For
u,v € V(G), the (graph-theoretical) distance d,, between u and v in G is the length
of a shortest path connecting them, and the detour distance l,, is between u and v
in G the length of a longest path connecting them. Note that [, = dy, = 0 for any

ueV(@Q).

*Correspondence to B. Zhou; E-mail: zhoubo@scnu.edu.cn
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The oldest graph-theoretical molecular descriptor is the Wiener index introduced
in 1947 [1, 2]. The hyper-Wiener index was introduced by Randi¢ [3] in 1993 for
trees, which was extended to all connected graphs by Klein et al. [4]. The Wiener
index of the graph G is defined as [2]

W@ = Y du.
{u0}CV(G)
The hyper-Wiener index of the graph G is defined as [4]
e - ¥ (M1 X Y @),
{u0}CV(G) uEV(G veV(Q)

If the distance used in the definitions of the Wiener and the hyper—Wiener indices
is replaced by the detour distance, then the resulting quantities are called the de-
tour and the hyper—detour indices, respectively. The detour index was named so by
Lukovits [5] in 1996, which was also introduced by Ami¢ and Trinajsti¢ [6] earlier as
the Wiener-like index. The hyper—detour index of the graph G, denoted by ww(G),
was proposed by Lukovits [5], see also [7]. It is defined as [5, 7, §]

ww(G) = Z (lw * 1) Z Z (12, + L) -
{uv}CV(G) UGV(G) veV(G)

Let V(G) = {u1,ug,...,u,}. The detour-path matrix [9, 10] of G is an n x n
symmetric matrix whose off-diagonal (7, j)-entry is the count of all paths of any length
(at least one) that are included within a longest path between vertex u; and vertex u;,
ie., (l“l“g“), and whose diagonal entries are all equal to 0. Then the hyper—detour
index is calculated as the half-sum of the entries of the detour—path matrix [11]. Note
that ww(G) = WIV(Q) if G is a tree.

Intercorrelation between hyper—detour index and other molecular descriptors such
as the Wiener index, the hyper-Wiener index, the Harary index, the hyper-Harary in-
dex, and the detour index was studied in [12] on three sets of branched and unbranched
alkanes and cycloalkanes with up to eight carbon atoms, and the hyper—detour index
has been tested in structure-property modeling, see, e.g., [13]. Recent applications
of the hyper—detour index may be found in, e.g., [14].

Xing et al. [15] studied the properties of the hyper—Wiener index of unicyclic
graphs. Zhou and Cai [16] began the study of the mathematical properties of the
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detour index. In this paper, we investigate the hyper-detour index of unicyclic graphs.
We determine the n-vertex unicyclic graphs with the smallest, the second and the
third smallest hyper—detour indices for n > 5, and the n-vertex unicyclic graphs with
the k-th largest hyper—detour indices for all k& up to |4 ] +4 for n. > 6 (and to five if
n = 5). To obtain these results, we also determine the n-vertex unicyclic graphs of

cycle length r, 3 <r <n, with the smallest and the largest hyper—detour indices.

2. PRELIMINARIES

Let S, and P, be the n-vertex star and path, respectively.

Lemma 2.1. [17] Let T be an n-vertex tree different from S, and P, . Then (n —
D)(Bn—4) = WW(S,) <WW(T) < WW(P,) = 4n(n —1)(n+ 1)(n+2).

For a connected graph G with u € V(G), let W, (G) = > dy, and WW,(G) =
veV(G)

: VZ(G)(dEE + duw) . The following lemma is easy to check.
ve

Lemma 2.2. Let T be an n-vertex tree with uw € V(T), where n > 3. Let x and y be

the center of the star S, and a terminal vertex of the path P,, respectively. Then

=1 = W,(S,) < Wy(T) < W,(P,) = (Z)

n—1=WW.(S,) < WW.(T) < WW,(P,) = (” '; 1) .

In either case, left equality holds exactly when T = S,, and u = x, and right equality

holds exactly when T = P, and u is a terminal vertez.

For n > 5, let S!, be the tree formed by attaching a pendent vertex to a pendent
vertex of the star S, 1, and for n > 6, let ! be the tree formed by attaching two

pendent vertices to a pendent vertex of the star S, 5.

