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Abstract

The hyper–Wiener index is one of the distance–based graph invariants, used as a

structure–descriptor for predicting physicochemical properties of organic compounds.

We determine the n-vertex unicyclic graphs of cycle length r with the smallest and the

largest hyper–Wiener indices for 3 ≤ r ≤ n, and the n-vertex unicyclic graphs with

the smallest, the second smallest, the largest and the second largest hyper–Wiener

indices for n ≥ 5 .

1. INTRODUCTION

The Wiener index is the oldest and one of the most thoroughly studied molecular–

graph–based structure–descriptors [1–6]. As a kind of extension of the Wiener in-

dex, the hyper–Wiener index, proposed by Randić [7] for trees and extended to all

connected graphs by Klein, Lukovits and Gutman [8], is also used as a structure–

descriptor for predicting physicochemical properties of organic compounds (often

those significant for pharmacology, agriculture, environment–protection, etc.) [7, 8, 9].
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Let G be a simple connected graph with vertex set V (G) and edge set E(G) . For

u, v ∈ V (G), duv = d(u, v|G) denotes the distance between vertices u and v in G .

The Wiener index of G is defined as

W (G) =
∑

{u,v}⊆V (G)

duv,

and the hyper–Wiener index of G is defined as

WW (G) =
∑

{u,v}⊆V (G)

(
duv + 1

2

)
=

1

2

∑

{u,v}⊆V (G)

(d 2

uv + duv) .

Lukovits [10] derived formulas for the hyper–Wiener index of chains and trees

which contain one trivalent or tetravalent branching vertex. Diudea and Parv [11]

proposed general formulas for the calculation of the hyper–Wiener index of regular

dendrimers. Gutman et al. [12] determined trees with the smallest, the second small-

est, the third smallest, the largest, the second largest and the third largest hyper–

Wiener indices. Klavžar et al. [13] proposed an algorithm for the calculation of the

hyper–Wiener index of benzenoid hydrocarbons. Aringhieri et al. [14] proposed an

algorithm with a complexity linear in the number of vertices for calculating the Hyper–

Wiener index of molecular trees. Cash et al. [15] proposed methods for calculating

the hyper–Wiener index of molecular graphs, and found closed–form expressions for

the hyper–Wiener indices of linear phenylenes, cyclic phenylenes, poly(azulenes), and

several families of periodic hexagonal chains. Related and/or recent work may be

found, e.g., in [16–20].

A unicyclic graph is a connected graph with a unique cycle. We determine the

n-vertex unicyclic graphs of cycle length r with the smallest and the largest hyper–

Wiener indices for 3 ≤ r ≤ n, and the n-vertex unicyclic graphs with the smallest, the

second smallest, the largest and the second largest hyper–Wiener indices for n ≥ 5 .

2. PRELIMINARIES

For a connected graph G with u ∈ V (G), let Wu(G) =
∑

v∈V (G)

duv and WWu(G) =

1

2

∑
v∈V (G)

(d 2
uv+duv) . Then W (G) = 1

2

∑
u∈V (G)

Wu(G) and WW (G) = 1

2

∑
u∈V (G)

WWu(G) .

Let Sn and Pn be respectively the n-vertex star and the n-vertex path.
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Lemma 2.1. [12] Let T be an n-vertex tree different from Sn and Pn . Then 1

2
(n −

1)(3n− 4) = WW (Sn) < WW (T ) < WW (Pn) =
1

24
n(n− 1)(n+ 1)(n+ 2) .

The following two lemmas are easy to check.

Lemma 2.2. Let T be an n-vertex tree with u ∈ V (T ), where n ≥ 3 . Let x and y

be the center of the star Sn and a terminal vertex of the path Pn, respectively. Then

n − 1 = Wx(Sn) ≤ Wu(T ) ≤ Wy(Pn) =
(
n
2

)
with left equality if and only if T = Sn

and u = x, and with right equality if and only if T = Pn and u is a terminal vertex.

