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Abstract

The Wiener polarity index WP (G) of a graph G = (V,E) is the number of
unordered pairs of vertices {u, v} of G such that the distance dG(u, v) between
u and v is 3. In this paper, the extremal Wiener polarity indices of all chemical
trees on n vertices are given.

1 Introduction

Let G = (V,E) be a connected (molecular) graph. The distance between two vertices

u and v in G, denoted by dG(u, v), is the length of a shortest path between u and v

in G. The Wiener polarity index of G, denoted by WP (G), is defined by

WP (G) = |{{u, v}|dG(u, v) = 3, u, v ∈ V }|

which is the number of unordered pairs of vertices {u, v} of G such that dG(u, v) = 3.

The Wiener polarity index for the quantity defined in the equation above is intro-

duced by Harold Wiener [1] for acyclic molecules in a slightly different manner. After

this, it seems that less attention has been paid for the Wiener polarity index WP (G).

Using the Wiener polarity index, Lukovits and Linert [2] demonstrated quantitative

structure-property relationships in a series of acyclic and cycle-containing hydrocar-

bons. Hosoya [3] found a physico-chemical interpretation of WP (G). Very recently,

Du, Li and Shi [4] described a linear time algorithm APT for computing the index
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of trees, and characterized the trees maximizing the index among all trees of given

order; Deng, Xiao and Tang [5] characterized the extremal trees with respect to this

index among all trees of order n and diameter k.

In this paper, we will give the extremal Wiener polarity indices of all chemical

trees with order n.

2 Some transformations does not decrease the

Wiener polarity index

Let T be a tree with its vertex set V (T ) and edge set E(T ). We denote by dT (v) the

degree of a vertex v ∈ V (T ).

We first give a formula for computing the Wiener polarity index of trees.

Lemma 1([4,5]). Let T = (V,E) be a tree. Then

WP (T ) =
∑

uv∈E
(dT (u)− 1)(dT (v)− 1).
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Figure 1. The (k, l)-transformation.

Then, we introduce a graph transformation which has been used to study other

topological indices.

Let T be a tree and ab an edge of T . After removing ab from T we obtain two

trees A and B such that a ∈ V (A) and b ∈ V (B). For x ∈ V (B)− {b}, let T ′ be the

tree obtained by adding the edge ax to the union of A and B. We will say that T ′ is

obtained from T by a (k, l)-transformation if dT (b) = k and dT (x) = l.

This transformation is illustrated in Figure 1.

Let Cn be the set of chemical trees (i.e., trees for which every vertex has degree at

most 4) with n vertices. We associate to T ∈ Cn the vertex sequence

(n1, n2, n3, n4)
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where ni denotes the number of vertices of T with degree i (1 ≤ i ≤ 4). Recall the

relations

n1 + n2 + n3 + n4 = n, n1 + 2n2 + 3n3 + 4n4 = 2n− 2

which implies n3 + 2n4 + 2 = n1, and

n = 2 + n2 + 2n3 + 3n4.

In the following, using transformations, we will show that for every tree T ∈ Cn
there is a tree T ′ ∈ Cn with the vertex sequence (n1, 0, n3, n4) or (n1, 1, 0, n4) such

that WP (T
′) ≥ WP (T ).

Lemma 2. Let T ∈ Cn (n ≥ 5) with vertex sequence (n1, n2, n3, n4) and n2 ≥
2. Then there exists T ′ ∈ Cn obtained by a (2, 2)-transformation on T , such that

WP (T
′) ≥ WP (T ).

Proof. We can choose x, y ∈ V (T ) such that dT (x) = dT (y) = 2. We distinguish

two cases.

(i) If xy ∈ E(T ), see Figure 2(i), then dT (a) + dT (b) ≥ 3 because n ≥ 5, and by

Lemma 1,

WP (T
′)−WP (T ) = (dT (a)− 1) + (dT (b)− 1)− 1 = dT (a) + dT (b)− 3 ≥ 0.

(ii) Otherwise, we may choose x, y as in Figure 2(ii). Notice that x1 = y1 is

possible. Without loss of generality, we assume that dT (y1) ≥ dT (x1). By Lemma 1,

WP (T
′)−WP (T )

= [2(dT (a)− 1) + 2(dT (b)− 1) + 2(dT (y1)− 1)]

− [(dT (a)− 1) + (dT (b)− 1) + (dT (x1)− 1) + (dT (y1)− 1)]

= (dT (a)− 1) + (dT (b)− 1) + (dT (y1)− 1)− (dT (x1)− 1)

= (dT (a) + dT (b)− 2) + (dT (y1)− dT (x1)) ≥ 0. �
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Figure 2. The transformations in Lemma 2.