Lemma 2.3. [17] Among the n-vertex trees, S, for n > 5 is the unique tree with the
second smallest hyper—Wiener index, which is equal to %(3712 —n—14), and S! for

n > 6 is the unique tree with the third smallest hyper—Wiener index, which is equal

to $(3n® 4+ 5n — 44).
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For a connected graph G with u, v € V(G), let L, denote (l“";l) = 2013+ lu) -
Let w,(G) = > ly and ww,(G) = 5. Ly . Let C,, be the n-vertex cycle with

veV(G) veV(G)
n>3.

Lemma 2.4. [5] Let v be a vertex on the cycle C. with r > 3. Then w,(C,) =

i(Sr2 —4r +¢,) where e, = 1 if r is odd and e, = 0 if r is even,

(r=1)(r+1)(7r—3) . .
(€)= —ra— if s odd,
Wolbr) =\ rpan@r—10)
24

{<1>(4+81><73> if 1 is odd,

if v is even,

ww(Cr) = 2(r41)(7r—10)
48

if v is even.

Let C.(T1,Ts,...,T.) be the graph constructed as follows. Let the vertices of
the cycle C, be labeled consecutively by vy, v, ..., . Let T, Ty, ..., T, be vertex—
disjoint trees such that 7; and the cycle C,. have exactly one vertex v; in common for

i=1,2,...,7. Then any n-vertex unicyclic graph G' with a cycle on r vertices is of

the form C,.(T1,Ts,...,T,), where Y |T;| =n, and |H| = |V(H)| for a graph H.
=1

Proposition 2.1. Forr >3, let G = C.(T1,Ts,...,T,). Then

ZWW +Z\G\ W) + 33 i, W (T)

i=1 j#i
+ > T L, + W (T)W,, (T5)]

1<i<j<r

Proof. For a € V(T;) and b € V(T;) with 1 < i < j < r, we have

Loy, = + lab)

N =N =N =N~

{ dam + (]bvj + lvw,) + davz + dbv, + lvw]]
( av; + drwz + db@ + db'u7 + lv V) + lvzq + 2davldbv] + Qdaui lvw] + 2db1{7 lviu;)

(A2, + duy,) + (dl?v] + d,wj) + Ly, + vy, + dans Lo, + i, Lo -

Thus, we have

1<i<j<r aeV(T;) beV (Ty)



-333-

S ITIWWL(T) + [TIWW,, (T) + T |T5| L.,
1<i<j<r

AW (TOWo, (T5) + | T Loy, Wo, (T3) + | Til Loy, W, (T)]
= > (|G| = |T)WW,,(T;)

i=1
+ Y (ITIT | L, + W (T W, (T)]

1<i<j<r

DL

i=1 j#i

Ly, Wi, (T5) -

The result follows. W

For an edge e of the graph G, G —e denotes the graph obtained from G by deleting
the edge e, and for an edge of the complement of G, G+ e denotes the graph obtained
from G by adding the edge e.

For integers r and n with 3 < r < n, let U,, be the set of n-vertex unicyclic

graphs with cycle length r. Let U, be the set of n-vertex unicyclic graphs.

3. UNICYCLIC GRAPHS WITH SMALL
HYPER-DETOUR INDICES

In this section, we determine the n-vertex unicyclic graph(s) of cycle length r, 3 <
r < n, with the smallest hyper-detour index and n-vertex unicyclic graphs with the
smallest, the second and the third smallest hyper-detour indices.

Let S, = C.(Th,Ts,...,T,), where |Ty| =n—r+1, |Ty|=---=|T,| =1, and Ty

is a star with center vy . In particular, S,,, = C,, .

Lemma 3.1. For3 <r <n,

3n2 | (Tr+15r2-79r—2T)n | —7rt-33r3479r2457r g .
>t 21 + 18 if ris odd,

3n2 + (7r3+15r2—82r—36)n + —7r*—33r34-82r24-72r
2 24 48

ww(Spy) = {

if  is even.

Proof. To compute ww(S,,,), consider the contributions of the pairs of vertices in
the star 77 = S,,_,_1, the pairs of vertices in the cycle, and the pairs with one vertex

in 77 and the other vertex in the cycle both different from v; . It is easily seen that

1 <
ww(Spy) = WW(SR,M)+W(C,)+§Z[(1+zm)2+1+zm] (n—r)

=2
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272

i

/1
WW (Sp_rs1) +wu(Cy) + (n — 1) (71? T/ 1)
=2

WW (Sp—ri1) + ww(C)

+(n = 1) [wwy, (Cr) + wy (Co)] + (n—r)(r —1).