Lemma 2.3. Let T be an n-vertex tree with u ∈ V (T ), where n ≥ 3 . Let x and y

be the center of the star Sn and a terminal vertex of the path Pn, respectively. Then

n − 1 = WWx(Sn) ≤ WWu(T ) ≤ WWy(Pn) =
(
n+1

3

)
with left equality if and only if

T = Sn and u = x, and with right equality if and only if T = Pn and u is a terminal

vertex.

For n ≥ 5, let S ′
n be the tree formed by attaching a pendent vertex to a pendent

vertex of the star Sn−1, and P ′
n the tree formed by attaching a pendent vertex to the

neighbor of one terminal vertex of Pn−1 .

Lemma 2.4. [12] Among the n-vertex trees with n ≥ 5, S′
n is the unique tree with

the second smallest hyper–Wiener index, which is equal to 1

2
(3n2 − n − 14), and

P ′
n is the unique tree with the second largest hyper–Wiener index, which is equal to

1

24
(n4 + 2n3 − 13n2 + 10n+ 72) .

Let Cn be the n-vertex cycle with n ≥ 3 .

Lemma 2.5. [2, 8] Let v be a vertex on the cycle Cn with n ≥ 3 . Then

Wv(Cn) =

⌊
n2

4

⌋
,

WW (Cn) =
n

2
WWv(Cn) =

{
n(n+1)(n−1)(n+3)

48
if n is odd,

n2(n+1)(n+2)

48
if n is even.

The number of vertices of G is denoted by |G| . Let Cr(T1, T2, . . . , Tr) be the graph

constructed as follows. Let the vertices of the cycle Cr be labelled consecutively by

v1, v2, . . . , vr . Let T1, T2, . . . , Tr be vertex–disjoint trees such that Ti and the cycle Cr
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have exactly one vertex vi in common for i = 1, 2, . . . , r . Then any n-vertex unicyclic

graph G with a cycle on r vertices is of the form Cr(T1, T2, . . . , Tr), where
r∑

i=1

|Ti| = n .

When Cr(T1, T2, . . . , Tr) is considered, we write dij = d(vi, vj|Cr), WWi(Ti) =

WWvi(Ti), Wi(Ti) = Wvi(Ti), and ti = |Ti| for 1 ≤ i, j ≤ r .

As in [21], we have

Proposition 2.1. For r ≥ 3, let G = Cr(T1, T2, . . . , Tr) . Then

WW (G) =
r∑

i=1

WW (Ti) +
r∑

i=1

(|G| − ti)WWi(Ti) +
∑

i<j

titj

(
dij + 1

2

)

+
r∑

i=1

∑

j �=i

tjdijWi(Ti) +
∑

i<j

Wi(Ti)Wj(Tj) .

Proof. For a ∈ V (Ti) and b ∈ V (Tj) with 1 ≤ i < j ≤ r, we have dab = davi+dij+dvjb .

It is easily seen that

∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

(d 2

ab + dab)

=
∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

[
(davi + dij + dvjb)

2 + (davi + dij + dvjb)
]

=
∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

[
(d 2

avi
+ davi) + (d 2

vjb
+ dvjb)

]

+
∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

(d 2

ij + dij)

+
∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

(2davidij + 2dvjbdij)

+
∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

2davidvjb

= 2
r∑

i=1

(|G| − ti)WWi(Ti) +
∑

i<j

titj(d
2

ij + dij)

+2
r∑

i=1

∑

j �=i

tjdijWi(Ti) + 2
∑

i<j

Wi(Ti)Wj(Tj) .

Thus, we have

2WW (G) =
r∑

i=1

r∑

j=1

∑

a∈V (Ti)

∑

b∈V (Tj)

(d 2

ab + dab)

= 2
r∑

i=1

WW (Ti) +
∑

1≤i<j≤r

∑

a∈V (Ti)

∑

b∈V (Tj)

(d 2

ab + dab)
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= 2
r∑

i=1

WW (Ti) + 2
r∑

i=1

(|G| − ti)WWi(Ti) +
∑

i<j

titj(d
2

ij + dij)

+2
r∑

i=1

∑

j �=i

tjdijWi(Ti) + 2
∑

i<j

Wi(Ti)Wj(Tj) .