Lemma 3. Let T ∈ Cn (n ≥ 6) with vertex sequence (n1, 1, n3, n4). If n3 ≥
1, then there exists T ′ ∈ Cn, obtained by a (2, 3)-transformation on T , such that

WP (T
′) ≥ WP (T ).

Proof. We can choose x, y ∈ V (T ) such that dT (x) = 2, dT (y) = 3 and the

distance dT (x, y) is as small as possible.

(i) If xy ∈ E(T ), see Figure 3(i). Without loss of generality, we assume that

dT (b) ≤ dT (c). By Lemma 1,

WP (T
′)−WP (T )

= [3(dT (a)− 1) + 3(dT (b)− 1) + 3(dT (c)− 1)]

− [(dT (a)− 1) + 2 + 2(dT (b)− 1) + 2(dT (c)− 1)]

= 2(dT (a)− 1)− 2 + (dT (b)− 1) + (dT (c)− 1).

If dT (a) > 1, then WP (T
′) ≥ WP (T ); If dT (a) = 1 and dT (b) > 1, then dT (c) > 1

since dT (b) ≤ dT (c), so WP (T
′) ≥ WP (T ); If dT (a) = 1 and dT (b) = 1, then dT (c) ≥ 3

since n ≥ 6 and n2 = 1, so, WP (T
′) ≥ WP (T ).

(ii) Otherwise, we may choose x, y as in Figure 3(ii). Notice that x1 = y1 is

possible. By Lemma 1,
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WP (T
′)−WP (T )

= [3(dT (a)− 1) + 3(dT (b)− 1) + 3(dT (c)− 1) + 3(dT (y1)− 1)]

− [(dT (a)− 1) + 2(dT (b)− 1) + 2(dT (c)− 1) + (dT (x1)− 1) + 2(dT (y1)− 1)]

= 2(dT (a)− 1) + (dT (b)− 1) + (dT (c)− 1) + (dT (y1)− 1)− (dT (x1)− 1)

= (2dT (a) + dT (b) + dT (c)− 4) + (dT (y1)− dT (x1))

= 2dT (a) + dT (b) + dT (c)− 4 ≥ 0.

�
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Figure 3. The transformations in Lemma 3.
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By Lemma 2 and an inductive argument, we can show that if T ∈ Cn with vertex

sequence (n1, n2, n3, n4) and n2 = 2l or n2 = 2l + 1, where l is a positive integer, we

can construct a tree T ′ ∈ Cn such that WP (T
′) ≥ WP (T ) and the vertex sequence of

T ′ is

(n1 + l, 0, n3 + l, n4) if n2 = 2l

(n1 + l, 1, n3 + l, n4) if n2 = 2l + 1

Now, by Lemma 3, if T ′ has vertex sequence (n1 + l, 1, n3 + l, n4) with n3 + l ≥ 1,

then, using a (2, 3)-transformation on T ′, we can construct a tree T ′′ ∈ Cn such that

WP (T
′′) ≥ WP (T

′) and T ′′ has the vertex sequence (n1 + l + 1, 0, n3 + l − 1, n4 + 1).

In this way, we have shown the following result.
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Theorem 1. Let T ∈ Cn (n ≥ 6) with vertex sequence (n1, n2, n3, n4). Then there

exists T ′ ∈ Cn such that WP (T
′) ≥ WP (T ) and T ′ has the vertex sequence

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
n1 +

n2

2
, 0, n3 +

n2

2
, n4

)
, if n2 is even;

(
n1 +

n2 + 1

2
, 0, n3 +

n2 − 3

2
, n4 + 1

)
or (n1, 1, 0, n4), if n2 is odd.

Therefore, we have reduced the problem to the chemical trees with no vertices of

degree 2, or with one vertex of degree 2 and no vertices of degree 3.

Lemma 4. Let T ∈ Cn (n ≥ 7) with vertex sequence (n1, 0, n3, n4). If n3 ≥
2, then there exists T ′ ∈ Cn, obtained by a (3, 3)-transformation on T , such that

WP (T
′) ≥ WP (T ).