Now the result follows from Lemmas 2.1 and 2.4. W

Proposition 3.1. Let G € U,,,, where 3 < r < n. Then ww(G) > ww(S,,) with

equality if and only if G = Sy, .

Proof. It is obvious for »r = n — 1, n. Suppose that r < n — 2. Let G =
C.(Th,Ts, ..., T.) be a graph with the smallest hyper—detour index in U,, , . By Propo-
sition 2.1 and Lemmas 2.1 and 2.2, T is a star with center v; for each i =1,2,... 7.
Suppose that there exist j and k with 1 < j < k < r such that |T}|, |T;| > 2.
Let a € V(Tj), b € V(T}) with a # v; and b # v, . Suppose without loss of gen-
erality that ww,(G) < wwy(G). Then for G' = G — vxb + v;b € U,,, we have

ww,(G) — wwa(G') = La,b) — 3(22 +2) = Lay, — 3 and then

we(G) —ww(G) = ww(G) —wwn(G) = wwn(G') — win(G)
= wWwe(G) + 3 = Loy — wwp(G)

= wwa(G) —wwy(G) +3 - % [(2 Hlow)’ +2+ lwk]

= wwu(G) — wwy(G) — % <12 + 51@,%) <0,

VU

which is a contradiction to the choice of G. Thus r —1 of |13, |T3|, ..., |T,| are equal

to 1 and the remaining one is equal to n — (r — 1), i.e., G=5,,. W

Let I, be the set of n-vertex unicyclic graphs Cs(71, T», T3) with |To| = T3] = 1.
Let W, be the set of n-vertex unicyclic graphs Cs(Th, Ty, Ts) with |[T1] > |Ty| >
max{|T3],2}. Let ®, be the set of n-vertex unicyclic graphs with cycle length at
least four. Then, U, =1, UV, U, .

For n > 5, let B!, be the n-vertex unicyclic graph formed by attaching a path P,
and n — 5 pendent vertices to a vertex of a triangle, and for n > 6, let B be the
n-vertex unicyclic graph formed by attaching a star S3 at its center and n— 6 pendent

vertices to a vertex of a triangle.
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Lemma 3.2. Among the graphs in T, Bl for n > 5 is the unique graph with the
second smallest hyper—detour index, which is equal to $(3n? + 11n — 38), and B, for
n > 6 is the unique graph with the third smallest hyper—detour index, which is equal

to 1(3n% +17n — 64) .

Proof. The case n = 5 is trivial. Let G = C3(T1,Ts,T3) € T',, with n > 6. Note that
ww(C3) =9. Then
ww = WW (T, 2 buvs + 1>,
(G)=9+WW(Ty)+ uemzl;\{m} ( 5

which, together with Lemma 2.3, implies that B], and B,/ are the unique graphs with
respectively the second and the third smallest hyper—detour indices, which are equal
to 2(3n® + 11n — 38) and 1(3n® + 17n — 64), respectively. This proves the lemma.
|

Let S,(a,b,c) be the n-vertex unicyclic graph formed by attaching a — 1, b — 1
and ¢ — 1 pendent vertices to the three vertices of a triangle, respectively, where a, b,

c>landa+b+c=n.

Lemma 3.3. Among the graphs in ¥, withn > 5, S, (n—3,2,1) is the unique graph
with the smallest hyper—detour index, which is equal to %(3712 +19n — 80) .

Proof. Let G = C5(T1,T»,T3) € U, with a > b > max{c,2} and a+b+ ¢ = n, where
a=|Ti|, b= |Ts| and ¢ = |T3|.

If G = S,(a,b,c) and G # S,(n — 3,2,1), then it is easily seen that ww,(G) <
wwy(G) for pendent vertices € V(T1) and y € V(13) U V(T3), and by the proof of

Proposition 3.1, we have
ww(Sp(a,b,c)) > ww(Sy(a+c—1,b,1)) > ww(S,(n —3,2,1))

and at least one of the two inequalities is strict. If G # S,,(a, b, ¢), then by Proposition
2.1, we have ww(G) > ww(Sy(a, b, ¢)) > ww(S,(n—3,2,1)) = $(3n*+19n—80) . Then
the result follows. MW

Proposition 3.2. Among the graphs in U,,
(i) Sp3 forn > 3 is the unique graph with the smallest hyper-detour index, which is
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equal to $(3n? + 5n — 24);

(17) Cy forn =4, S5(2,2,1) for n =5 and B), for n > 6 are the unique graphs with
the second smallest hyper—detour index, which is equal to 30 for n =4, 45 for n =5,
and $(3n? 4 11n — 38) for n > 6;

(749) BL forn =5, 5,(n—3,2,1) forn =6,7, B and Ss(5,2,1) forn =8, and B, for
n > 9 are the unique graphs with the third smallest hyper—detour index, which is equal
to 46 for n =5, 71 forn =6, 100 forn =7, 132 forn =8, and %(377,2 +17n — 64)
forn>9.