Now the result follows. �

Let Sn,r be the unicyclic graph obtained by attaching n − r pendent vertices to

a vertex of the cycle Cr, and Pn,r the unicyclic graph obtained by attaching a path

on n − r vertices (at one terminal vertex) to the cycle Cr, where 3 ≤ r ≤ n . In

particular, Sn,n = Pn,n = Cn . Obviously, Sn,r is the graph Cr(T1, T2, . . . , Tr) with

|T1| = n− r + 1, |T2| = · · · = |Tr| = 1 and T1 is a star with center v1, and Pn,r is the

graph Cr(T1, T2, . . . , Tr) with |T1| = n− r + 1, |T2| = · · · = |Tr| = 1 and T1 is a path

with a terminal vertex v1 .

Let Un be the set of n-vertex unicyclic graphs. Let Φn be the set of n-vertex

unicyclic graphs with cycle length at least four. Let Γn be the set of n-vertex unicyclic

graphs C3(T1, T2, T3) with |T1| ≥ |T2| = |T3| = 1 . Let Ψn be the set of n-vertex

unicyclic graphs C3(T1, T2, T3) with |T1| ≥ |T2| ≥ max{|T3|, 2} . Then, Un = Φn ∪
Γn ∪Ψn .

For an edge e of the graph G, G−e denotes the graph obtained from G by deleting

the edge e, and for an edge of the complement of G, G+e denotes the graph obtained

from G by adding the edge e .

3. UNICYCLIC GRAPHS WITH SMALL HYPER–WIENER INDICES

In this section, we determine the n-vertex unicyclic graph(s) of cycle length r with

the smallest hyper–Wiener index for 3 ≤ r ≤ n, and the n-vertex unicyclic graphs

with the smallest and the second smallest hyper–Wiener indices for n ≥ 5 .

Proposition 3.1. Let G be an n-vertex unicyclic graph with cycle length r . Then

WW (G) ≥ WW (Sn,r) with equality if and only if G = Sn,r, where

WW (Sn,r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

48
(72n2 − r4 + 2nr3 − 15r3 + 18nr2 + 25r2

−98nr − 90n+ 87r) if r is odd,

1

48
(72n2 − r4 + 2nr3 − 15r3 + 18nr2 + 22r2

−92nr − 72n+ 72r) if r is even.
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Proof. To compute WW (Sn,r), consider the contributions of the pairs of vertices in

the star T1 = Sn−r+1, the pairs with one vertex in T1 and the other vertex of the cycle

both different from v1, and the pairs of vertices of the cycle. It is easily seen that

WW (Sn,r) = WW (Sn−r+1) +

[
∑

j �=1

(
1 + d1j + 1

2

)]
· (n− r) +WW (Cr)

= WW (Sn−r+1) +
1

2
(n− r)

∑

j �=1

(d 2

1j + 3d1j + 2) +WW (Cr)

= WW (Sn−r+1) + (n− r)(r − 1)

+(n− r)[WWv1(Cr) +Wv1(Cr)] +WW (Cr) .

By Lemmas 2.1 and 2.5, we get the expressions for WW (Sn,r), as desired.

The result is obvious for r = n − 1, n . Suppose that r ≤ n − 2 . Let G =

Cr(T1, . . . , Tr) be a graph with the smallest hyper–Wiener index in the set of n-

vertex unicyclic graphs with cycle length r . By Proposition 2.1 and Lemmas 2.1–2.3,

Ti is a star with center vi for i = 1, 2, . . . , r . Suppose that there exist k and l with

1 ≤ k < l ≤ r such that tk, tl ≥ 2 . Let a ∈ V (Tk), b ∈ V (Tl) with a �= vk and b �= vl .