Proof. We can choose x, y ∈ V (T ) such that dT (x) = dT (y) = 3 and the distance

dT (x, y) is as small as possible.

�
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Figure 4. The transformations in Lemma 4.

(i) If xy ∈ E(T ), see Figure 4(i). Without loss of generality, we assume that

dT (a) ≥ dT (b) and dT (a) + dT (b) ≤ dT (c) + dT (d). By Lemma 1,

WP (T
′)−WP (T )

= [3(dT (a)− 1) + (dT (b)− 1) + 3 + 3(dT (c)− 1) + 3(dT (d)− 1)]

− [2(dT (a)− 1) + 2(dT (b)− 1) + 4 + 2(dT (c)− 1) + 2(dT (d)− 1)]
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= (dT (a)− 1)− (dT (b)− 1)− 1 + (dT (c)− 1) + (dT (d)− 1)

= (dT (a)− dT (b)) + (dT (c) + dT (d)− 3).

If dT (a) > 1, then dT (c) + dT (d) ≥ dT (a) + dT (b) ≥ 3, so WP (T
′) ≥ WP (T ); If

dT (a) = 1, then dT (b) = 1 since dT (a) ≥ dT (b), and dT (c) + dT (d) ≥ 3 since n ≥ 7.

So, WP (T
′) ≥ WP (T ).

(ii) Otherwise, we may choose x, y as in Figure 4(ii). Notice that x1 = y1 is

possible. Without loss of generality, we assume that dT (a) ≥ dT (b). By Lemma 1,

WP (T
′)−WP (T )

= [3(dT (a)− 1) + (dT (b)− 1) + 3 + 9 + 3(dT (c)− 1) + 3(dT (d)− 1)]

− [2(dT (a)− 1) + 2(dT (b)− 1) + 6 + 6 + 2(dT (c)− 1) + 2(dT (d)− 1)]

= (dT (a)− 1)− (dT (b)− 1) + (dT (c)− 1) + (dT (d)− 1)

= (dT (a)− dT (b)) + (dT (c) + dT (d)− 2) ≥ 0.

�

Let T ∈ Cn with vertex sequence (n1, 0, n3, n4) and n3 ≥ 2. By Lemma 4, there is

a tree T ′ ∈ Cn with vertex sequence (n1, 1, n3 − 2, n4 + 1) and WP (T
′) ≥ WP (T ). If

n3−2 > 0, then we can apply Lemma 3 to obtain a tree T ′′ ∈ Cn with vertex sequence

(n1 + 1, 0, n3 − 3, n4 + 2) and WP (T
′′) ≥ WP (T

′). If n3 − 3 ≥ 2, then we again apply

Lemma 4 to T ′′. Continuing this (finite) process, we can obtain the next result.

Theorem 2. Let T ∈ Cn (n ≥ 7) with vertex sequence (n1, 0, n3, n4). Then there

exists T ′ ∈ Cn such that WP (T
′) ≥ WP (T ) and T ′ has the vertex sequence

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n1 +

n3

3
, 0, 0, n4 +

2n3

3

)
, if n3 ≡ 0(mod3);

(
n1 +

n3 − 1

3
, 0, 1, n4 +

2n3 − 2

3

)
, if n3 ≡ 1(mod3);

(
n1 +

n3 − 2

3
, 1, 0, n4 +

2n3 − 1

3

)
, if n3 ≡ 2(mod3).
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From Theorems 1, 2 and the relation n = 2 + n2 + 2n3 + 3n4, we have

Theorem 3. Let T ∈ Cn (n ≥ 7). Then there exists T ′ ∈ Cn such that WP (T
′) ≥

WP (T ) and T ′ has the vertex sequence
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n1, 1, 0, n4), if n ≡ 0(mod3);

(n1, 0, 1, n4), if n ≡ 1(mod3);

(n1, 0, 0, n4), if n ≡ 2(mod3).

3 The extremal Wiener polarity index of chemical

trees

In [5], we showed that WP (T ) ≥ n− 3 for any tree T of order n and diameter k ≥ 3,

and WP (Pn) = n− 3 for n ≥ 3. So, the minimum Wiener polarity index of chemical

trees with order n ≥ 6 is n− 3.