Proof. By Lemma 3.1, if 7 is odd with 3 <r <n — 1, then

24 [ww(Snry1) — ww(Sn)] = (2172 4+ 48r — 69)n — 14r° — 69r% + 261 4 57
> (2192 +48r — 69)(r + 1) — 14r® — 692 + 261 + 57
= 7 4+5r—12>0,

and if 7 is even with 4 <r <n — 1, then

24 [ww(Spry1) — ww(Snr)] = (2107 + 547 — 48)n — 14r® — 72r° + 8r + 48

(Y

(2172 + 5dr — 48)(r + 1) — 141° — 72r% + 8 448

r(7r® +3r +14) > 0.

It follows that ww(S,,) is increasing with respect to r € {3,4,...,n}. Thus, by
Proposition 3.1 and Lemma 3.1, S, 3 is the unique graph in U, with the smallest
hyper—detour index, which is equal to %(3’”2 + 5n — 24), proving (i). Moreover, S, 4
is the unique graph in ®,, with the smallest hyper—detour index, which is equal to
1(3n? 4+ 27n — 96).

Now we prove (ii). The case n = 4 is trivial. For n > 5, the graphs in U,
with the second smallest hyper—detour index are just the graphs in U, \ {S.3} =
(T \ {Sn3}) U, UP, with the smallest hyper—detour index, which, by Lemmas 3.2
and 3.3, is equal to min{3(3n?+ 11n — 38), (3n* 4+ 19n — 80), £ (3n® +27n — 96)} . It
is equal to §(3n? + 19n — 80) = 45 for n = 5 and $(3n® + 11n — 38) for n > 6. Then
(ii) follows.

(From (i) and (ii) and by Lemmas 3.2 and 3.3, we find that the graphs in Us; with
the third smallest hyper—detour index are just the graphs in Us \ {Ss3, 55(2,2,1)} =
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(Is\ {S53}) U @5 with the smallest hyper—detour index, which is equal to min{3(3 x
52+ 11 x 5 — 38),1(3 x 52 + 27 x 5 — 96)} = min{46,57} = 46, and for n > 6,
the graphs in U,, with the third smallest hyper-detour index are just the graphs in
Uy \{Sn3, B} = (T \ {Sh3, B,}) U¥, Ud, with the smallest hyper-detour index,
which is equal to min{3(3n® + 17n — 64), 3(3n? + 19n — 80), 1(3n? +27n — 96)} . For
n>9,

1 9 1 9 1 9

5(371/ +17n —64) < 5(3n +19n —80) < 5(377 +27n — 96)
and for n = 6,7,8, the corresponding values are listed in Table 1. Now (iii) follows

easily,. W

Table 1: Some graphs and their hyper—detour indices.

graph hyper—detour indices
n 6 7 8
B! %(3712 +17n—64) 73 101 132
Sn(n—3,2,1) %(3712 +19n—80) 71 100 132
Sha %(377,2 +27n—96) 87 120 156

4. UNICYCLIC GRAPHS WITH LARGE
HYPER-DETOUR INDICES

In this section, we determine the n-vertex unicyclic graph(s) of cycle length r, 3 <
r < n, with the largest hyper-detour index and the n-vertex unicyclic graphs with
the k-th largest hyper—detour indices for all k& up to %] +4 for n. > 6 (and to five if
n=>5).

Let P, = C.(T1, 15, ..., T;), where |Ty | =n—r+1, [Ih|=---=|T,| =1, and T}
is a path with a terminal vertex v; . In particular, P,, = C,, .