Suppose without loss of generality that WWa(G) ≤ WWb(G) . For G′ = G−vlb+vkb,

we have WW (G′) − WWb(G
′) = 1

2

∑
{u,v}⊆V (G)\{b}

(d 2
uv + duv) = WW (G) − WWb(G),

and then

WW (G′)−WW (G) = WWb(G
′)−WWb(G) = WWa(G

′)−WWb(G)

= WWa(G) + 3− 1

2

(
d 2

ab + dab
)
−WWb(G)

= WWa(G)−WWb(G)− 1

2

(
d 2

kl + 5dkl
)
< 0,

which is a contradiction to the choice of G . Thus r− 1 of t1, t2, . . . , tr are equal to 1

and the remaining one is equal to n− (r − 1), i.e., G = Sn,r . �

Proposition 3.2. Among the graphs in Un with n ≥ 3, Sn,3 and Cn for n = 4, 5, and

Sn,3 for n �= 4, 5 are the unique graphs with the smallest hyper–Wiener index, which

is equal to 1

2
(3n2 − 7n) .

Proof. Note that the number of edges of G is n . It is easily seen that

WW (G) ≥ 1

2
· (12 + 1) · n+

1

2
· (22 + 2) ·

[(
n

2

)
− n

]
=

3n2 − 7n

2
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with equality if and only if the diameter of G is at most 2 . The result follows. �

By previous proposition, the graphs in Un = Φn ∪ Γn ∪ Ψn for n ≥ 5 with the

second smallest hyper–Wiener index are just the graphs in U5 \ {S5,3, C5} = (Φ5 \
{C5}) ∪ (Γ5 \ {S5,3}) ∪Ψ5 for n = 5 and in Un \ {Sn,3} = Φn ∪ (Γn \ {Sn,3}) ∪Ψn for

n ≥ 6 with the smallest hyper–Wiener index.

Lemma 3.1. Among the graphs in Φ5\{C5}, S5,4 is the unique graph with the smallest

hyper–Wiener index, which is equal to 23 . Among the graphs in Φn with n ≥ 6, S6,4

and S6,5 for n = 6, and Sn,4 for n ≥ 7 are the unique graphs with the smallest

hyper–Wiener index, which is equal to 1

2
(3n2 − n− 24) .

Proof. The case n = 5 is trivial. Suppose that n ≥ 6 .

Suppose first that r is odd with r ≥ 7 . By Proposition 3.1,

48[WW (Sn,r)−WW (Sn,5)]

= (2r3 + 18r2 − 98r − 210)n− r4 − 15r3 + 25r2 + 87r + 1440 .

Let f1(n) be the expression in the right side of the above equation. Since n ≥ r ≥ 7,

we have f ′
1(n) = 2r3 + 18r2 − 98r − 210 > 0, and then f1(n) is increasing for n ≥ r .

It follows that

48[WW (Sn,r)−WW (Sn,5)] = f1(n) ≥ f1(r) = r4 + 3r3 − 73r2 − 123r + 1440 > 0,

and then WW (Sn,r) > WW (Sn,5) . Now suppose that r is even with r ≥ 6 . By

Proposition 3.1,

48[WW (Sn,r)−WW (Sn,4)]

= (2r3 + 18r2 − 92r − 48)n− r4 − 15r3 + 22r2 + 72r + 576 .

Similarly, WW (Sn,r) > WW (Sn,4) .

It is easily seen that WW (Sn,4)−WW (Sn,5) = −3(n− 6) . Now the result follows

easily. �

For n ≥ 5, let S ′
n,3 be the n-vertex unicyclic graph formed by attaching n − 5

pendent vertices and a path P2 to one vertex of a triangle. Evidently, S ′
n,3 ∈ Γn . By

Proposition 3.2, Sn,3 is the unique graph in Γn with the smallest hyper–Wiener index.
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Lemma 3.2. Among the graphs in Γn \ {Sn,3} with n ≥ 5, S′
n,3 is the unique graph

with the smallest hyper–Wiener index, which is equal to 1

2
(3n2 − n− 18) .

Proof. The cases for n = 5, 6 may be checked easily. Suppose that n ≥ 7 . Let

G = C3(T1, T2, T3) ∈ Γn \ {Sn,3} . Note that |T1| = n− 2 ≥ 5 . It is easily seen that

WW (G) = 3 +WW (T1) + 2
∑

u∈V (T1)\{v1}

(
duv2 + 1

2

)

which, together with Lemma 2.4, implies that S ′
n,3 is the unique graph in Γn \ {Sn,3}

with the smallest index, and we have

WW (S ′
n,3) = 3 +WW (S ′

n−2) + 2 · 1
2
· [(4 + 2)(n− 4) + 9 + 3]

=
1

2
(3n2 − n− 18) .