In the following, we will give the maximum Wiener polarity index of chemical

trees.

Let mij be the number of edges in T between vertices of degrees i and j. By

Lemma 1, we have

WP (T ) =
∑

uv∈E(T )

(dT (u)− 1)(dT (v)− 1) =
∑

1≤i≤j≤n−1

(i− 1)(j − 1)mij.

Specially, if T is a chemical tree, then

WP (T ) = m22 + 2m23 + 3m24 + 4m33 + 6m34 + 9m44.

Now, we compute the maximal Wiener polarity indices of chemical trees with

order n ≥ 7 by Theorem 3 and the formula above.

Case I. n ≡ 2(mod3) and T ∈ Cn with vertex sequence (n1, 0, 0, n4). Then

m22 = m23 = m24 = m33 = m34 = 0, and

WP (T ) = 9m44.

Because m14 +m44 = n− 1 and m14 = n1, m44 = n− 1− n1. Also, n1 + n4 = n and

n1 + 4n4 = 2n− 2, we have n1 =
2n+2

3
and m44 =

n−5

3
. So,

WP (T ) = 3n− 15.
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Case II. n ≡ 1(mod3) and T ∈ Cn with vertex sequence (n1, 0, 1, n4). Then

m22 = m23 = m24 = m33 = 0. We distinguish three cases according to m13 = 2, 1, 0.

(i) m13 = 2. Then m34 = 1, and

WP (T ) = 6m34 + 9m44 = 6 + 9m44.

Because m13+m14+m34+m44 = n− 1 and m13+m14 = n1, m44 = n− 2−n1. Also,

n = n1 + n3 + n4 = n1 + 1+ n4 and 2n− 2 = n1 + 3n3 + 4n4 = n1 + 3+ 4n4, we have

n1 =
2n+1

3
and m44 =

n−7

3
. So,

WP (T ) = 3n− 15.

(ii) m13 = 1. Then m34 = 2, and

WP (T ) = 6m34 + 9m44 = 12 + 9m44.

Because m13+m14+m34+m44 = n− 1 and m13+m14 = n1, m44 = n− 3−n1. Also,

n = n1 + n3 + n4 = n1 + 1+ n4 and 2n− 2 = n1 + 3n3 + 4n4 = n1 + 3+ 4n4, we have

n1 =
2n+1

3
and m44 =

n−10

3
. So,

WP (T ) = 3n− 18.

(iii) m13 = 0. Then m34 = 3, and

WP (T ) = 6m34 + 9m44 = 18 + 9m44.

Because m14 + m34 + m44 = n − 1 and m14 = n1, m44 = n − 4 − n1. Also, n =

n1 + n3 + n4 = n1 + 1 + n4 and 2n − 2 = n1 + 3n3 + 4n4 = n1 + 3 + 4n4, we have

n1 =
2n+1

3
and m44 =

n−13

3
. So,

WP (T ) = 3n− 21.

Case III. n ≡ 0(mod3) and T ∈ Cn with vertex sequence (n1, 1, 0, n4). Then

m13 = m22 = m23 = m33 = m34 = 0. We distinguish two cases according to

m12 = 1, 0.

(i) m12 = 1. Then m24 = 1, and

WP (T ) = 3m24 + 9m44 = 3 + 9m44.
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Because m12+m14+m24+m44 = n− 1 and m12+m14 = n1, m44 = n− 2−n1. Also,

n = n1 + n2 + n4 = n1 + 1+ n4 and 2n− 2 = n1 + 2n2 + 4n4 = n1 + 2+ 4n4, we have

n1 =
2n
3
and m44 =

n−6

3
. So,

WP (T ) = 3n− 15.

(ii) m12 = 0. Then m24 = 2, and

WP (T ) = 3m24 + 9m44 = 6 + 9m44.

Because m14 + m24 + m44 = n − 1 and m14 = n1, m44 = n − 3 − n1. Also, n =

n1 + n2 + n4 = n1 + 1 + n4 and 2n − 2 = n1 + 2n2 + 4n4 = n1 + 2 + 4n4, we have

n1 =
2n
3
and m44 =

n−9

3
. So,

WP (T ) = 3n− 21.

By Theorem 3 and the cases I-III above, we have

Theorem 4. The maximum Wiener polarity index of chemical trees with order

n ≥ 7 is 3n− 15.
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