Lemma 4.1. For 3 <r <mn,

nt+2n3+(3r2—6r+2)n?+(=3r3+12r2—15r+4)n

24
5rt—19r3 41972 —5r ; ;
() = e R if ris odd,
T nt 4203+ (3r2—6r—1)n2+(=3r*+12r2—12r-2)n
4 3 2 2
5r*—19r°4+167°+4r - -
e if v is even.
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Proof. To compute ww(P,,), consider the contributions of the pairs of vertices in
the path 77 = P,_,41, the pairs of vertices in the cycle, and the pairs with one vertex

in 77 and the other vertex in the cycle both different from v; . It is easily seen that

ww(Py) = WW(Pyori1) + ww( Z Z A+ Lowr)” + 5+ Loy,
i=2 j=1
= WW(P,_ r+1)+ww(0)
1 T n—r T
+§(T - 1) Z .] +.] + ZZ]ZUWL n - T) (l?m;l + lvw,,)
i=2 j=1 =2

= WW(P,,,TH) +ww(Cy)

r—1) (“’ o 2) + (” o 1)%1(@) + (0 = s, (C).

Now the result follows from Lemmas 2.1 and 2.4. W

Proposition 4.1. Let G € Uy, where 3 < r < n. Then ww(G) < ww(P,,) with

equality if and only if G = P, .

Proof. It is obvious for r = n — 1, n. Suppose that r < n — 2. Let G =
C.(Th, Ty, ..., T.) be a graph with the largest hyper-detour index in U,,,.. By Propo-
sition 2.1 and Lemmas 2.1 and 2.2, T; is a path with v; as one of its end vertices for
eacht=1,2,..., . Suppose that there exist j and k with 1 < j < k < r such that
|T5, |Tk| > 2. Let a # v; and b # vy be terminal vertices of T; and T}, respectively.
Suppose without loss of generality that ww,(G) > wwy(G). Let ¢ be the neighbor of
bin G. Then for G' =G — c¢b + ab € U,,, we have

ww(G) —ww(@) = wwy(G') — wwy(G)

14 gy +1
( + ) + ) — wwy(G)
u€V(G)\{b}

. (lw“)+ 3 e+ 1) — ww(G)

ueV(G)\{b} u€V(G)\{b}
= wwa(G) = La+ Y (law+1)+1—wwy(G)
ueV(G)\{a,b}

= wwu(G) —wwp(G)+n—1+ Z low— Lap -
ueV (G)\{a,b}

Let zpz1 ...z, be the longest path from zy = a to z; = b in G, where s = [, >

[T5| =1+ |Te| =1+ [5] > |Tj] 4 |Tk| . Thus 1 < |T}| < loy — 1. Obviously, l4., > i for
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i=12,...,s=landly, = |Tj|-14+r—1=|Tj|+r—2 > |T}|. Then > low >
’ eV (G)\{a,b}
lap—1
Zlazz> Zl*%( —lap), and thus n — 1+ > low—Lap >n—1—14>0.
ueV(G)\{a,b}
We have ww(G' ) > ww(G), which is a contradiction to the choice of G'. It follows
| |

that G = P, , .

For integer 4 with ¢ = 2,3, ..., 5], let @, n—2(1,4) be the unicyclic graph obtained

by attaching a pendent vertex to v; and a pendent vertex to v; of the cycle C,_5.

Proposition 4.2. Among the graphs in U, with n > 5, Cy,, P, -1 and P,,_» are
the unique graphs with respectively the largest, the second and the third largest hyper—

detour indices, which are respectively equal to g5n(n—1)(n+1)(Tn—3), & (Tn*=17Tn’+

s
29n% —55n+36) and 5 (Tn* —31n+107n?—257n+318) for odd n, £n*(n+1)(7n—10),
& (Tn* — 1703 + 32n® — 52n + 48) and 5(7n* — 31n® + 104n® — 260n + 288) for even
n, Quu—o(1,k — 2) is the unique graph with the k-th largest hyper—detour index for
k=4,5,...,|%] +2, which is equal to 75(Tn" — 31n* 4 71n? — 161n + 210) + 1(n —
k+4)(n — k +3) for odd n, and (7Tn" — 31n® + 68n* — 164n + 192) + $(n — k +
4)(n — k + 3) for even n, S,n—2 is the unique graph with the (|%] + 3)-th largest
hyper—detour index, which is equal to 7(7n — 31n? + T1n? — 161n + 354) for odd
n, and -+ (771 — 31n® + 68n? — 164n + 336) for even n, and if n > 6, then Py g is
the unique graph with the (ij + 4) -th largest hyper—detour index, which is equal to

& (Tn*—45n3+215n? —699n+1050) for odd n, and 4 (Tn*—45n°+218n%—696n-+1104)

for even n .