This proves the lemma. �

Let Sn(a, b, c) be the n-vertex unicyclic graph formed by attaching a − 1, b − 1

and c − 1 pendent vertices to the three vertices of a triangle, respectively, where

a ≥ b ≥ c ≥ 1 and a+ b+ c = n .

Lemma 3.3. Among the graphs in Ψn with n ≥ 5, Sn(n− 3, 2, 1) is the unique graph

with the smallest hyper–Wiener index, which is equal to 1

2
(3n2 − n− 24) .

Proof. For n ≥ 5, let G = C3(T1, T2, T3) ∈ Ψn with a ≥ b ≥ max{c, 2} and

a+ b+ c = n, where a = |T1|, b = |T2| and c = |T3| .
If G = Sn(a, b, c) and G �= Sn(n − 3, 2, 1), then it is easily seen that WWx(G) ≤

WWy(G) for pendent vertices x ∈ V (T1) and y ∈ V (T2)∪ V (T3), and by the proof of

Proposition 3.1, we have

WW (Sn(a, b, c)) ≥ WW (Sn(a+ c− 1, b, 1)) ≥ WW (Sn(n− 3, 2, 1)),

and at least one inequality is strict, where

WW (Sn(n− 3, 2, 1)) = WW (Sn−1,3) +
1

2
· [2 + 6 + 6 + 12(n− 4)]

=
3n2 − n− 24

2
.

If G �= Sn(a, b, c), then as in the proof of Proposition 3.1, we have WW (G) >

WW (Sn(a, b, c)) ≥ WW (Sn(n− 3, 2, 1)) . �

By Lemmas 3.1–3.3, we have:
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Proposition 3.3. Among the graphs in Un with n ≥ 5, S6(3, 2, 1), S6,4 and S6,5 for

n = 6, and Sn(n − 3, 2, 1) and Sn,4 for n = 5 and n ≥ 7 are the unique graphs with

the second smallest hyper–Wiener index, which is equal to 1

2
(3n2 − n− 24) .

4. UNICYCLIC GRAPHS WITH LARGE HYPER–WIENER INDICES

In this section, we determine the n-vertex unicyclic graph(s) of cycle length r with

the largest hyper–Wiener index for 3 ≤ r ≤ n, and the n-vertex unicyclic graphs with

the largest and the second largest hyper–Wiener indices for n ≥ 5 .

Proposition 4.1. Let G be an n-vertex unicyclic graph with cycle length r . Then

WW (G) ≤ WW (Pn,r) with equality if and only if G = Pn,r, where

WW (Pn,r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

48
(2n4 + 4n3 + 6nr3 − 6n2r2 + 12n2r − 24nr2 − 8n2

+30nr − 16n− r4 + 11r3 − 23r2 + 13r) if r is odd,

1

48
(2n4 + 4n3 + 6nr3 − 6n2r2 + 12n2r − 24nr2 − 2n2

+24nr − 4n− r4 + 11r3 − 20r2 + 4r) if r is even.

Proof. It is easily seen that

WW (Pn,r) = WW (Pn−r+1) +
n−r∑

k=1

∑

j �=1

(
k + d1j + 1

2

)
+WW (Cr)

= WW (Pn−r+1) +
1

2

∑

j �=1

n−r∑

k=1

(
k2 + k + 2d1jk

)

+
∑

j �=1

n−r∑

k=1

(
d1j
2

)
+WW (Cr)

= WW (Pn−r+1) +
(r − 1)(n− r)(n− r + 1)(n− r + 2)

6

+
1

2
(n− r)(n− r + 1)Wv1(Cr) + (n− r)WWv1(Cr) +WW (Cr) .

By Lemmas 2.1 and 2.5, we get the expressions for WW (Pn,r), as desired.

The result is obvious for r = n − 1, n . Suppose that r ≤ n − 2 . Let G =

Cr(T1, . . . , Tr) be a graph with the largest hyper–Wiener index in the set of n-vertex

unicyclic graphs with cycle length r . By Proposition 2.1 and Lemmas 2.1–2.3, Ti is

a path with vi as one of its end vertices for i = 1, 2, . . . , r . Suppose that there exist

k and l with 1 ≤ k < l ≤ r such that tk, tl ≥ 2 . Let a �= vk and b �= vl be end vertices

of Tk and Tl, respectively. Let LG(a, b) =
(
dab+1

2

)
. Suppose without loss of generality
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that WWa(G) ≥ WWb(G) . Let c be the neighbor of b in G. For G′ = G − cb + ab,

we have

WW (G′)−WW (G)

= WWb(G
′)−WWb(G)

=
∑

u∈V (G)\{b}

(
1 + dua + 1

2

)
−WWb(G)

=
∑

u∈V (G)\{b}

(
dua + 1

2

)
+

∑

u∈V (G)\{b}
(dua + 1)−WWb(G)

= WWa(G)−WWb(G) + n− 1 +
∑

u∈V (G)\{a,b}
dua − LG(a, b) .

Since
∑

u∈V (G)\{a,b}
dua >

dab−1∑
i=1

i =
(
dab
2

)
, we have n− 1 +

∑
u∈V (G)\{a,b}

dua − LG(a, b) > 0 .

Thus, WW (G′) > WW (G), which is a contradiction to the choice of G . It follows

that G = Pn,r . �

Proposition 4.2. Among the graphs in Un with n ≥ 3, P4,3 and C4 for n = 4, and

Pn,3 for n �= 4 are the unique graphs with the largest hyper–Wiener index, which is

equal to 1

24
(n4 + 2n3 − 13n2 + 10n+ 24) .

Proof. Suppose first that r is odd with r ≥ 5 . By Proposition 4.1,

48[WW (Pn,r)−WW (Pn,3)]

= (−6r2 + 12r + 18)n2 + (6r3 − 24r2 + 30r − 36)n− r4 + 11r3 − 23r2 + 13r − 48 .

Let g1(n) be the expression in the right side of equation above. Since n ≥ r, we have

g′1(n) = −12(r + 1)(r − 3)n+ 6r3 − 24r2 + 30r − 36

≤ −12(r + 1)(r − 3)r + 6r3 − 24r2 + 30r − 36

= −6r(r2 − 11)− 36 < 0,

and then g1(n) is decreasing for n ≥ r . It follows that

48[WW (Pn,r)−WW (Pn,3)] = g1(n) ≤ g1(r) = −r4 − r3 + 25r2 − 23r − 48 < 0,

and thus, for odd r ≥ 5, we have WW (Pn,r) < WW (Pn,3) . Now suppose that r is

even and r ≥ 4 . By Proposition 4.1,

48[WW (Pn,r)−WW (Pn,3)]
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= (−6r2 + 12r + 24)n2 + (6r3 − 24r2 + 24r − 24)n− r4 + 11r3 − 20r2 + 4r − 48 .

Let g2(n) be the expression in the right side of the above equation. Since n ≥ r, we

have

g′2(n) = −12(r2 − 2r − 4)n+ 6r3 − 24r2 + 24r − 24

≤ −12(r2 − 2r − 4)r + 6r3 − 24r2 + 24r − 24

= −6r(r2 − 12)− 24 < 0,

and then g2(n) is decreasing for n ≥ r . It follows that

48[WW (Pn,r)−WW (Pn,3)] = g2(n) ≤ g2(r) = −r4 − r3 + 28r2 − 20r − 48 ≤ 0,

and thus, for even r ≥ 4, we have WW (Pn,r) ≤ WW (Pn,3) with equality if and only

if n = r = 4 . Then the result follows. �

By previous proposition, the graphs in Un = Φn ∪ Γn ∪ Ψn for n ≥ 5 with the

second largest hyper–Wiener index are just the graphs in Φn∪ (Γn \{Pn,3})∪Ψn with

the largest hyper–Wiener index.