Proof. Suppose that 3 <r <n —1. If r is odd, then by Lemma 4.1, we have

24 [MOJ( ’n,’!‘+1) WW(Pn,r)]

= 6(r—Dn? +9(—r?+2r — )n +10r* — 1572 +2r 4 3.

Let fi(n) be the expression in the right-hand side of the above equation. Since

n > r+ 1, the derivative f](x) satisfies

fin) = 12(r — Dn+9(—r* +2r — 1)

Y

12(r = 1)(r+1) + 9(—r* +2r — 1)

3(r—1)(r+7) >0,
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and then fi(n) is increasing for n > r+1. Tt follows that 24 [ww (P, 1) — ww(Py)] =
fi(n) > fi(r+1) =7r3+5r — 12 > 0. Then we have ww(Py,11) > ww(P,,) for odd

r > 3. If r is even, then by Lemma 4.1, we have
24 [ww(Pryi1) — ww(Py )] = 6rn® 4+ 3(=3r2 + 4r)n + 10r* — 12r% — 47,

Let fa(n) be the expression in the right-hand side of the above equation. Since

n > r+ 1, the derivative fj(x) satisfies
f3(n) = 12rn + 3(=3r% +4r) > 12r(r + 1) + 3(=3r* + 4r) = 3r(r + 8) > 0,

and then fy(n) is increasing for n > r+1. Tt follows that 24 [ww (P, 1) — ww(P)] =
fa(n) > fo(r+1) = r(7r®+3r+14) > 0. Then we have ww (P, ,+1) > ww(P, ) for even
r > 4. Thus, ww(P,,) is increasing with respect to r € {3,4,...,n}. By Proposition
4.1 and Lemma 4.1, C,,, P, ,,—1 and P,,_, are the unique graphs with respectively
the largest, the second largest, and the third largest hyper-detour indices.

It is easily seen that

| —

2

2 lv]?," 1
[1+l,,”,] +1+lw,,]+( + Loy, + )

—2
ww(Qn.n—?(l’ 7’)) = Z
J=1
= ww(Cyh_g) + 2ww,, (Cy—9) + 2wy, (Cr—2)
+2(n —2) + (va;_ 3).

Note that ww(Qpn—2(1,7)) is increasing for ["T’Q] < ly; < n— 3. By Propositions

— N

3.1 and 4.1, the hyper-detour indices of graphs in U,, ,,_ for n > 5 can be ordered as:

ww(Ppp—2) > ww(Qnn-2(1,2)) > ww(Qyn—2(1,3))

> s> ww (Q,m,z (1, {gJ )) > ww(Spn-2) -

By Lemma 3.1, we have

&(Tn* = 31n® + TIn? — 161n + 354)  if n is odd,

W (Sppg) =< * .
%(Tn* — 31n® 4 68n? — 164n + 336) if n is even.

By Lemma 4.1, we have

(Tn* — 45n3 + 215n% — 699n + 1050) if n is odd,

1
a8
WW(P"*"’:‘) AR 4 3 2 : :
35 (Tn* —45n° + 218n? — 696n + 1104)  if n is even.
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Tt follows that the hyper-detour indices of graphs in Us can be ordered as: ww(C5) >
ww(Psq) > ww(Ps3) > ww(Q53(1,2)) > ww(Ss3). Suppose that n > 6. If n is odd,
then

WW(Spn_2) — Ww(Pypn_s) = 2n(7Tn? — 72n + 269) — 696 > 0,

and if n is even, then
W (Spna) — W (P s) = 2n(Tn* — T5n + 266) — 768 > 0.

Thus among the graphs in U, for n > 6, the first a few largest hyper—detour indices

can be ordered as:

ww(Ch) > ww(Prypo1) > ww(Prps) > ww(Qnn—2(1,2)) > ww(Qyn—2(1,3))

> > ww (Qnm,z (17 {gJ)) > ww(Syn—2) > ww(Prpn_3).

Note that ww(Qn-2(1,)) is equal to (7n* — 31n® + 71n? — 161n + 210) + £(n —i +
2)(n—i+1)if nis odd, and 5 (7n* —31n® +68n? — 164n+192)+ 1 (n—i+2)(n—i+1)

if n is even. The result follows easily. W
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