For n ≥ 5, let P ′
n,3 be the n-vertex unicyclic graph formed by attaching a pendent

vertex to the neighbor of the pendent vertex of Pn−1,3 .

Lemma 4.1. Among the graphs in Γn \ {Pn,3} with n ≥ 6, P ′
n,3 is the unique graph

with the largest hyper–Wiener index, which is equal to 1

24
(n4+2n3−25n2+22n+120) .

Proof. The cases for n = 6, 7 may be checked easily. Suppose that n ≥ 8 . Let

G = C3(T1, T2, T3) ∈ Γn \ {Pn,3} . Obviously,

WW (G) = 3 +WW (T1) + 2
∑

u∈V (T1)\{v1}

(
duv2 + 1

2

)

which, together with Lemma 2.4, implies that P ′
n,3 is the unique graph in Γn \ {Pn,3}

with the largest hyper–Wiener index, and

WW (P ′
n,3) = 3 +WW (P ′

n−2) +
n−3∑

i=2

(i2 + i) + (n− 3)2 + (n− 3)

=
n4 + 2n3 − 25n2 + 22n+ 120

24
,

as desired. �
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Let Pn(a, b, c) be the n-vertex unicyclic graph formed by attaching Pa−1, Pb−1

and Pc−1 to the three vertices of a triangle, respectively, where a ≥ b ≥ c ≥ 1 and

a+ b+ c = n .

Lemma 4.2. Among the graphs in Ψn with n ≥ 5, Pn(n− 3, 2, 1) is the unique graph

with the largest hyper–Wiener index, which is equal to 1

24
(n4+2n3−25n2+46n+72) .

Proof. For n ≥ 5, let G = C3(T1, T2, T3) ∈ Ψn with a ≥ b ≥ max{c, 2} and

a+ b+ c = n, where a = |T1|, b = |T2| and c = |T3| .
If G = Pn(a, b, c) and G �= Pn(n − 3, 2, 1), then it is easily seen that WWx(G) ≥

WWy(G) for pendent vertices x ∈ V (T1) and y ∈ V (T2)∪ V (T3), and by the proof of

Proposition 4.1, we have

WW (Pn(a, b, c)) ≤ WW (Pn(a+ c− 1, b, 1)) ≤ WW (Pn(n− 3, 2, 1)),

and at least one inequality is strict, where

WW (Pn(n− 3, 2, 1)) = WW (Pn−1,3) +
1

2

[
2 + 6 +

n−2∑

i=2

(i2 + i)

]

=
n4 + 2n3 − 25n2 + 46n+ 72

24
.

If G �= Pn(a, b, c), then as in the proof of Proposition 4.1, we have WW (G) <

WW (Pn(a, b, c)) ≤ WW (Pn(n− 3, 2, 1)) . �

Proposition 4.3. Among the graphs in Un with n ≥ 5, Pn(n − 3, 2, 1) and Pn,4

are the unique graphs with the second largest hyper–Wiener index, which is equal to

1

24
(n4 + 2n3 − 25n2 + 46n+ 72) .

Proof. If G ∈ Φn, then by similar arguments as in the proof of Proposition 4.2

and noting that WW (Pn,4) − WW (Pn,5) = n2 − 4n − 2 > 0, we have WW (G) ≤
1

24
(n4 + 2n3 − 25n2 + 46n+ 72) with equality if and only if G = Pn,4 . Now the result

follows from Lemmas 4.1 and 4.2. �

5. COMMENTS

We have determined in Propositions 3.2 and 3.3 the graphs in Un, n ≥ 5, with the

smallest and the second smallest hyper–Wiener indices, and in Propositions 4.2 and
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4.3 the graphs in Un, n ≥ 5, with the largest and the second largest hyper–Wiener

indices. By Propositions 3.3 and 4.3, among graphs in Un with n ≥ 5, there are three

graphs for n = 6 and two graphs for n �= 6 with the second smallest hyper–Wiener

index, and there are two graphs with the second largest hyper–Wiener index.
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